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Abstract

In modern statistics and its applications, in particular in econometrics,
random parameters or latent variables are widely used, and their estimation
or prediction is of interest. Under some prior assumptions, Bayes formula
can be used to obtain their posterior distribution. However, on the sampling-
theory grounds, the unknown constants appearing in the prior distribution are
estimated using the data being actually modelled. We call such approaches
quasi-Bayesian; empirical Bayes procedures give important examples. In this
paper we propose theoretical framework that enables Bayesian validation (or
interpretation) of quasi-Bayesian inference techniques. Our framework amounts
to establishing a formal Bayesian model that justifies the quasi-Bayesian
“posterior” as a valid posterior distribution. From the Bayesian model validating
the quasi-posterior, i.e. from the joint distribution of observations and other
quantities, one can deduce the true sampling model, that is the conditional
distribution of observations, and the true prior (or marginal) distribution of the
remaining quantities. We illustrate our approach not only by simple examples,
but also by the complicated Bayesian model validating one of the basic empirical
Bayes estimators of the multivariate normal mean. This model is in fact a non-
standard joint measure that separates two subsets of the Cartesian product of
the observation space and the parameter space.
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1 Introduction

Bayes formula for density functions of continuous random variables is a particularly
important tool of Bayesian statistics, but it is not the only characteristic of this
mode of statistical modelling and inference. There are two crucial features of the
Bayesian approach to statistical methodology. Probabilistic representation of initial
uncertainty about observations (available, missing, future), latent variables and
classical parameters (unknown constants) is the main feature of Bayesian modelling.
Treating all “unknowns” as random variables is closely related to the concept
of subjective probability. Obeying rules of probability calculus is then the main
characteristics of Bayesian inference. Obviously, Bayes formula is one of these rules
(and a very useful one), but following it in isolation from other rules does not mean
conducting Bayesian inference.
In modern statistics and its many subject areas (like econometrics) latent variables,
random effects and other unobservable random quantities are widely used, and their
estimation or prediction is usually of particular interest. Bayes formula can be used
to obtain their posterior distribution, given appropriate distributional assumptions.
Then, the posterior mean can be used as the estimator (or predictor), even within
a non-Bayesian approach to statistics. However, the posterior distribution (and the
posterior mean) of a latent variable depends on unknown constants (parameters) of
the assumed marginal (or prior) distribution of this variable. The purely Bayesian
solution amounts to treating all unknowns probabilistically and using probability rules
on each level of the hierarchical model. However, on the sampling-theory grounds,
the unknown constants are estimated using the data being actually modelled. Such
approach is quite popular since 1970s under the name Empirical Bayes (EB). It uses
Bayes formula for random effects, but at the same time specifies the prior hyper-
parameters on the basis on the data.
Empirical Bayes methods can be described as incoherent by an orthodox Bayesian,
who by coherency means following basic rules of probability. While such description is
formally exact and true, it does not provide us with a deeper Bayesian understanding
of incoherent inferences which are practically useful and frequently adopted in
empirical research. So we propose theoretical framework that enables the purely
Bayesian interpretation of incoherent, quasi-Bayesian inference techniques such as
EB. Our framework amounts to establishing such formal Bayesian model that justifies
a quasi-Bayesian “posterior” (resulting from some data-based “prior”) as a valid
posterior. From this Bayesian model, i.e. the joint distribution of observations
and other quantities, which justifies the posterior in question, one can deduce (at
least in principle) the true sampling model, that is the conditional distribution of
observations, and the true prior (or marginal) distribution of the remaining quantities
– latent variables and parameters. Since analytical derivations are possible only
in very specific cases, in this paper we present only simple, illustrative examples.
However, they clearly show that incoherence of quasi-Bayesian approaches leads to
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posterior distributions, which formally correspond to sampling models and prior
distributions different than the assumed (declared) ones. Osiewalski (2019) considered
a normal statistical model with hierarchical structure, which is the starting point for
explanation and justification of the EB approach. However, only normal distributions
with known variances and covariances were examined in that paper – in order to
use purely analytical tools and obtain closed-form solutions. A more general prior
structure, that corresponds to the basic EB literature, will be considered here.
In the next section the general framework is presented and its application is illustrated
using the simple problem of estimating the unknown mean of the normal distribution
with known variance. Section 3 is devoted to the purely Bayesian interpretation of
some basic EB estimation within the normal hierarchical model.

