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Abstract. This research aims to develop an algorithm that allows for the analysis of the influence of interlayer connections on the static response
of double-layer beams. Since their construction uses the advantages of different materials, multilayer beams are widely used in the construction
industry. The critical element of these types of structures is the connection between layers, the stiffness of which can significantly affect the
static response of the system, and therefore its strength. The Euler-Bernoulli model was used to describe the double-layer beams. In the paper,
the compliance of normal displacements in multilayer and double-layer beams was considered based on the research of other authors. It was
also assumed that the tangential interactions at the connection of layers were tangential forces that are proportional to the relative tangential
displacement (slip) of these layers. This general approach eliminates the need for a broader analysis of the connection (its description and
structure) with regard to the applied “connector” between the layers. Using equilibrium equations and the adopted assumptions, a system of
displacement equations was derived. This system is formed by three coupled second- and fourth-order differential equations, the exact solution of
which is a nontrivial mathematical problem. This system was solved using the finite sine and cosine Fourier transform. Although the algorithm
presented in the paper was used to solve a specific set of equations that describe a simply supported beam, the formulas derived in the paper
allow for solving beams with other support schemes. The Fourier transformation method, after appropriate modifications (changing the boundary
conditions and, in some cases, changing the sine to cosine transformation and vice versa), can be used to solve beams that have other support
conditions. To verify the correctness and effectiveness of the described method, two numerical examples were solved. In the first one, the
influence of the variable value of the tangential stiffness of the connection on the values ??and distribution of internal forces (including the
influence on the values ??of normal stresses) was analyzed. In the second example, calculations were performed for an example taken from the
literature, and the obtained results were compared with the results obtained by other authors. The analyzed examples confirmed the significant
influence of the tangential stiffness of the layer connection on the static response of the system. Furthermore, they confirmed the correctness and
high accuracy of the method that was used to solve the problem.
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1. INTRODUCTION
Composite elements are often used in building structures, for ex-
ample in bridge and high-rise constructions. It is therefore worth
researching multi-layered elements, which use the advantages
of various materials. In recent years, several researchers have
been studying multi-layered beams as ballastless track struc-
tures [1, 2]. This is due to various reasons, such as the fact that
ballastless track structures have become a main development di-
rection for high-speed railway track structures worldwide. This
is due to their high stability, high smoothness, and low mainte-
nance [1], and also because slab ballastless tracks, which have
become the main form of subway track structures in China, have
the advantages of a fast construction speed, good durability,
less maintenance, and easy upgrading, [3]. An example of a
double-beam model is a rail track, which can be represented as
a two-layer system. In this system, the first layer represents rails,
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and the second one describes sleepers. They are both mathemat-
ically modelled by coupled and modified Euler-Bernoulli beam
equations [2]. Other static models, such as columns, are also
considered in the analysis [4–8].

Connections between the layers in two-layer beams are sen-
sitive elements that often have a significant impact on the beam
stresses and displacements, as well as on its reliability. These
connections often fail. In these places, slip may occur between
the cooperating layers. This problem has been analyzed in many
works, for example in papers [7, 9–12] with regard to static
and dynamic issues. Lu et al. [13] investigated the compressive
response of multilayer columns with different interlayers with
the use of experimental, analytical, and numerical approaches.
Wu et al. [14] presented simply supported two-layer composite
beams with an arbitrarily shaped interface that was not assumed
to be a straight line. Girhammar and Gopu [4] presented closed-
form solutions for the displacements and internal forces in par-
tially composite beam columns, which were developed for first-
and second-order cases. Foraboschi [7] analyzed the buckling
behaviour of laminated glass columns under axial compressive
loads. The research highlighted the critical role of the thermo-
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plastic interlayer in both transferring shear stresses and influ-
encing the critical buckling load. Batista [5, 15] focused on the
numerical and analytical analysis of a multi-layer beam, taking
into account slip at the joint. He determined accurate finite ele-
ment solutions and analytical approaches to describing a partial
interaction, which is crucial for understanding the effects of slip
on the structural behaviour of beams.

Le Grognec et al. [16] and Siciliano et al. [17] presented so-
lutions that refer to the buckling and static analysis of two-layer
Timoshenko beams with slip in the joint. They identified that
proper slip modelling is crucial for predicting the critical load-
ing conditions and behaviour of a beam under load. Ecsedi and
Baksa [18,19], as well as Monetto [20], indicated the difficulties
associated with the analysis of beams with weak connections and
described the complexity of the mathematical models needed to
describe the behaviour of such beams. The authors emphasized
the importance of accurate theoretical and numerical analyses
that can be used to predict the behaviour of beams under various
conditions. Schnabl et al. [10] developed an analytical solution
for two-layer beams, which incorporates both interlayer slip and
shear deformation. The model was derived using Timoshenko
beam theory and provided an accurate representation of the me-
chanical behaviour under various loading conditions. The model
that gives the exact analytical solution for the linear behaviour
was also presented by Foraboschi [21].

