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Abstract. Throughout the operational lifecycle of centrifugal pumps, cavitation is an omnipresent phenomenon that frequently leads to cavitation
erosion and a decline in hydraulic heads, leading to mechanical failures and substantial damage to the pump assembly. Although the cavitation
phenomenon has been widely studied in existing literature, it is still a challenging task for reliable flow dynamics analysis of centrifugal
pumps using the modal order reduction technique. In this study, the modal decomposition and reconstruction of the flow field of a centrifugal
pump considering the cavitation are conducted. The dynamic modal decomposition (DMD) based on the singular value decomposition (SVD)
is employed to explore the dynamic behaviour of the cavitation flow field by reducing the modal order of the flow field. Then, the modal
characteristics of the pump flow field are systematically analyzed. The results demonstrate that the DMD method can improve the accuracy of
the order reduction model and reduce the modal reconstruction error, the reconstruction error loss is less than 5%, and the calculation efficiency
is significantly enhanced to analyze the pump cavitation flow field. In addition, a comparison of the calculation data between the finite element
simulation and the DMD reconstructed flow field indicates the potential application of the DMD method in investigating the degradation of the
flow field due to cavitation, which provides new perspective and solid technique support for centrifugal pump cavitation analysis.
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1. INTRODUCTION
Centrifugal pumps, as typical rotating fluid machinery, have
been widely used in various ships and warships because of
their compact structure and small size level. In ship machinery
and equipment, the pump equipment accounts for 15%-30%, of
which more than 70% are centrifugal pumps. In the operation
process of the centrifugal pumps, cavitation is often found in
the flow field. The cavitation is a phenomenon in which vapour
bubbles or air bubbles in a liquid are formed at pressures lower
than the saturation vapor pressure [1, 2]. When the fluid flows
through the impeller of a centrifugal pump, cavitation occurs if
the pressure in some areas drops, noted as in the “vapor core
theory” [3]. Accordingly, if air bubbles exist in the liquid, the
growth of bubbles will lead to cavitation [4]. The occurrence
of cavitation will destroy the conveying media continuity of the
centrifugal pump, resulting in the efficiency drop of the centrifu-
gal pumps and generating noise and wheezing [5,6]. In addition,
air bubbles will collapse when transported to the high-pressure
region, releasing shock waves and micro-jets to permanently
damage the surfaces of the pump components [7, 8]. As a re-
sult, it is essential to analyze the cavitation of the centrifugal
pump flow field to improve the anti-cavitation performance and
stability of the centrifugal pumps.
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Due to the limitations of objective experimental conditions,
computational fluid dynamics (CFD) is a suitable tool for numer-
ical calculations on the cavitation of centrifugal pumps [9–11].
Many difficult-to-observe cavitation can be analyzed using the
CFD simulation [12]. Hirschi et al. [13] predicted the perfor-
mance degradation of the centrifugal pumps by comparing the
cavitation simulation and with model testing results considering
the effect of the diffusers on the performance of the pumps in the
cavitation flow. Li et al. [14] used the CFD simulation and ex-
perimental verification to investigate the cavitation phenomenon
of liquid-gas two-phase flow inside the centrifugal pump to op-
timize the impeller structural parameters. Although the CFD is
useful for centrifugal pump simulation, a proper meshing num-
ber for the CFD model is needed to determine the size of the
calculation domain and to obtain more detailed flow field in-
formation. The increase in the meshing number will inevitably
increase the requirements on computer performance, including
processing power and memory capacity, which will lead to a
significant increase in computation time in the flow field sim-
ulation. Moreover, the CFD mainly describes the macroscopic
level of the flow field, while the microscopic study of the flow
field still needs to be improved. To shorten the computation time
and reduce the solution dimension of the simulation model, the
dynamic mode decomposition (DMD) method based on the sin-
gular value decomposition (SVD) is employed in this study to
conduct an in-depth analysis of the characterization of the cav-
itation flow field in the centrifugal pumps with the purpose of
rapid downscaling the flow field.
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Currently, two typical modal decomposition methods are the
proper orthogonal decomposition (POD) and the DMD, both
are data-driven algorithms. The original DMD was proposed by
Professor Schmid [15,16] based on the decomposition of Koop-
man’s complex system, where the time-resolved data snapshots
are processed by an iterative Krylov technique to extract the dy-
namic flow features and decompose the data into dynamic pat-
terns. The DMD has been applied to the orifice plate jets [17],
open cavity flow [18], wake flow [19], and wave packets [20].
The DMD not only realizes the decomposition and reconstruc-
tion of the flow field but also obtains the dominant-frequency
modal features [21,22]. Zhi et al. [23] applied the DMD method
to the decomposition and reconstruction of the wake modes of
a ship propeller under light-loaded conditions. They derived the
results based on the DMD degradation model for the flow field
reconstruction and prediction of the feasible propeller wake. For
the identification of the centrifugal pump cavitation and char-
acterization of the pump flow field, Liu et al. [24] investigated
the effect of different cavitation modes on the vibration am-
plitude of the flexible hydrofoils with the fluid-solid coupling
effect based on the DMD and POD. Liu et al. [25] employed
the DMD method to perform the dynamic modal decomposi-
tion and reconstruct a helical axial multiphase pump, revealing
the primary frequencies and corresponding coherent structures
within the multiphase pump. Han and Tan [26] used the DMD
method to decompose and reconstruct the leakage vortex at the
top of the impeller inside a mixed-flow pump. Although there
is a growing depth of theoretical research on the DMD by the
aforementioned researchers, very limited work has been done
to address the DMD-tailored analysis for the centrifugal pumps
with concerning the cavitation flow fields. The cavitation flow
fields induced by the centrifugal pumps exhibit a high degree of
complexity, and the modal decomposition of these flow fields is
still inadequately explored.

