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Abstract. Transient time-dependent problems solved with higher-order finite element methods and time integration schemes sometimes encounter
instabilities in time steps due to varying model parameters. This problem is commonly illustrated on a transient cavity flow modeled with Navier-
Stokes equations, where for large Reynolds numbers, finite element discretizations B𝑢 = 𝑓 become unstable. The instability comes from the
discrete inf-sup condition not fulfilled by the Galerkin method. To stabilize time steps, we employ a Petrov-Galerkin method B𝑇W𝑥 = W𝑇 𝑓

with optimal test functions. However, this method commonly has two disadvantages. First, having a larger test space fixed, we must compute the
matrix of coefficients of the optimal test functions W on the fly, which requires solving a system of linear equations GW = B with proper Gram
matrix G each time step for varying model parameters. Second, the matrix of coefficients of optimal test functions is dense, and thus, the cost of
multiplying it by other matrices B𝑇W (which is needed) is high. To overcome these problems, we explore the Kronecker product structure of the
matrix of coefficients of the optimal test functions G as well as of the matrices B resulting from the variational splitting of the time-integration
scheme. Our solver can be successfully applied to the high Reynolds number Navier-Stokes equations.

Keywords: partial differential equations; finite element method; Navier-Stokes equations; variational splitting; Petrov-Galerkin method;
Kronecker product solver.

1. INTRODUCTION

We focus on non-stable time-dependent simulations using the
example of the Navier-Stokes problem. The problem of sta-
bilization and development of an efficient solver for Navier-
Stokes equations is an important research topic [1–6]. We pro-
pose a novel combination of the Petrov-Galerkin method, opti-
mal test functions, and direction splitting solver to stabilize the
simulation for large Reynolds numbers with a linear computa-
tional cost. The direction splitting solvers has multiple appli-
cations, from propagation of EM waves [7], modeling of flow
and transport with advection-diffusion models [8], elastic wave
propagation [9]. The following are the novelties of this paper.
First, we employ the Petrov-Galerkin method with optimal test
functions [10–13] to stabilize each non-stationary Navier-Stokes
simulation time step. Second, we combine the stabilization with
the Petrov-Galerkin method using the optimal test functions with
the direction splitting solver [14–17], resulting in a Kronecker
product structure of the problem matrices in every time step.
Third, we also show that the matrix of the coefficients of the
optimal test functions has a Kronecker product form [18–20].
For the reader’s convenience, in the Appenix A in Table 4 we
provide a list of the most important symbols.

Let us focus on the Eriksson-Johnson model problem [21].
Given the unit square domain Ω = (0,1)2 and the convection

∗e-mail: maciej.paszynski@agh.edu.pl

© 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2024-11-10, revised 2025-03-04, initially
accepted for publication 2025-04-04, published in July 2025.

vector 𝛽 = (𝛽𝑥 , 𝛽𝑦) = (1,0) consider the PDE:

𝛽𝑥
𝜕𝑢

𝜕𝑥
+ 𝛽𝑦

𝜕𝑢

𝜕𝑥
− 𝜖

(
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2

)
= 0. (1)

The problem is driven by the inflow Dirichlet boundary condi-
tion

𝑢(𝑥, 𝑦) = 0, at 𝑥, 𝑦 ∈ {0,1}, (2)

𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) = sin(𝜋𝑦), at 𝑥 = 0. (3)

It develops a boundary layer of width 𝜖 at the outflow 𝑥 = 1.
The weak form reads: Find 𝑤 ∈ 𝐻1

0 (Ω)

𝑏(𝑤,𝑣) = 𝑙 (𝑣), ∀𝑣 ∈ 𝐻1
0 (Ω),

𝑏(𝑤,𝑣) =
(
𝜕𝑤

𝜕𝑥
, 𝑣

)
Ω

+ 𝜖
(
𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥

)
Ω

+ 𝜖
(
𝜕𝑤

𝜕𝑦
,
𝜕𝑣

𝜕𝑦

)
Ω

,

𝑙 (𝑣) = − (sin(𝜋𝑦), 𝑣)Ω− 𝜖
(
sin(𝜋𝑦), 𝜕𝑣

𝜕𝑥

)
Ω

+ 𝜖
(
(1− 𝑥)𝜋 cos(𝜋𝑦), 𝜕𝑣

𝜕𝑦

)
Ω

.