In paper [6], Girhammar presented a new two-dimensional
model of composite beams with interlayer slips. The solution in-
cludes the effect of shear deformation and is two-dimensionally
exact, as it does not introduce the Euler–Bernoulli hypothesis of
deformation that is usually assumed in one-dimensional theory.
The results obtained from the present two-dimensional method
are compared with those available in the literature that are based
on one-dimensional theory. Faella, Martinelli, and Nigro [22]
presented an “exact” closed-form solution for the stiffness matrix
and equivalent nodal forces in steel-concrete composite beams
with partial interaction. The study builds on Newmark’s theory
and proposes a 1D finite element that allows for efficient, lin-
ear elastic analysis using only one element per beam member.
Girhammar [23] presented a simplified static analysis method
for composite beams with interlayer slip, which is similar to Eu-
rocode 5 but more general. The presented method is suitable for
various boundary and loading conditions, and typically yields
errors below 5%, except for shear stresses, where errors range
from 10% to 20%. Foraboschi [7] proposed a closed-form exact
analytical solution of a two-layer beam with nonlinear interlayer
slip. The model incorporated fully developed nonlinear equa-
tions to accurately describe the behaviour of the beam under
various loading conditions, with a focus on an interlayer slip.
Udovč et al. [24] introduced a new model for analyzing two-layer
spatial beams with inter-layer slips in longitudinal and transverse
directions. The model incorporates shear deformations and uses
deformation-based finite elements to avoid locking issues. This
approach improves accuracy and stability in composite beam
analysis, particularly in cases where inter-layer slip significantly
impacts structural behaviour.

Bochicchio et al. [25] presented the different behaviour of the
nonlinear system with regard to double-beam linear systems.

This paper analyzes the influence of the connections between
layers on the static response of a simply supported two-layer
beam, while also taking into account the slip between layers.
The results clearly illustrate the magnification of the displace-
ments and the mutual slip between layers due to the reduction
in the shear stiffness of the connection between both layers. To
solve the described problem, an approximation method was ap-
plied, with a trigonometric Fourier series being used to expand
the displacement functions. Although the paper only presents
the solution for a simply supported beam, it is important to note
that this method is universal and allows for the solving of beams
with other types of supports. As demonstrated in the analyzed
examples, the method is characterized by high accuracy when
compared to other approximate solution methods. A further ad-
vantage of this method is the semi-analytical form of the derived
solutions. According to the authors, the method presented in the
paper, as well as the obtained results, can be a valuable guide
when designing sandwich beams that have increased strength
and reliability. This in turn will support the development of
more efficient and durable composite structures.

2. DESCRIPTION OF THE MODEL

Let us consider a beam composed of two connected layers with
a cross-section and a longitudinal section, as shown in Fig. 1.
In the presented considerations, it was assumed that the normal
displacements of both beams were consistent and, based on the
research of other authors, it was also assumed that the tangen-
tial interactions at the connection of both layers were tangential
forces that are proportional to the relative tangential displace-
ment (slip) of both layers.

(a)

(b)

Fig. 1. Geometry of (a) the cross-section and (b) the longitudinal section
of a two-layer element
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The state of the longitudinal displacements, together with the
mutual shift of the layers and the cross-sectional forces acting on
the infinitesimal fragment of the beam, are presented in Figs. 2a
and 2b, respectively.

(a)

(b)

Fig. 2. (a) Mutual displacements of the components of a two-layer
beam; (b) Internal forces in the cross-section of the two-layer beam and

at the interface of the component layers along section dx

The slip of the layers, relative to each other, is described by (1)

𝑢𝑠 (𝑥) = 𝑢2 (𝑥) −𝑢1 (𝑥) + ℎ
d𝑤(𝑥)

d𝑥
, (1)

where ℎ = ℎ1 + ℎ2 (see Fig. 1).
The tangential forces acting on the beam in the plane of

the connection (shear forces) are therefore described by the
following formula (see e.g., [5, 23, 26]):

𝑉𝑠 (𝑥) = 𝑘𝑠𝑢𝑠 (𝑥) = 𝑘𝑠

[
𝑢2 (𝑥) −𝑢1 (𝑥) + ℎ

d𝑤(𝑥)
d𝑥

]
, (2)

where constant 𝑘𝑠 is the shear stiffness of the connection of both
layers.