To bridge this research gap, an improved DMD method based
on the SVD is proposed in this study to analyze the characteris-
tics of the cavitation flow field in centrifugal pumps. The aim is
to gain a deeper understanding of the gas-liquid flow properties
within the centrifugal pumps, thereby enabling a more accu-
rate analysis of the flow field under the cavitation conditions.
The analysis results indicate that the proposed DMD method is
valuable for rapid order reduction, modal decomposition, and
reconstruction of the cavitation flow fields, and hence, plays a
critical role in identifying the cavitation and preventing cavita-
tion erosion to avoid pump failures.

2. DYNAMICS MODELLING

The DMD originated in fluid dynamics and allows for decom-
posing complex flow fields into simple representations in space
and time domains. The DMD arranges the raw data collected
from experiments or simulations into the vector form of con-
secutive snapshots according to the chronological order in the
following form:

𝑋𝑁
1 =

[
𝑥1, 𝑥2, 𝑥3, · · · , 𝑥𝑖 , · · · , 𝑥𝑁

]
, (1)

where 𝑥𝑖 is the flow field data snapshot at the𝑖-th moment, and
𝑁 is the total number of data snapshots. If the flow field data is
linearly related, there will exist a constant linear mapping 𝐴 that
connects the snapshot 𝑥𝑖 with the next snapshot, i.e.,

𝑥𝑖+1 = 𝐴𝑥𝑖 . (2)

Two snapshot matrices can be constructed using the snapshots
of the flow field from 1 to 𝑁 moments. Based on the assumptions
of equation (2), it can be obtained that

𝑌𝑁
2 =

[
𝑥2, 𝑥3, 𝑥4, ..., 𝑥𝑁

]
=
[
𝐴𝑥1, 𝐴𝑥2, 𝐴𝑥3, ..., 𝐴𝑥𝑁−1

]
= 𝐴𝑋𝑁−1

1 . (3)

Based on the linear assumptions, one can derive

𝑋𝑁
1 =

[
𝑥1, 𝐴𝑥1, 𝐴

2𝑥1, · · · , 𝐴𝑖−1𝑥1, · · · , 𝐴𝑁−1𝑥1
]
. (4)

Compose the snapshot 𝑥𝑛 with the previous 𝑛-1 snapshots into
a linear combination, i.e.,

𝑥𝑁 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + ...+ 𝑐𝑁−1𝑥𝑁−1 + 𝑟, (5)

where 𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑁−1 are the linear coefficients and 𝑟 is
the residual vector. According to equations (2) and (5) we can
obtain

𝐴𝑋𝑁−1
1 = 𝑌𝑁

2 = 𝑋𝑁−1
1 𝑆 + 𝑟𝑒𝑇𝑁−1 , (6)

where 𝑆 can be expressed as

𝑆 =



0 𝑐1

1 0 𝑐2

. . .