(4)

The right-hand side is a result of the shift of the Dirichlet
boundary conditions, and the solution is 𝑢(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) + (1−
𝑥)𝑠𝑖𝑛(𝜋𝑦). The Galerkin method generally does not provide a
correct numerical solution for the Eriksson-Johnson problem.
For example, let us consider the discretization with B-spline
basis functions with knot vectors and points.
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knot_x = [0 0 0 1 2 3 4 5 6 7 8 9 10 10 10];
points_x = [0 0.1 0.2 0.3 0.4 0.5 0.6

0.7 0.8 0.9 1];
knot_y =[0 0 0 1 2 3 4 4 4];
points_y=[0 0.25 0.5 0.75 1].

They correspond to the basis functions illustrated in Fig. 1.
The basis functions along 𝑥-axis are obtained by introducing
knot points 𝜉𝑖 = 𝑝𝑜𝑖𝑛𝑡𝑠_𝑥 [𝑘𝑛𝑜𝑡𝑥 [𝑖] + 1] into the recursive for-
mula (5),

𝐵𝑖,0 (𝜉) = 1 if 𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1, otherwise 0,

𝐵𝑖, 𝑝 (𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝐵𝑖, 𝑝−1 (𝜉) +
𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖

𝐵𝑖+1, 𝑝−1 (𝜉)
(5)

for the order 𝑝 defined as the number of repetitions of the first
𝑘𝑛𝑜𝑡_𝑥 [1] minus one, assuming that the subsequent knots in-
serted into the denominator must be different. If they are not
distinct, the given term is zero.

Similarly, the basis functions along 𝑦-axis are obtained by
introducing knot points 𝜉𝑖 = 𝑝𝑜𝑖𝑛𝑡𝑠_𝑦[𝑘𝑛𝑜𝑡𝑦 [𝑖] + 1] into the
recursive formula (5). Tensor products of the one-dimensional
basis result in the two-dimensional basis functions.

{𝐵𝑥𝑦

𝑖 𝑗, 𝑝
(𝑥, 𝑦) = 𝐵𝑥

𝑖, 𝑝 (𝑥)𝐵
𝑦

𝑗, 𝑝
(𝑦)}𝑖=1,...,𝑁𝑥 ; 𝑗=1,...,𝑁𝑦

(6)

In the Galerkin method, these basis functions define the trial
and test spaces. The problem matrices are defined as follows

B𝑛,𝑚 =

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
, 𝐵

𝑥𝑦

𝑘𝑙, 𝑝

)
Ω

+ 𝜖
(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+ 𝜖
(
𝐵𝑥
𝑖, 𝑝

𝜕𝐵
𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

, (7)

where 𝑛 = 𝑖 + ( 𝑗 − 1)𝑁𝑦 , 𝑚 = 𝑘 + (𝑙 − 1)𝑁𝑦 , and the right-hand
side vector is

𝑓𝑚 = −
(
(sin(𝜋𝑦), 𝐵𝑥𝑦

𝑘𝑙, 𝑝

)
Ω
− 𝜖

(
sin(𝜋𝑦),

𝜕𝐵𝑥
𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+ 𝜖
(
(1− 𝑥)𝜋 cos(𝜋𝑦), 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

. (8)

In the Galerkin method, we solve B𝑥 = 𝑓 , and both trial and
test spaces are equal; see Fig. 1. As Fig. 2 illustrates, the Galerkin
method generates unwanted oscillations. The reason why the
Galerkin method does not work results from the fact that the co-
ercivity constant 𝛼 goes to zero as 𝜖 goes to zero. Consequently,
the error bounds provided by the Céa Lemma are very high, and
a good quality solution is not guaranteed.