From the equilibrium equations for the selected beam ele-
ment, the following relationships can be obtained:

Σ𝑋 = 0

– for the upper beam – for the lower beam
d𝑁1 (𝑥)

d𝑥
+ 𝑘𝑠𝑢𝑠 (𝑥) = 0,

d𝑁2 (𝑥)
d𝑥

− 𝑘𝑠𝑢𝑠 (𝑥) = 0, (3)

Σ𝑌 = 0

– for the upper beam – for the lower beam
d𝑉1 (𝑥)

d𝑥
= −𝑝(𝑥) + 𝑟 (𝑥), d𝑉2 (𝑥)

d𝑥
= −𝑟 (𝑥), (4)

which, when added, gives the following equations:

d𝑉 (𝑥)
d𝑥

= −𝑝(𝑥), 𝑉 (𝑥) =𝑉1 (𝑥) +𝑉2 (𝑥), (5)

Σ𝑀 = 0

– for the upper beam – for the lower beam

𝑉1 (𝑥) =
d𝑀1 (𝑥)

d𝑥
+𝑉𝑠 (𝑥)ℎ1, 𝑉2 (𝑥) =

d𝑀2 (𝑥)
d𝑥

+𝑉𝑠 (𝑥)ℎ2, (6)

which when added, gives the following equations:

𝑉 (𝑥) = 𝑑𝑀𝐵 (𝑥)
𝑑𝑥

+𝑉𝑠 (𝑥)ℎ, 𝑀𝐵 (𝑥) = 𝑀1 (𝑥) +𝑀2 (𝑥). (7)

The following constitutive relations are important for the
Bernoulli–Euler beam

𝑀1 (𝑥) = −𝐸𝐼1
d2𝑤1 (𝑥)

d𝑥2 , 𝑀2 (𝑥) = −𝐸𝐼2
d2𝑤2 (𝑥)

d𝑥2 (8)

and

𝑁1 (𝑥) = 𝐸𝐴1
d𝑢1 (𝑥)

d𝑥
, 𝑁2 (𝑥) = 𝐸𝐴2

𝑑𝑢2 (𝑥)
𝑑𝑥

. (9)

When taking into consideration that 𝑤1 (𝑥) = 𝑤2 (𝑥) = 𝑤(𝑥) (the
condition of compliance of displacements that are perpendicular
to the beam’s axis), the following is obtained:

𝑀𝐵 (𝑥) = 𝑀1 (𝑥) +𝑀2 (𝑥) = −𝐸𝐼 d2𝑤(𝑥)
d𝑥2 , (10)

where 𝐸𝐼 = 𝐸𝐼1 +𝐸𝐼2.
After using relationship (5) and formulas (7) and (10), the

following is obtained:

d𝑉 (𝑥)
d𝑥

=
d2𝑀 (𝑥)

d𝑥2 + ℎ d𝑉𝑠 (𝑥)
d𝑥

= −𝑝(𝑥). (11)

By substituting constitutive relations (8) and (9) in equilibrium,
equations (3), (5), and (7), the following displacement equa-
tions describing the analyzed model of the two-layer beam are
obtained:

𝐸𝐼
d4𝑤(𝑥)

d𝑥4 + ℎ𝑘𝑠
d𝑢1 (𝑥)

d𝑥
− ℎ𝑘𝑠

d𝑢2 (𝑥)
d𝑥

− ℎ2𝑘𝑠
d2𝑤(𝑥)

d𝑥2 = 𝑝(𝑥),

𝐸 𝐴1
d2𝑢1 (𝑥)

d𝑥2 + 𝑘𝑠𝑢2 (𝑥) − 𝑘𝑠𝑢1 (𝑥) + ℎ𝑘𝑠
d𝑤(𝑥)

d𝑥
= 0,

𝐸 𝐴2
d2𝑢2 (𝑥)

d𝑥2 − 𝑘𝑠𝑢2 (𝑥) + 𝑘𝑠𝑢1 (𝑥) − ℎ𝑘𝑠
d𝑤(𝑥)

d𝑥
= 0.