2 Bayesian models validating quasi-posteriors
The hierarchical structure of a parametric statistical model amounts to assuming the
conditional distribution of observations described by some parametric density function

p (y | θ) = g(y; θ) (y ∈ Y, θ ∈ Θ),

where the parameters grouped in θ are in fact latent random variables with some
distribution dependent on deeper parameters (treated as unknown constants on non-
Bayesian grounds); the density for random parameter vector θ is denoted as f0(θ;α),
α ∈ A ⊆ Rs. Then the density function of the joint distribution of observations and
random parameters or latent variables (with α fixed) can be written and decomposed
in the following way:

p(y, θ;α) = p (y | θ) f0(θ;α) = g(y; θ)f0(θ;α) = f1 (θ | y;α)h(y;α), (1)

where h(y;α) =
∫

Θ g(y; θ)f0(θ;α)dθ and f1 (θ | y;α) = g(y; θ)f0(θ;α)/h(y;α) are the
densities of the marginal distribution of observations and the conditional distribution
of latent variables, respectively. Thus, in order to make inferences on random
parameters (given observations and α) Bayes formula is used:

f1 (θ | y;α) ∝ g(y; θ)f0(θ;α).

Within the Bayesian approach, α would be modelled probabilistically by assuming
its prior distribution. So the formal status of θ and α would be the same, and the
marginal posterior obtained from the joint posterior distribution of (θ, α) would be
the basis for any inference on θ. However, within the sampling-theory (non-Bayesian)
statistical paradigm, no prior distribution is assumed for the deeper parameters
grouped in α. Instead, they are estimated on the basis on the actual data, using some
properties of the marginal distribution of observations or the maximum likelihood
principle applied to the density h(y;α) treated as function of α (for any given y).
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Then the estimate of α, e.g. α̂ = arg max h(y;α), α ∈ A, can replace the unknown
parameter vector α. By inserting α̂ = a(y) into the posterior density of latent variables
f1 (θ | y;α) one obtains the quasi-posterior p̂ (θ | y) = f1 (θ | y, α̂), which enables
practical inference, but is incoherent from the purely Bayesian view. Now we propose
a formal Bayesian way to justify (or validate) f1 (θ | y, α̂) as a true posterior. This
requires such joint distribution p̃(y, θ) that leads to f1 (θ | y, a(y)) as the conditional
density p̃ (θ | y).

Definition 1. For the hierarchical model (1), any joint distribution p̃(y, θ) such that
p̃ (θ | y) = f1 (θ | y, a(y)) is called a Bayesian model validating the quasi-posterior
f1 (θ | y, α̂), used to replace f1 (θ | y;α).

Theorem 1. For the hierarchical model (1) and some positive constant k, the joint
distribution defined by p̃(y, θ) = kg(y; θ)f0 (θ; α̂) is a Bayesian model validating
f1 (θ | y, α̂).

Proof. For any α ∈ A, the values of the four functions f0, f1, g, h that appear in
(1) are linked by equality g(y; θ)f0(θ;α) = f1 (θ | y;α)h(y;α), no matter how α is
specified. In particular, this equality holds for α replaced by its estimate α̂ = a(y),
so we have

p̃(y, θ) = kg(y; θ)f0 (θ; α̂) = kf1 (θ | y; α̂)h(y; α̂), (2)

p̃(y) =
∫

Θ
p̃(y, θ)dθ = k

∫
Θ
f1 (θ | y; α̂) dθ h(y; α̂) = kh (y; α̂) ; (3)

the latter equality holds because f1 (θ | y;α) represents a regular probability density
function of θ for any value of the parameter α, in particular for its estimate α̂. Using
(2) and (3) we get

p̃ (θ | y) = p̃(y, θ)/p̃(y) = f1 (θ | y; α̂) .