1 0 𝑐𝑁−2

1 𝑐𝑁−1


. (7)

Equations (1)–(7) present the transformation of the unitary ma-
trix. For accurate extraction of the multistep modes in the flow
field, the snapshots are particularly important in the presence of
noise or uncertainties. Meanwhile, to improve the robustness of
the DMD, an improved DMD based on the SVD is proposed.
By performing the SVD decomposition to the raw data, it yields

𝑋𝑁−1
1 =𝑈Σ𝑉𝐻 , (8)

𝐴 =𝑈𝐴̃𝑈𝐻 , (9)

where Σ is a diagonal matrix, and the diagonal elements contain
𝑟 singular values. In the SVD process, we can keep only 𝑟

major singular values and truncate the rest of the small singular
values to reduce the numerical noise. The unitary matrices 𝑈
and 𝑉 obtained from the SVD satisfy 𝑈𝐻𝑈 = 𝐼 ′ and 𝑉𝐻𝑉 = 𝐼.
The process of computing the matrix 𝐴 can be regarded as a
minimization problem of the Frobenius paradigm

minimize
𝐴



𝑌𝑁
2 − 𝐴𝑋𝑁

1


2
𝐹
. (10)
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According to equations (8) and (9), equation (10) can be rewrit-
ten as

minimize
𝐴̃



𝑌 −𝑈𝐴̃Σ𝑉𝐻


 . (11)

The matrix 𝐴 can be approximated by

𝐴 ≈ 𝐴̃ =𝑈𝐻𝑌𝑉Σ−1. (12)

Since 𝐴̃ is a similar transformation of 𝐴, matrix 𝐴̃ contains the
main eigenvalues of 𝐴. Remember that the 𝑖-th eigenvalue of 𝐴̃
is 𝜇𝑖 and the 𝑖-th eigenvector is 𝑤𝑖 . Then, the 𝑖-th DMD modality
can be obtained as

𝜇𝑖 =𝑈𝑤𝑖 . (13)

Let the column vector of the eigenvectors 𝑤𝑖 be 𝑊 . The eigen
decomposition of 𝐴̃ can be expressed as

𝐴̃ = W N W−1, 𝑁 = diag
(
𝜇1, . . . , 𝜇𝑟

)
(14)

where 𝑁 is the diagonal array of the singular values. The snap-
shot of the flow field at an arbitrary moment can be obtained as

𝑥𝑖 = 𝐴𝑥𝑖−1 =𝑈𝐴̃𝑈𝐻𝑥𝑖−1

=𝑈𝑊𝑁𝑊−1𝑈𝐻𝑥𝑖−1 =𝑈𝑊𝑁 𝑖−1𝑊−1𝑈𝐻𝑥1 . (15)

Each column defining Φ is a DMD mode, which is obtained
according to equation (13)

Φ =𝑈𝑊, (16)

𝛼 =𝑊−1𝑧1 =𝑊−1𝑈𝐻𝑥1, 𝛼 =
[
𝛼1, ..., 𝛼𝑟

]𝑇
, (17)

where𝛼 is the mode amplitude and𝛼𝑖 is the 𝑖-th mode amplitude,
which represents the mode contribution to the initial snapshot
𝑥1. Substituting equations (16) and (17) into equation (15), it
yields the predicted flow field at arbitrary moment as

𝑥𝑖 =𝚽Λ𝑖−1𝛼 =

𝑟∑︁
𝑖=1

𝚽𝑖 (𝜇𝑖)𝑖−1𝛼𝑖 , (18)

where 𝑟 denotes the number of main eigenvalues of 𝐴. Thus, a
sequence of snapshots 𝑋𝑁−1

1 can be obtained as

[
𝑥1, 𝑥2, . . . , 𝑥𝑁−1]

𝑋𝑁−1
=
[
𝜑1, 𝜑2, . . . , 𝜑𝑁−1

]
𝜙


𝛼1

𝛼2
. . .

𝛼𝑁−1


𝐷𝛼=diag(𝛼)

·


1 𝜇1 · · · 𝜇𝑁−1

1
1 𝜇2 · · · 𝜇𝑁−1

2
...