(12)
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In the case of the static scheme analyzed in the paper, i.e.,
a simply supported beam ( ), and due to the fact
that the beam is not subjected to any external physical load, the
following relation 𝑁1 (𝑥) +𝑁2 (𝑥) = 0 occurs. The internal forces
are defined as follows:
– bending moments:

𝑀 (𝑥) = 𝑀1 (𝑥) +𝑀2 (𝑥) −𝑁1 (𝑥)ℎ, (13)

– shear forces:

𝑄(𝑥) =𝑉1 (𝑥) +𝑉2 (𝑥) =
d𝑀𝐵 (𝑥)

d𝑥
+𝑉𝑠 (𝑥)ℎ. (14)

3. SOLUTION OF THE PROBLEM

The subject of further analysis will be a simply supported beam,
with support points located at the ends of beam No. 2 – on its
lower edge.

The boundary conditions for this case are presented in equa-
tions (15) to (17)

𝑤(0) = 𝑤(𝐿) = 0,
d2𝑤(𝑥)

d𝑥2

����
𝑥=0

=
d2𝑤(𝑥)

d𝑥2

����
𝑥=𝐿

= 0, (15)

d𝑢1 (𝑥)
d𝑥

����
𝑥=0

=
d𝑢1 (𝑥)

d𝑥

����
𝑥=𝐿

= 0, (16)

𝑢2 (0) = ℎ2
d𝑤(𝑥)

d𝑥

����
𝑥=0

,
d𝑢2 (𝑥)

d𝑥

����
𝑥=𝐿

= 0. (17)

The analyzed issue is solved by developing the sought functions
into a Fourier series. With such boundary conditions, we are
looking for solutions in the form of the following series:



𝑢1 (𝑥) =
∞∑︁′

𝑛=0
𝑢1𝑛 cos𝛼𝑛𝑥,

𝑢2 (𝑥) =
∞∑︁′

𝑛=0
𝑢2𝑛 cos𝛼𝑛𝑥,

𝑤(𝑥) =
∞∑︁
𝑛=1

𝑤𝑛 sin𝛼𝑛𝑥,

(18)

where

𝛼𝑛 =
𝑛𝜋

𝐿
,

∞∑︁′

𝑛=0
𝑎𝑛 =

1
2
𝑎0 +

∞∑︁
𝑛=1

𝑎𝑛 .

After substituting the above expansions of functions 𝑢1, 𝑢2 and
𝑤 and the expansions of their derivatives 𝑢′1, 𝑢′2, 𝑢′′1 , 𝑢′′2 , 𝑤′,
𝑤′′, and 𝑤𝐼𝑉 (see formulas (A.2)–(A.6)) into the system of
differential equations (12), and after comparing the coefficients
on the left and right sides of this system, an infinite system of
algebraic equations is obtained



𝐸𝐼𝛼4
𝑛𝑤𝑛 − ℎ𝑘𝑠𝛼𝑛𝑢1𝑛 + ℎ𝑘𝑠𝛼𝑛𝑢2𝑛 + ℎ2𝑘𝑠𝛼

2
𝑛𝑤𝑛

= 𝑝𝑛 −𝐸𝐼
2
𝐿
𝛼3
𝑛 [(−1)𝑛𝑤(𝐿) −𝑤(0)]

+ 𝐸𝐼
2
𝐿
𝛼𝑛 [(−1)𝑤′′ (𝐿) −𝑤′′ (0)]

+ ℎ2𝑘𝑠
2
𝐿
𝛼𝑛 [(−1)𝑛𝑤(𝐿) −𝑤(0)] ,

−𝐸𝐴1𝛼
2
𝑛𝑢1𝑛 + 𝑘𝑠𝑢2𝑛 − 𝑘𝑠𝑢1𝑛 + ℎ𝑘𝑠𝛼𝑛𝑤𝑛

= −𝐸𝐴1
2
𝐿

[
(−1)𝑛𝑢′1 (𝐿) −𝑢′1 (0)

]
− ℎ𝑘𝑠

2
𝐿
[(−1)𝑛𝑤(𝐿) −𝑤(0)] ,

−𝐸𝐴2𝛼
2
𝑛𝑢2𝑛 − 𝑘𝑠𝑢2𝑛 + 𝑘𝑠𝑢1𝑛 − ℎ𝑘𝑠𝛼𝑛𝑤𝑛

= −𝐸𝐴2
2
𝐿

[
(−1)𝑛 𝑢′2 (𝐿) −𝑢′2 (0)

]
+ ℎ𝑘𝑠

2
𝐿
[(−1)𝑛𝑤(𝐿) −𝑤(0)] ;

for 𝑛 ≥ 0.