The construction described in Theorem 1 is very simple and intuitive. In order to
have a Bayesian model validating the quasi-posterior f1 (θ | y; α̂) as the true posterior,
it is enough to consider the product of the initial sampling density g(y; θ) and the
data-based “prior” f0 (θ; α̂). Then, for the Bayesian model p̃(y, θ) ∝ g(y; θ)f0 (θ; α̂),
the derivation of the posterior density p̃ (θ | y) = f1 (θ | y; α̂) and the marginal data
density p̃(y) ∝ h (y; α̂) is straightforward. The only subtlety is that p̃(y) ∝ h (y; a(y))
need not be any probability density function (although h(y;α) is a proper probability
density function for any α ∈ A fixed independently of y); this is illustrated in Example
1. The general forms of the prior density p̃(θ) and the sampling density p̃ (y | θ), both
implied by (2), can be written down quite easily:

p̃(θ) = k
∫

Y
g(y; θ)f0 (θ; a(y)) dy = k

∫
Y
f1 (θ | y; a(y))h (y; a(y)) dy,

p̃ (y | θ) = p̃(y, θ)
p̃(θ) ∝ g(y; θ)f0 (θ; a(y)) ,
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but these densities may be non-standard and extremely difficult to characterise.
Clearly, p̃ (y | θ) can be very different from p (y | θ) = g(y; θ) assumed in the initial
hierarchical model (1), and p̃(θ) may be improper, as we show in the simple example
below.

Example 1 (Estimating the mean of a normal distribution). Consider the simple
hierarchical model (with normal mean following a normal prior):

p(y, µ;α) = g(y;µ)f0(µ;α) = fn
N (y | µιn, cIn) f1

N (µ | α, v) (4)

where fk
N (· | b, A) denotes the functional form of the density of the k-variate normal

distribution with mean vector b and covariance matrix A, and ιn = (1 1 . . . 1)′. We
easily decompose the joint density into the marginal density of observations (marginal
data density, MDD) and the posterior density of the parameter:

p(y, µ;α) = h(y;α)f1 (µ | y;α) = fn
N (y | αιn, cIn + vιnι

′
n) f1

N (µ | by, vy)

where

vy =
(
n

c
+ 1
v

)−1
, by =

(
n

c
+ 1
v

)−1(
n

c
y + 1

v
α

)
, y = 1

n
ι′ny;

the sampling and prior variances (c and v) are known, but α is unknown. If
α is estimated by α̂ = a(y) = y, then by = y and the quasi-posterior is
f1(µ | y; y) = f1

N

(
µ
∣∣∣ y, (n

c + 1
v

)−1
)
. In order to validate it, we define

p̃(y, µ) ∝ g(y;µ)f0 (µ; y) = fn
N (y − µιn | 0, cIn) f1

N (µ− y | 0, v) ,

which decomposes in two ways, as usual:

p̃(y, µ) = p̃ (µ | y) p̃(y) = p̃ (y | µ) p̃(µ)

with ( i) p̃ (µ | y) = f1(µ | y; y) and p̃(y) ∝ exp
(
− 1

2cy
′My

)
, where M = In − 1

n ιnι
′
n;

( ii) p̃ (y | µ) = fn
N

(
y
∣∣∣ µιn, c(In − c

n(c+nv) ιnι
′
n

))
and p̃(µ) constant. Thus, in order

to formally validate f1(µ | y; y) as the posterior density, we have to use the sampling
model assuming dependence (in the form of equi-correlation) and a flat, improper
prior. The implicit Bayesian model, validating the quasi-posterior f1(µ | y; y) is
quite different from the declared one, characterised by independent sampling and a
proper normal prior. Also note that the marginal data density in this Bayesian model,
p̃(y) ∝ exp

(
− 1

2cy
′My

)
, is improper.

The improper marginal data density obtained in Example 1 is very interesting. Its
main characteristics are easily derived due to the following Lemma.
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Lemma. Consider a change of variables, from y ∈ Y ⊆ Rn to (z, y), with
z′ = (z1 . . . zn−1), zi = yi − y (i = 1, . . . , n − 1). The density of the form
p(y) = f (y′My) corresponds then to the product of p(z) ∝ f (z′Az), where
A = In−1 + ιn−1ι

′
n−1, and the uniform density of y.

Proof. The Jacobian of this transformation is a constant (a number). Direct
calculations show that y′My = z′Az. Thus p(y) = f (y′My) ⇔ p (z, y) ∝ f (z′Az).
So we have:

p (z, y) = p(z)p (y) , p(z) ∝ f (z′Az) , p (y) ∝ 1.