...
...

...

1 𝜇𝑁−1 · · · 𝜇𝑁−1
𝑁−1


𝑉and

. (19)

where the evolution of the flow field is realized by the Vander-
monde matrix of 𝑉and.

3. REDUCED ORDER MODELLING

3.1. Physical model

The cavitation significantly influences the performance of the
centrifugal pumps. In this study, the IS-65-50-160 centrifugal
pump is taken as the research object, and its cavitation is stud-
ied using the proposed DMD. Table 1 shows the basic design
parameters of the IS-65-50-160 centrifugal pump.

Table 1
Basic design parameters of IS-65-50-160 centrifugal pump

Parameters Symbol Values Units

Rated flow rate 𝑄𝑑 25 m3/h
Rated head 𝐻𝑑 32 m
Nominal rotating speed 𝑛 2900 rpm
Inlet diameter 𝐷in 65 mm
Outlet diameter 𝐷out 50 mm
Impeller diameter 𝐷imp 160 mm
Blade number 𝑍 5

In three-dimensional (3D) modelling of the centrifugal pump,
the core components include the entire system impeller, worm
casing, and the inlet and outlet sections. The geometric mod-
elling is performed in Solidworks according to the dimensions
and geometric processing of the computational domain mod-
elling. Figure 1 shows the computational domain of the cen-
trifugal pump.

Fig. 1. Calculation domain of centrifugal pump

3.2. Mesh segmentation and model validation

The geometric model constructed in Solidworks is imported
into the ICEM software to mesh the computational domain.
The hexahedral structured mesh is used because the inlet and
outlet sections belong to the cylindrical shape. The shapes of
the worm shell and impeller are curved and irregular and their
structures are more complicated, so the hexahedral structured
mesh is not suitable for meshing them. Because the unstructured
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meshes can flexibly adapt to complex and irregular geometries
to capture complex boundaries and internal details, it is suitable
to use the unstructured meshes for the fluid flow. Therefore, the
unstructured meshes are used for meshing the worm casing and
impeller. The mesh files for each component of the centrifugal
pump are generated sequentially, as shown in Fig. 2.

(a) (b)

(c) (d)

Fig. 2. Mesh of the calculation domain: (a) impellers; (b) volute;
(c) inlet pipe; (d) outlet pipe

The numerical simulations are performed using fluent com-
mercial software. In the simulation, the number and quality of
the meshes have an important impact on the computational struc-
ture, and the mesh-independence test can ensure the accuracy
and reliability of the computational results. By comparing the
computational results under different grid densities, one can con-
firm the mesh number and quality of the grid division do not af-
fect the calculation results. In addition, the mesh-independence
test can verify the stability of the numerical model and identify
sensitive areas for local encryption, thus improving the overall
computational accuracy. To check the mesh independence, the
centrifugal pump model is divided into six groups with different
numbers of mesh. Figure 3 shows the mesh-independence test
results.

Fig. 3. Independence test of mesh elements

From Fig. 3 it can be seen that when the mesh number is
around 7 million, the centrifugal pump model exhibits a little
change. Considering the computational efficiency and compu-
tation time, the mesh number of 7 005 636 in the fifth group is
finally selected in this study. The mesh number of each compo-
nent is shown in Table 2.

Table 2
Mesh number in the computational domain

Mesh
group

Inlet
pipe Impellers Volute Outlet

pipe
Number of

meshes

1 528 624 4 056 231 982 359 246 358 5 813 572
2 573 296 4 277 269 1 097 562 264 891 6 213 018
3 590 338 4 513 435 1 183 665 275 860 6 563 298
4 596 512 4 746 552 1 268 449 285 440 6 896 953
5 596 512 4 825 057 1 298 627 285 440 7 005 636
6 596 512 4 953 214 1 304 426 285 440 7 139 592