(19)

Taking into account the boundary conditions (15)–(17) in equa-
tions (19), the following is obtained:
for 𝑛 ≥ 1:

𝐸𝐼𝛼4
𝑛𝑤𝑛 − ℎ𝑘𝑠𝛼𝑛𝑢1𝑛 + ℎ𝑘𝑠𝛼𝑛𝑢2𝑛

+ ℎ2𝑘𝑠𝛼
2
𝑛𝑤𝑛 = 𝑝𝑛,

−𝐸𝐴1𝛼
2
𝑛𝑢1𝑛 + 𝑘𝑠𝑢2𝑛 − 𝑘𝑠𝑢1𝑛 + ℎ𝑘𝑠𝛼𝑛𝑤𝑛 = 0,

−𝐸𝐴2𝛼
2
𝑛𝑢2𝑛 − 𝑘𝑠𝑢2𝑛 + 𝑘𝑠𝑢1𝑛 − ℎ𝑘𝑠𝛼𝑛𝑤𝑛

= 𝐸𝐴2
2
𝐿
𝑢′2 (0);

(20)

for 𝑛 = 0: 
𝑘𝑠𝑢20 − 𝑘𝑠𝑢10 = 0,

− 𝑘𝑠𝑢20 + 𝑘𝑠𝑢10 = 𝐸𝐴2
2
𝐿
𝑢′2 (0),

(21)

where

𝑝𝑛 =
2
𝐿

𝐿∫
0

𝑝(𝑥) sin𝛼𝑛𝑥d𝑥, 𝑢′2 (0) =
d𝑢2 (𝑥)

d𝑥

����
𝑥=0

.

As a result of solving the system of equations (21), the following
is obtained:

𝑢10 = 𝑢20 , 𝑢′2 (0) = 0. (22)

After substituting 𝑢′2 (0) = 0 into the system of equations (20),
and after solving it, the following is obtained:

𝑢1𝑛 =
𝐸𝐴2ℎ𝑘𝑠𝐿

5 𝑝𝑛
(𝑛𝜋 )3 [( (𝐸𝐴1+𝐸𝐴2 )𝐸𝐼+𝐸𝐴1𝐸𝐴2ℎ2)𝑘𝑠𝐿2+𝐸𝐴1𝐸𝐴2𝐸𝐼 (𝑛𝜋 )2] ,

𝑢2𝑛 = − 𝐸𝐴1ℎ𝑘𝑠𝐿
5 𝑝𝑛

(𝑛𝜋 )3 [( (𝐸𝐴1+𝐸𝐴2 )𝐸𝐼+𝐸𝐴1𝐸𝐴2ℎ2)𝑘𝑠𝐿2+𝐸𝐴1𝐸𝐴2𝐸𝐼 (𝑛𝜋 )2] ,

𝑤𝑛 = − 𝐿4 ( (𝐸𝐴1+𝐸𝐴2 )𝑘𝑠𝐿2+𝐸𝐴1𝐸𝐴2𝐸𝐼 (𝑛𝜋 )2) 𝑝𝑛
(𝑛𝜋 )4 [( (𝐸𝐴1+𝐸𝐴2 )𝐸𝐼+𝐸𝐴1𝐸𝐴2ℎ2)𝑘𝑠𝐿2+𝐸𝐴1𝐸𝐴2𝐸𝐼 (𝑛𝜋 )2] .

(23)
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Expansion factors 𝑢20 = 𝑢10 are determined using the boundary

condition 𝑢2 (0) = ℎ2
d𝑤(𝑥)

d𝑥

���
𝑥=0

𝑢2 (0) =
1
2
𝑢20 +

∞∑︁
𝑛=1

𝑢2𝑛 = ℎ2
∞∑︁
𝑛=1

𝛼𝑛𝑤𝑛 (24)

and from this, the following is obtained:

𝑢10 = 𝑢20 = 2
∞∑︁
𝑛=1

(𝛼𝑛ℎ2𝑤𝑛 −𝑢2𝑛) . (25)

Calculating coefficients 𝑤𝑛, 𝑢1𝑛 and 𝑢2𝑛 allows the sought dis-
placement functions to be determined and, after using the re-
lationships that determine the coefficients of the derivatives of
these functions, also the internal forces. Normal stresses 𝜎𝑥

were determined using the known formula

𝜎𝑖
𝑥 (𝑦𝑖) =

𝑁𝑖

𝐸𝐴𝑖

+ 𝑀𝑖

𝐸𝐼𝑖
𝑦𝑖 . (26)

4. NUMERICAL EXAMPLE

The influence of the stiffness (shear) of the connection on the
displacement and effort state of the two-layer system was ex-
amined by analyzing the following two numerical examples.
The analysis involved the simply supported beam described in
Section 3, which has its cross-section shown in Fig. 1. The solu-
tions for this beam are achieved by numerical integration using
Wolfram Mathematica [27].