From this Lemma we immediately infer that if p̃(y) ∝ exp
(
− 1

2cy
′My

)
for y ∈ Rn,

then p̃ (y) ∝ 1 and p̃(z) = fn−1
N

(
z | 0, cA−1), where A−1 = In−1 − 1

n ιn−1ι
′
n−1. So we

see that p̃(y) obtained in Example 1 is the density of such σ-finite joint measure that
is improper uniform for y, the average value of all n observations, but it is proper
normal for the deviations from the average. This marginal data density gives us
an intuitive description of similarities among yi’s without specifying any information
about their average level.

3 Quasi-posteriors in the basic empirical Bayes
approach

Now we consider the following multivariate specification, which is the starting point
for the basic formulation of the empirical Bayes approach:

p (y | θ) = g(y; θ) = fn
N (y | θ, cIn) , f0(θ;α) = fn

N (θ | α1ιn, dIn) . (5)

We can decompose the product g(y; θ)f0(θ;α) into f1 (θ | y;α)h(y;α), where

h(y;α) =
∫
Rn

g(y; θ)f0(θ;α)dθ = fn
N (y | α1ιn, (c+ d)In) (6)

is the density function of the marginal distribution of the observation vector (given
α) and

f1 (θ | y;α) = fn
N

(
θ

∣∣∣∣ d−1

c−1 + d−1α1ιn + c−1

c−1 + d−1 y,
1

c−1 + d−1 In

)
(7)

is the posterior density of the vector of random parameters (given α), with the mean

E (θ | y;α) = w · α1ιn + (1− w) · y, w = d−1

c−1 + d−1 = c

c+ d
∈ (0, 1).
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Note that the posterior precision (the inverse of posterior variance) is the sum of the
sample precision c−1 and the prior precision d−1, and the posterior mean is a weighted
average of the vector of prior means and the observation vector – with weights equal
to the share of prior or sample precision in the posterior (i.e., final) precision. Thus
E (θ | y;α) is a point (in Θ = Rn) that lies on the line segment between (α1 α1 . . . α1)′
and (y1 y2 . . . yn)′.
In the general formulation (5)-(7) it is assumed that the observation variance c is
known. The basic empirical Bayes technique is formulated for unknown prior mean
parameter α1 and unknown prior variance α2 = d. However, we distinguish and
present two cases: with α = α1 and d known, as well as with α = (α1 α2)′ and
unknown d = α2. While the latter case is closer to the empirical Bayes literature,
the former one is much simpler and easily analysed. As we show in this section, these
two cases lead to very different Bayesian models validating quasi-posteriors. The case
with known d is presented in detail by Osiewalski (2019), so here we only summarise
it in the following Example.

Example 2 (EB estimation of multivariate normal mean when prior variance is
known). It is worth stressing that the density f1 (θ | y;α) in (7) follows Bayes formula
for any fixed α, so to this point the presented approach obeys coherence. However, the
deeper parameter (here only the prior mean α = α1) is unknown, so on the sampling
theory grounds (e.g., in the EB approach) some point estimate of unknown α ∈ A is
inserted into f1 (θ | y;α), which results in the quasi-posterior p̂ (θ | y) = f1 (θ | y, α̂).
For α̂ = y we get

h (y; α̂) = fn
N (My | 0, (c+d)In), f1 (θ | y, α̂) = fn

N

(
θ

∣∣∣∣ wyιn + (1− w)y, c d

c+ d
In

)
.

Within the sampling theory approach, wyιn+(1−w)y is a natural point estimate of the
vector of random parameters. The Bayesian model validating f1 (θ | y, α̂), constructed
in line with Theorem 1, takes the form

p̃(y, θ) = kg(y; θ)f0 (θ; α̂) = kfn
N (y | θ, cIn) fn

N (θ | yιn, dIn) ,

and we seek for the sampling density p̃(y | θ) and the prior density p̃(θ) that correspond
to this Bayesian model. Elementary calculations show that

p̃(y, θ) ∝ fn
N

(
y

∣∣∣∣∣ θ,
(

1
c
In + 1

dn
ιnι
′
n

)−1
)

exp
(
− 1

2dθ
′Mθ

)
,

p̃(θ) =
∫

Y

p̃(y, θ)dy ∝ exp
(
− 1

2dθ
′Mθ

)
,

p̃ (y | θ) = p̃(y, θ)
p̃(θ) = fn

N

(
y

∣∣∣∣∣ θ,
(

1
c
In + 1

dn
ιnι
′
n

)−1
)
.
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The prior p̃(θ) is an improper, σ-finite measure. It is informative, as it favours
(approximate) equality θ1 ≈ . . . ≈ θn. In fact, it is improper uniform for the average
of θ1, . . . , θn, but proper and jointly normal for the deviations from the average.
The sampling density p̃ (y | θ) is different from p (y | θ) assumed in (5). The true
conditional distribution is normal, like the initially declared one, but it assumes
that the observations are equally correlated – instead of being independent. The
true sampling covariance matrix Ṽ (y | θ) = c