3.3. Turbulence model

Wang et al. [27] and Wu et al. [28] found that the large-eddy
simulation (LES) turbulence model provides superior simula-
tion accuracy and a more detailed representation of the flow field
characteristics compared to the 𝑘-𝜀 turbulence model. However,
the LES model comes with a significant computational cost, as it
requires finer grids to resolve large-scale vortices, which in turn
increases the demand for computational resources and time. On
the other hand, Yamamoto and Tsujimoto [29] suggested that the
𝑘 −𝜀turbulence model, while less computationally expensive, is
still capable of reasonably predicting the vortex structure. Given
its efficiency in terms of computational resources, the standard
𝑘-𝜀 model is often preferred. In the 𝑘-𝜀 model, the turbulence
viscosity coefficient𝐶𝜇 is solved by the two parameters of 𝑘 and
𝜀, as expressed in equation (20)

𝜇1 = 𝜌𝐶𝜇

𝑘2

𝜀
, (20)

where 𝐶𝜇 is the viscosity coefficient, 𝑘 is the turbulent kinetic
energy, and 𝜀 is the turbulent dissipation rate. The turbulent
kinetic energy 𝑘 and its dissipation rate are obtained from the
following transport equations:

𝜕 (𝜌𝑘)
𝜕𝑡

+ 𝜕 (𝜌𝑘𝑢𝑖)
𝜕𝑥𝑖

=
𝜕

𝜕𝑥 𝑗

[(
𝜇+ 𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥 𝑗

]
+ 𝐺𝑘 +𝐺𝑏 − 𝜌𝜀−𝑌𝑀 + 𝑆𝑘 , (21)

𝜕 (𝜌𝜀)
𝜕𝑡

+ 𝜕 (𝜌𝜀𝑢𝑖)
𝜕𝑥𝑖

=
𝜕

𝜕𝑥 𝑗

[(
𝜇+ 𝜇𝑡

𝜎𝜀

)
𝜕𝜀

𝜕𝑥 𝑗

]
+ 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 +𝐶3𝜀𝐺𝑏) −𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀 , (22)

where the constants are generally defined as 𝐶1𝜀 = 1.44, 𝐶2𝜀 =
1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, and 𝜎𝜀 = 1.3.
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3.4. Initial conditions

The boundary conditions are set in the fluent using the total
pressure inlet and the mass flow outlet; the impeller region in the
computational domain takes the rotational coordinate system,
the rest of the region adopts the refined coordinate system, and
the residual convergence accuracy is 10−4; the wall surface uses
the no-slip wall surface. The operating medium of the centrifugal
pump is water, the saturated vapor pressure of water is set to
3167 Pa, the volume fraction of vacuoles at the inlet is 0, and
the volume fraction of water is 1. The time step is recorded
once using 5◦ rotation of the impeller, and the time interval
𝑑𝑡 = 2.78 ·10−4 s at a rated speed of 2900 rpm.

4. RESULTS AND DISCUSSION

Numerical simulation is carried out using the proposed DMD
method to analyze the flow field of the pump model, and the
degree of the pump cavitation is varied by changing the inlet
pressure. For engineering applications, a 3% decrease in the
centrifugal pump head usually means cavitation [30]. Define the
cavitation number 𝜎 to indicate the severity of the occurrence of
the cavitation. A smaller 𝜎 value will indicate a more severity
degree of the cavitation. The cavitation number is calculated as

𝜎 =
𝑝in − 𝑝𝑣

0.5𝜌𝑉2
0
, (23)

where 𝑝in is the pressure at the inlet; 𝑝𝑣 is the saturated vapor
pressure of the medium at ambient temperature and 𝑝𝑣 = 3167 Pa
in this study; 𝜌 is the density of the medium; 𝑉0 is the flow rate
of the medium.

In the Fluent software, by adjusting the inlet pressure, differ-
ent cavitation conditions can be simulated. For transient sim-
ulations, the flow field snapshots are captured at various time
intervals and exported as the Tecplot files. These files are then
processed by the proposed DMD method using a MATLAB
program. In this study, an inlet pressure of 9000 Pa is chosen to
achieve the targeted cavitation conditions.