4.1. Example 1

The dimensions of this beam are: 𝐿 = 2.0 m, 𝑏1 = 0.30 m, 𝑏2 =
0.05 m, 𝐻1 = 2ℎ1 = 0.05 m 𝐻2 = 2ℎ2 = 0.15 m. The material
parameters are 𝐸1 = 𝐸2 = 1010 Pa. The beam was loaded at mid-
span (𝑥 = 𝐿/2) with a concentrated force 𝑃 = 1 kN, and the co-
efficients, developed into a sine Fourier series, are given by (27)

𝑝𝑛 =
2
𝐿

𝐿∫
0

𝑃𝛿

(
𝑥− 𝐿

2

)
sin𝛼𝑛𝑥d𝑥 =

2𝑃
𝐿

sin
𝑛𝜋

2
(27)

for 𝑛 = 1,2,3, . . .
The calculations were performed for different values of the

stiffness of the connection between layers 𝑘𝑠 . The dependence
between the maximum displacement 𝑤(𝐿/2) and the value of
the parameter 𝑘𝑠 ∈

〈
0, 109〉 Pa is shown in Fig. 3.

Fig. 3. Dependence between displacement 𝑤(𝐿/2) and the value
of the 𝑘𝑠 parameter

(a)

(b)

(c)

(d)

(e)

Fig. 4. Dependence between: (a) displacement 𝑤(𝑥), (b) rotation an-
gle 𝑤′ (𝑥), (c) displacement 𝑢1 (𝑥), (d) displacement 𝑢2 (𝑥), (e) the

mutual slip between layers 𝑢𝑠 and the value of the 𝑘𝑠 parameter
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The displacement graphs 𝑤(𝑥) for different values of 𝑘𝑠 = 0;
106; 5 · 107; 109 Pa are presented in Fig. 4a. In the conducted
numerical analyses, the values of the relative displacement of
the layers (slip) in the plane of the contact were also determined,
i.e., the 𝑢𝑠 (𝑥) function (see equation (1)). The calculations were
made by assuming 𝑘𝑠 = 106 Pa; 5 · 107 Pa; 109 Pa. The graphs
of the functions, which are components of the formula (which
defines the relative displacement 𝑢𝑠 (𝑥), i.e., function 𝑤′ (𝑥),
𝑢1 (𝑥), 𝑢2 (𝑥)), and the graph of the function 𝑢𝑠 (𝑥) are presented
in Figs. 4b, 4c, 4d, and 4e, respectively.

The diagrams of internal forces: bending moments and shear
forces, were determined using formulas (13) and (14). The cal-
culations were performed for the values 𝑘𝑠 = 106 Pa; 5 ·107 Pa;
109 Pa. The obtained results are presented in Figs. 5a–5c. Each
of the figures also presents diagrams of the elements included
in the formulas that were used for the calculations. In Fig. 5a,
these are the corresponding functions 𝑀1 (𝑥) +𝑀2 (𝑥), in Fig. 5b
−𝑁1 (𝑥) · ℎ and in Fig. 5c 𝑀 (𝑥). In Figs. 6a–6c, these are
d𝑀𝐵 (𝑥)

d𝑥
, 𝑉𝑠 (𝑥) · ℎ, and 𝑄(𝑥), respectively.

(a)

(b)

(c)

Fig. 5. Bending moments: (a) component 𝑀1 (𝑥) +𝑀2 (𝑥), (b) compo-
nent −𝑁1 (𝑥) · ℎ, (c) diagram of bending moments 𝑀 (𝑥)

(a)

(b)

(c)

Fig. 6. Shear forces: (a) component d𝑀𝐵 (𝑥)/d𝑥, (b) component
𝑉𝑠 (𝑥) · ℎ, (c) shear forces 𝑄(𝑥)

The determined graphs confirm the correctness of the derived
formulas, as they are consistent with the generally known (for
the analyzed static scheme) internal force diagrams.