(
In − c

n(c+d) ιnι
′
n

)
leads to the same

correlation coefficient for each pair of observations:

C̃orr (yi, yj | θ) = − c

(n− 1)c+ nd
(i 6= j),

which tends to zero when n increases; p̃ (y | θ) practically coincides with p (y | θ) when
n is sufficiently large.

The simplicity of the results in Example 2 is destroyed when the prior variance
is unknown, as it is assumed in the standard EB approach, where the unbiased
estimators y and (n − 3)c/

∑n
j=1 (yj − y)2 = (n− 3)c/y′My are considered for α1

and w = c/(c + α2), respectively (see Morris 1983, Casella 1985). Of course, the
assumption n > 3 holds. In order to impose the condition w ∈ [0, 1], the estimator
ŵ = min {1, (n− 3)c/y′My} is taken. Finally, α = (α1α2)′ is estimated using α̂1 = y

and α̂2 = max {0, y′My/(n− 3)− c}, and the empirical Bayes estimator of θ takes
the form θ̂EB = ŵyιn + (1− ŵ) y; see Casella (1985). Note that θ̂EB = yιn if ŵ = 1,
or equivalently y′My/(n−3) ≤ c, i.e. when the observation vector y is located closely
enough to the point yιn, so that the deviations from y are small in the following sense:
z′Az/(n− 3) ≤ c (as y′My = z′Az, see our Lemma).
Let us split the observation set Y = Rn into Y1 = {y ∈ Y : y′My/(n − 3) ≤ c} =
{y ∈ Y : z′Mz/(n − 3) ≤ c, y ∈ R} and its compliment Y 1 = Y \Y1. For y ∈ Y 1:
α̂2 > 0, ŵ < 1 and the EB estimate “shrinks” y towards the average value; the
quasi-posterior f1 (θ | y; α̂), obtained by replacing α in (7) with α̂ = (α̂1α̂2)′ specified
above, is

f1 (θ | y; α̂) = fn
N

(
θ
∣∣∣ θ̂EB , c (1− ŵ) In

)
, (8)

which makes all values of θ ∈ Θ = Rn possible. The corresponding form of h(y; α̂) is

h (y; α̂) = fn
N (y | α̂1ιn, (c+ α̂2) In) = fn

N

(
y − yιn

∣∣∣∣∣ 0, y
′My

n− 3 In

)
∝ y′My

−n
2 .

For y ∈ Y1 we obtain α̂2 = 0, ŵ = 1, and the quasi-poster is just a unit point mass at
yιn:

f1 (θ | y; α̂) = I{0} (θ − yιn) ; (9)

the EB estimate θ̂EB is located at yιn, where the quasi-posterior f1 (θ | y; α̂) is
concentrated; so we infer that θ1 = . . . = θn = y, and other values of θ are
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precluded. Note that the data-based “prior” f0 (θ; α̂) corresponding to α̂2 = 0 is
also I{0} (θ − yιn); in this case we also obtain

h (y; α̂) = fn
N (y | α̂1ιn, (c+ α̂2) In) = fn

N (y − yιn | 0, cIn) ∝ exp
(
− 1

2cy
′My

)
.

Theorem 2. For the hierarchical model (5)-(7) with unknown prior mean α1 and
unknown prior variance α2 = d, the Bayesian model validating the quasi-posterior in
(8) and (9) is the joint measure defined as follows:
( i) for the line in Rn defined as Θ0 = {θ ∈ Rn : θ = θ0ιn, θ0 ∈ R} and its complement
Θ0, assume that Y1×Θ0 and Y 1×Θ0 have zero measure within this Bayesian model;
( ii) for (y, θ) ∈ Y 1 ×Θ0 use p̃(y, θ) ∝ y′My

−n/2
fn

N

(
θ | θ̂EB , c (1− ŵ) In

)
;

( iii) for (y, θ) ∈ Y1 ×Θ0 use 1) improper uniform prior p̃ (θ0) ∝ 1 for θ0 ∈ R and 2)
given θ = θ0ιn ∈ Θ0, unit mass at y = θ0 and p̃(z) ∝ fn−1

N

(
z | 0, cA−1) I[0,c]

(
z′Az
n−3

)
for deviations z from yιn = θ0ιn.