4.1. Modal decomposition results

Based on the analysis in Section 3.4, the transient time step for
this study is 𝑑𝑡 = 2.78 ·10−4 s, with 167 distinct flow snapshots
collected over time. These snapshots are processed using the
proposed DMD method, resulting in 166 reduced-order modes.
The eigenvalues are of great significance in characterizing the
stability of the flow field. Figure 4 shows the distribution of
the eigenvalues of the flow field, where the real axis indicates
the fundamental part of the eigenvalues, and the dashed axis is
the imaginary part of the eigenvalues. It can be seen that the
eigenvalues are symmetric along the real axis, which indicates
that the eigenvalues are expressed as a conjugate pair whose
modulus can be used to represent the stability of the flow field.
It can also be noted that most of the points of the eigenvalues
are distributed in the unit circle of the dashed line, indicating
that the modes of the flow field in the pump are in periodic or
stable conditions.

Fig. 4. Distribution of eigenvalues of the flow field

Since 𝐴̃ is a similar transformation of 𝐴, 𝐴̃ contains the
main eigenvalues of 𝐴. Defining 𝑔𝑖 as the growth rate and the
frequency 𝜔𝑖 , the following relationship can be obtained:

𝑔𝑖 = Re{log(𝜇𝑖)}/Δ𝑡, (24)
𝜔𝑖 = Im{log(𝜇𝑖)}/Δ𝑡, (25)

where 𝜇𝑖 is the feature value and Δ𝑡 is the time interval for each
snapshot.

Figure 5 demonstrates the relationship between the growth
rates and frequency distributions of the DMD modes, in which
most of the decay rates are non-positive, and almost all of them
appear in the form of conjugate modes (i.e., the energies are
equal and the decay rates are also the same). If the modes with
higher energy have a high decay rate, it is caused by two main
reasons. The first one is that the modes with higher decay rates
lose their energy and decay rapidly. The oscillations of these
modes may be more pronounced at the initial moment but dis-
appear quickly.

Fig. 5. Growth rate and frequency distribution of modes

The second reason is the pseudo-modes generated by errors
due to numerical calculation or truncation errors in the DMD
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simulations. When performing fluid simulations using finite dif-
ference, finite volume, or finite element methods, the errors due
to spatial and temporal discretization may introduce pseudo-
modes. When performing the SVD, it is often necessary to trun-
cate small singular values to reduce the dimensionality and com-
putational complexity of the data. This truncation process may
lose some important information and lead to pseudo-modality.
Pseudo-mode existence is a common problem in numerical sim-
ulation and DMD analysis. Through careful modal analysis and
numerical optimization, the pseudo-modes can be effectively
identified and dealt with to ensure the accuracy and physical
significance of the DMD results.

Figure 6 illustrates the relationship between the frequency
and energy of each mode. It can be seen that the frequency of
the first-order modes is 0 Hz, which indicates that the modes
are static or steady state modes of the system, and the modes do
not oscillate in time, reflecting the basic equilibrium state of the
system or the constant state under the initial conditions. Figure 7
shows the ratio of the first fifty orders to the total energy, where
the first-order modes account for 53.5% of the total energy of
all modes, reflecting that subsequent modes of each order are
conjugate modes.

Fig. 6. Relationship between frequency and energy for each mode

Fig. 7. Energy proportion of the first 50 orders

4.2. Flow field cavitation

As Schmid [31] pointed out, a small number of modes often
account for the majority of a system dynamic behaviour. The
essence of the modal analysis is to simplify the examination of
complex systems by isolating a few key modes. Although these
modes may not represent the full information of the system, they
still provide enough information to support engineering design
and optimization. In practical engineering applications, such as
the design and optimization of centrifugal pumps, the primary
focus is on understanding the dynamic behaviour of the flow field
and its effects on equipment performance. That is, in this study
the first four modes of the pump may capture the main dynamic
characteristics of the flow field. As a result, they offer critical
insights that are essential for optimizing equipment performance
and diagnosing potential faults [32]. For these reasons, detailed
analysis is performed on the first four modes.

The first four orders of the flow field of the centrifugal pump
cavitation are extracted, as shown in Fig. 8; and Fig. 9 depicts
the velocity of the flow field without modal order reduction.
Comparing Fig. 8 with Fig. 9, it is clear that the 1st-order mode
(model 1) contains the vast majority of the energy of the flow
field with stable and rich information about the original flow
field.