4.2. Example 2

To verify the accuracy of the obtained solutions, the presented
method was applied to solve an example taken from the litera-
ture (see [4,28,29]). In this example, the subject of analysis is a
simply supported beam with a cross-section, as defined in Exam-
ple 1. The material parameters of the beam are: 𝐸1 = 12 ·109 Pa,
𝐸2 = 8 · 109 Pa, and the stiffness of the connection between the
two layers 𝑘𝑠 = 5 · 107 Pa. Beams of various spans were ana-
lyzed, assuming 𝐿/𝐻 = 4, 5, 10, 20 (where 𝐻 = 2ℎ = 0.2 m).
The beam was subjected to a uniformly distributed load over its
entire length 𝑞(𝑥) = 1 kN/m. In this case, the coefficients of the
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(a)

(b)

Fig. 7. Normal stress diagram in cross-section 𝑥 = 𝐿/4 (on the left) and
𝑥 = 𝐿/2 (on the right) when (a) 𝑘𝑠 = 0 Pa, (b) 𝑘𝑠 = 5 ·107 Pa

Fig. 8. Normal stress diagram in cross-section 𝑥 = 𝐿/4 (on the left) and
𝑥 = 𝐿/2 (on the right) when 𝑘𝑠 = 1014 Pa

load expansion in the sinusoidal series are determined by the
following formula for 𝑛 = 1,2,3, . . .:

𝑝𝑛 =
2
𝐿

𝐿∫
0

𝑞 sin𝛼𝑛𝑥d𝑥 = 2𝑞
1− cos𝑛𝜋

𝑛𝜋
. (28)

The obtained results for the maximum displacements of the
beam at point 𝑥 = 𝐿/2 are presented in Table 1 and compared
with the results presented in the cited papers.

Table 1
Maximum vertical displacement [mm]

𝐿/𝐻 20 10 5 4

Paper [4] 7.5599 0.7172 0.0665 0.0296

Paper [28] 7.6204 0.7315 0.0700 0.0318

Paper [29] 7.5590 0.7169 0.0665 0.0296

This paper 7.5599 0.7172 0.0665 0.0296

5. DISCUSSION
The obtained results indicate the changes in stiffness within the
range of

〈
0, 5 ·108〉 Pa have a significant impact on the dis-

placements 𝑤(𝑥) of the two-layer system. If the difference in the

displacements calculated for 𝑘𝑠 = 0 Pa and 𝑘𝑠 = 1014 Pa is taken
as a comparative value, then the changes in these displacements
when 𝑘𝑠 ∈

〈
0, 5 ·108〉 Pa are within the range of 93.55%. For

the value 𝑘𝑠 ∈
〈
5 ·108, 1014〉 Pa, these changes are within the

range of 6.45%. This result allows for a rational estimation of
the limit of the strengthening of the connection between layers,
above which such a reinforcement causes only minor strength
“effects”.

It is also worth paying attention to the graphs of the normal
stresses calculated for 𝑘𝑠 = 1014 Pa (Fig. 8). In the case of such
a high stiffness of the connection, the system should “behave”
like a monolithic beam. For such a beam, when 𝐸1 = 𝐸2, the
normal stress diagrams in a given cross-section change linearly.
The linear course obtained in this paper for 𝑘𝑠 = 1014 Pa verifies
the correctness of the formulated two-layer beam model.

The correctness of the obtained results is also confirmed by
the obtained (and widely known) diagrams of the internal forces
(see Fig. 7).

The primary confirmation of the correctness of the derived
solution is the consistency of the results obtained in Example 2
with the results presented by other authors (see Table 1). Par-
ticular attention should be paid to the full consistency of the
results (given the adopted accuracy of the presentation of the
results) with the exact results obtained by analytical methods for
the Euler model (see [19]).

6. CONCLUSIONS

In this paper, the authors focused on the analysis of the main
beams of a layered system. They omitted the “precise” analy-
sis of an “element” or layer connecting these elements. It was
assumed that the interaction is of a tangential nature, and is
proportional to the value of the “slip” between the layers. As al-
ready mentioned, such a general approach facilitates the detailed
considerations concerning the description of the connection be-
tween layers to be omitted, in turn making them more general.

The consequence of this approach is an approximate descrip-
tion of this interaction. The basic goal of the research, i.e.,
developing an effective mathematical algorithm for solving and
analyzing such problems, has been achieved according to the
authors. The applied method, which uses finite Fourier trans-
forms, allows for the exact solution of equations that describe
such problems.

The results clearly illustrate the enlargement of displacements
and the mutual slippage between layers due to the reduction of
the shear stiffness 𝑘𝑠 of the connection between the two layers.
The obtained dependence is nonlinear (see Fig. 3). The results
also show that the share of bending strains in relation to axial
strains in generating the total bending moment depends on the
value of the stiffness parameter 𝑘𝑠 and it decreases with an
increase in its value (see Fig. 5). The analogous conclusion
concerns the influence of bending deformability in relation to
the share of the tangential force𝑉𝑠 on the values of the resultant
shear force (see Fig. 6).