Proof. From the proof of Theorem 1 we know that the Bayesian model validating
f1 (θ | y; α̂) can be defined as p̃(y, θ) = kf1 (θ | y; α̂)h(y; α̂). Using the forms of
f1 (θ | y; α̂) and h(y; α̂), for y ∈ Y1 we have p̃(y, θ) ∝ exp

(
− 1

2cy
′My

)
I{0} (θ − yιn) ∝

exp
(
− 1

2cz
′Az
)
I{0} (θ − yιn), where only θ = yιn is allowed due to (9); note that

yιn ∈ Θ0, so θ ∈ Θ0 is impossible. Thus, y ∈ Y1 can be considered jointly only with
θ ∈ Θ0 and p̃(y, θ), which defines the joint measure on Y1 × Θ0, can be described as
using improper uniform marginal distribution p̃ (y) for y ∈ R and then, given y, the
unit point mass at θ = yιn ∈ Θ0 and the appropriate truncated normal distribution
for z ∈ Rn−1; this is equivalent to (iii). For y ∈ Y 1, the product of f1 (θ | y; α̂) in
(8) and the appropriate form of h(y; α̂) gives p̃(y, θ) in (ii); since Θ0 can be excluded
from the support of (8), (ii) holds. Finally, we use (i) to extend the definition of our
Bayesian model on Y1 × Θ0, the set not covered above, as well as on Y 1 × Θ0, the
subset excluded from Y 1 × Θ. So the Bayesian model validating the quasi-posterior
(8)-(9) is defined for all (y, θ) ∈ Y ×Θ.

Note that the Bayesian model validating the empirical Bayes approach that leads
to θ̂EB as the estimator of the random normal mean vector θ has a very particular
structure. The joint measure presented in Theorem 2 separates two subsets Y1 ×Θ0
and Y 1 × Θ0 of the Cartesian product Y × Θ. This has important consequences for
inference. If the individual observations y1, . . . , yn are so similar that y ∈ Y1, where
Y1 is in fact the set of points on and around the line Y0 = {y ∈ Rn : y = yιn, y ∈ R},
then we know with certainty that θ lies on the line Θ0, at the point that corresponds
to the actual data average, i.e. we know that θ1 = . . . = θn = y. If y1, . . . , yn are
not so close and thus y ∈ Y 1, then θ can be located wherever in Θ0 or even Θ, as
the posterior probability that θ ∈ Θ0 (or, equivalently, that θ1 = . . . = θn) is zero.
Note, however, that in the case of y ∈ Y 1 the set {θ ∈ Rn : θ′Mθ ≤ ε} has non-zero
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posterior probability, no matter how small ε is – and how closely to the line Θ0 the
values of θ are concentrated. While observing y ∈ Y1 confirms the equality of all θi’s
with certainty, getting y ∈ Y 1 need not exclude their equality, at least from practical
perspective.
The different σ–finite measures appearing in points (ii) and (iii) of Theorem 2 lead
to the same marginal improper uniform density for y ∈ R. In (iii) also the prior
(improper uniform over Θ0) and the sampling distribution (degenerate for y and
truncated normal for z) are quite simple. However, the prior density p̃(θ) and the
sampling density p̃ (y | θ) for the part (ii) are not easy to analyse. In order to find
their exact form we have to define

C(θ) =
∫

Y 1

y′My
−n/2

fn
N

(
θ | θ̂EB , c (1− ŵ) In

)
dy; (10)

then p̃(θ) ∝ C(θ) and p̃ (y | θ) = [C(θ)]−1
y′My

−n/2
fn

N

(
θ | θ̂EB , c (1− ŵ) In

)
IY 1

(y).
Clearly, the formal Bayesian justification of the EB approach leading to the Stein type
“shrinkage” estimator relies on very strange sampling and prior distributions, quite
far from the assumed normal ones. Since the “true” sampling model p̃ (y | θ) and the
“true” prior p̃(θ) correspond to the estimator θ̂EB with good sampling properties,
they seem worth further and deeper investigations.
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