Fig. 8. Flow field for the first four orders of modes: (a) mode 1;
(b) mode 2; (c) mode 3; (d) mode‘4

In Fig. 8a, mode 1 represents the fundamental flow mode. This
mode accounts for the largest proportion of energy of the original
flow field as in Fig. 9 among all other modes and primarily

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. e154280, 2025



Dynamics analysis on cavitation flow field of centrifugal pumps using modal order reduction

Fig. 9. Actual flow field of the centrifugal pump

reveals the flow field characteristics driven by the impeller blade
geometry (because one can observe the blade profile in mode 1)
and the flow attack angle. In essence, it represents the static
distribution of the flow field in the context of unsteady flow,
serves as the foundational framework for other dynamic modes,
and provides key background information for the modal analysis.

In Fig. 8b, mode 2 corresponds to the impeller rotation fre-
quency and highlights the significant impact of the interaction
between the impeller rotation and the volute. Specifically, it re-
veals the flow separation and vortex formation caused by the
pressure fluctuations when the impeller blade sweeps past the
volute tongue. Under cavitation conditions, this dynamic-static
interference exacerbates the development of the cavitation, lead-
ing to periodic cavitation regions on the blade suction side. From
the perspective of the cavitating flow, mode 2 may also capture
the periodic pressure fluctuations caused by the formation and
collapse of the cavitation bubbles. These fluctuations induce
the flow separation and vortex shedding on the blade suction
side, further complicating the flow structure. Throughout one
impeller rotation cycle, alternating high-energy fluid clusters
continuously form on the blade suction side. As these clusters
move downstream, they gradually stretch and diffuse to ulti-
mately generate a wake at the impeller outlet. This behaviour is
captured by mode 2, which characterizes the flow disturbances
induced by the interaction between the impeller and the vo-
lute.

When the centrifugal pump operates under the cavitating con-
ditions, mode 3 and mode 4 reveal the higher-order dynamic
flow features. In Fig. 8c, mode 3 uncovers the formation of
small-scale cavitation vortices on the blade suction side. These
vortices evolve, stretch, and shed as the impeller rotates, with
their development closely linked to the periodic growth and col-
lapse of the cavitation bubbles. This process generates pressure
fluctuations on the blade surface and complex flow separation
phenomena.

In Fig. 8d, mode 4 further captures the rapid evolution and
dissipation of even smaller and higher-frequency cavitation vor-
tices, which are closely associated with the high-frequency os-

cillation, collapse, and regeneration of the cavitation bubbles. It
leads to high-frequency pressure pulses and more complex flow
separation behaviours in the local flow field. It can be noted that
mode 3 and mode 4 provide valuable insight into the separa-
tion and shedding of the unstable vortex structures on the blade
suction side, driven by the interaction between the impeller ro-
tation and the volute in cavitating the centrifugal pump flow.
These higher-order modes represent the dynamic-static interfer-
ence harmonics and reveal the intricate dynamic characteristics
of the cavitation flows.

Following the reduction and reconstruction of the flow field
using the proposed DMD, a loss function is employed to evaluate
the relationship between the reduction and reconstruction. The
loss function is expressed as

Loss =



𝑋𝑁−1
1 −Φ𝐷𝛼𝑉and




𝐹

𝑋𝑁−1

1




𝐹

×100%. (26)

After sorting the DMD amplitudes obtained from the surface in
order of magnitude, the velocity field reconstructed at arbitrary
point in time has been obtained as

𝑣rec
𝑖 =

𝑁−1∑︁
𝑖=1

𝜑𝑖 (𝜇𝑖)𝑖−1𝛼𝑖 . (27)

According to equation (27) and the numerical simulation results,
the error of reconstructing the flow field at an arbitrary moment
can be obtained as

Rec𝑖 =



𝑣CFD
𝑖

− 𝑣rec
𝑖




2

𝑣CFD

𝑖




2

×100%, (28)

where 𝑣CFD
𝑖

is the velocity field at moment 𝑖 obtained by the
CFD simulation and Rec𝑖 is the error between the reconstructed
flow field and the CFD flow field.