The goal of this research was to better understand the influ-
ence of interlayer connections on the strength and reliability of
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sandwich beams, in turn providing valuable design guidelines
for engineers working with composite structures.

The methodology involves the application of mathematical
analysis methods to evaluate the effects of interlayer stiffness on
a beam’s performance. The correctness of the derived solutions
was confirmed by: (1) the diagrams of the internal forces; (2) the
behaviour of a system that has high stiffness of the connection
and which acts like a monolithic beam; (3) the full consistency of
the results with the exact results obtained by analytical methods.

7. RESEARCH PERSPECTIVE

In this study, only the case of a simply supported beam was ana-
lyzed, as this is the most common model of any civil engineering
structure or any structural element of a building. Future research
by the authors will focus on beams with other types of supports
that are commonly encountered in practice, such as clamped–
pinned, clamped–free, and others. For some static schemes, to
reduce the number of additional (i.e., nonidentically satisfied)
equations that define the boundary conditions, it will be neces-
sary to apply a cosine series for the approximation. Particularly
interesting results are expected in static schemes where both
ends of the beam/beams are constrained from moving along the
beam axis. Furthermore, a subsequent stage will involve solving
dynamic problems for this type of beam using the described
method. These investigations will further enhance the under-
standing of interlayer connections, and also their impact on the
structural behaviour of layered beams.

8. APPENDIX A

If we develop the function 𝑓 (𝑥) in the interval < 0, 𝐿 > into a
sine series

𝑓 (𝑥) =
∞∑︁
𝑛=1

𝑓𝑛 sin𝛼𝑛𝑥,

𝑓𝑛 =
2
𝐿

𝐿∫
0

𝑓 (𝑥) sin𝛼𝑛𝑥d𝑥,
𝛼𝑛 =

𝑛𝜋

𝐿
. (A.1)

This function derivatives are defined by the following formulas:

𝑓 ′ (𝑥) =
∞∑︁′

𝑛=0
𝑓 ′𝑛 cos𝛼𝑛𝑥,

𝑓 ′′ (𝑥) =
∞∑︁
𝑛=1

𝑓 ′′𝑛 sin𝛼𝑛𝑥,

𝑓 (4) (𝑥) =
∞∑︁
𝑛=1

𝑓
(4)
𝑛 sin𝛼𝑛𝑥,

(A.2)

where 𝑛 = 0, 1, 2, 3, . . . and

∞∑︁′

𝑛=0
𝑎𝑛 =

1
2
𝑎 +

∞∑︁
𝑛=1

𝑎𝑛



𝑓 ′𝑛 =
2
𝐿
[(−1)𝑛 𝑓 (𝐿) − 𝑓 (0)] +𝛼𝑛 𝑓𝑛 ,

𝑓 ′′𝑛 = − 2
𝐿
𝛼𝑛 [(−1)𝑛 𝑓 (𝐿) − 𝑓 (0)] −𝛼2

𝑛 𝑓𝑛 ,

𝑓
(4)
𝑛 =

2
𝐿
𝛼3
𝑛 [(−1)𝑛 𝑓 (𝐿) − 𝑓 (0)]

− 2
𝐿
𝛼𝑛 [(−1) 𝑓 ′′ (𝐿) − 𝑓 ′′ (0)] +𝛼4

𝑛 𝑓𝑛 .

(A.3)

If we expand the function 𝑓 (𝑥) in the interval ⟨0, 𝐿⟩ into a cosine
series 

𝑓 (𝑥) =
∞∑︁′

𝑛=0
𝑓𝑛 cos𝛼𝑛𝑥,

𝑓𝑛 =
2
𝐿

𝐿∫
0

𝑓 (𝑥) cos𝛼𝑛𝑥d𝑥.

(A.4)

This function derivatives are defined by the following formulas:

𝑓 ′′ (𝑥) =
∞∑︁′

𝑛=0
𝑓 ′′𝑛 cos𝛼𝑛𝑥. (A.5)

where for 𝑛 = 0, 1, 2, 3, . . .:
𝑓 ′𝑛 = −𝛼𝑛 𝑓𝑛 ,

𝑓 ′′𝑛 =
2
𝐿
[(−1)𝑛 𝑓 ′ (𝐿) − 𝑓 ′ (0)] −𝛼2

𝑛 𝑓𝑛 .
(A.6)
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