Figure 10 shows the error plot of the original flow field of
the centrifugal pump and the flow field after the order reduc-
tion. The figure shows that with the increase in the number of
modes, the error between the reconstructed cavitation flow field
and the original flow field shows a decreasing trend. The modal
loss decreases gradually, and when the modes reach the 100th
order, the error of the downgraded flow field compared with the
original flow field is 3.2%. Meanwhile, the first mode already
contains most of the information of the flow field, and the error
of the first order mode is 19.2%; the error of the first four modes
is 14.2%. These results indicate that increasing the number of
modes over a smaller range of modal numbers does not sig-
nificantly improve the reconstruction accuracy. The cavitation
flow field of the centrifugal pump is a highly nonlinear physical
field with a complex turbulent structure, and the flow instabil-
ity caused by the formation and disappearance of the cavitation
bubbles is more prominent, especially under the cavitation con-
ditions. The calculation of losses is obtained by comparing the
actual and reconstructed flow fields for each time series, and the
modes are chosen based on the total energy of the flow field. It is
found that increasing the number of modes is not that effective
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in reducing the error because the temporal fluctuations of the
flow field itself may increase the error. Only when the number
of modes is large enough it is possible to eliminate the errors
caused by inconsistencies in the loss calculation.

Fig. 10. Loss plot: order-reduction flow field vs. original flow field

4.3. Flow field reconstruction

The order-reduction flow field is extracted from the original flow
field data, and the flow field reconstruction is given in Fig. 11.
Figure 12 shows the error plot of the reconstructed flow field
over the original flow field. From the error curve, it can be
seen that the reconstruction error can eventually be reduced to
less than 5% in one cycle, and the reconstructed flow field is
not much different from the original flow field. Therefore, the
reconstructed flow field is accurate.

Fig. 11. Reconstructing the flow field: (a) reconstruction 1; (b) recon-
struction 2; (c) reconstruction 3; (d) reconstruction 4; (e) reconstruc-

tion 5; (f) reconstruction 6

Fig. 12. Error curves between the reconstructed and original flow fields

5. CONCLUSIONS

This paper investigates the rapid order reduction of the flow field
of a centrifugal pump under the cavitation state based on the
dynamic mode decomposition method of singular value decom-
position. The mode decomposition and flow field reconstruction
of the centrifugal pump flow field are completed through the in-
depth analysis and discussion of the eigenvalues of the modes,
the frequencies, the energies of the modes in each order, and the
attenuation rates. The reconstruction results show that the error
between the reconstructed flow field and the original flow field
is less than 5%, and it can correctly reflect the flow field. The
main conclusions we obtained are as follows:
1. The dynamic mode decomposition (DMD) method based

on singular value decomposition (SVD) accurately captures
the modal information of the flow field under the cavitation
condition of the centrifugal pump, extracting the frequency
variations within the flow field. The flow field in the pump
is periodic or stable, and the first-order modes are time-
averaged modes, which contain most of the energy of the
flow field and reflect the characteristics of the time-averaged
flow field.

2. The DMD method can significantly reduce the order reduc-
tion time for flow-field analysis and quickly capture the main
features of the flow field. Detailed analysis, prediction, and
flow field reconstruction can be accomplished in just a few
tens of seconds using the DMD method. In addition, DMD
can effectively identify the core dynamic modes in the sys-
tem behaviour, which is especially critical for dealing with
complex flow fields such as cavitation. This modal identifi-
cation technique not only simplifies the model structure but
also reduces the processing time from tens or even hundreds
of hours to a much shorter time window than the traditional
CFD analysis while ensuring accuracy, thus significantly
saving the computational cost and improving the analysis
efficiency.

3. The DMD proves to be an effective tool for the rapid dimen-
sionality reduction of the cavitation flow field in the cen-
trifugal pumps. The error between the original and reduced-
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order flow fields can be reduced to below 3.2%, indicating
that the reduction process preserves sufficient key character-
istics of the flow field. Furthermore, the error between the
order-reduced flow field and the original flow field remains
within approximately 5%, suggesting that the predicted flow
closely matches the characteristics of the pump flow field.
As a result, the proposed DMD method not only enables
efficient dimensionality reduction for the centrifugal pumps
but also facilitates accurate flow field reconstruction under
the cavitating conditions.

One limitation of the current research lies in that the two-
dimensional (2D) model is used for the flow field reconstruc-
tion. The next study will extend the 2D model to a 3D one to
describe more details of the flow field. The research outcome
will provide an effective tool for flow field modal analysis, rapid
order reduction, and modal reconstruction for the centrifugal
pumps under cavitation conditions.
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