In conclusion, we need a good enough trial space 𝑈ℎ and
carefully selected basis functions from the test space 𝑉ℎ, so
they realize supremum for 𝛼. To find the correct solution, we
will employ the Petrov-Galerkin method. The Petrov-Galerkin
method allows using different trial and test spaces. For example,
we can employ the same trial space defined by the same knot
vectors and points.

=𝑈ℎ =𝑉ℎ

Fig. 1. Basis functions for trial and test spaces. Galerkin method (trial
space) 𝑈ℎ = 𝑉ℎ (test space). We need to test in a test space larger than

the trial space

Fig. 2. Uniform mesh 𝜖 = 0.01, Left panel: Galerkin solution,
Right panel: exact solution

knot_x = [0 0 0 1 2 3 4 5 6 7 8 9 10 10 10];

points_x = [0 0.1 0.2 0.3 0.4 0.5 0.6

0.7 0.8 0.9 1];

knot_y =[0 0 0 1 2 3 4 4 4];

points_y=[0 0.25 0.5 0.75 1];

We can seek better quality test functions in the larger test
space, defined by a larger number of basis functions, by intro-
ducing the following knot and point vectors
knot_test_x = [0 0 0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 20 20];

points_test_x = [0 0.05 0.1 0.15 0.2 0.25

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.75 0.8 0.85 0.9 0.95 1];

knot_test_y =[0 0 0 1 2 3 4 4 4];

points_test_y=[0 0.25 0.5 0.75 1];

The basis of the test and trial spaces for the Petrov-Galerkin
formulation are illustrated in Fig. 3.

In our version of the Petrov-Galerkin method, we compute

B𝑇W𝑥 = W𝑇 𝑓 , (9)

where W = [𝑤1, · · · ,𝑤𝑛] is the matrix of optimal test functions
coefficients, and it can be computed from

GW = B,
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=𝑈ℎ,

=𝑉ℎ

Fig. 3. Basis functions for trial and test spaces. Petrov-Galerkin
method (trial space)𝑈ℎ ≠𝑉ℎ (test space)

where G is the Gram matrix of selected inner product, namely

G𝑛,𝑚 =

(
𝐵
𝑥𝑦

𝑖 𝑗, 𝑝
, 𝐵

𝑥𝑦

𝑘𝑙, 𝑝

)
Ω
+ 𝜖

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+ 𝜖
(
𝐵𝑥
𝑖, 𝑝

𝜕𝐵
𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

, (10)

The optimal test space 𝑉
𝑜𝑝𝑡

ℎ
= 𝑠𝑝𝑎𝑛{𝑤1, · · · ,𝑤𝑛} ⊂ 𝑉ℎ,

#𝑉ℎ = #𝑈ℎ.
The optimal test functions of the Petrov-Galerkin method

are obtained by projecting from the larger test space. The
Petrov-Galerkin method with optimal test functions can solve
the Eriksson-Johnson problem correctly; see Fig. 4.

Fig. 4. Uniform mesh 𝜖 = 0.01, Left panel: solution of the Petrov-
Galerkin problem, Right panel: exact solution

2. GENERALIZATION TO TIME-DEPENDENT PROBLEMS
DRIVEN BY THE NAVIER-STOKES PROBLEM

In this section, we consider the stabilization of time-dependent
problems using the example of Navier-Stokes equations.
• We will employ an unconditionally stable second-order time

discretization scheme developed by Petar Minev and Jean-
Luc Guermound [14].

• For spatial discretization, we will apply higher order B-
spline basis functions from the isogeometric analysis [22].

• We will apply the Petrov-Galerkin method with optimal test
functions in every time step of the Navier-Stokes computa-
tions. This involves all the sub-steps, including the pressure
and velocity updates. We will stabilize the problem by solv-
ing B𝑇W𝑥 = W𝑇 𝑓 instead of B𝑥 = 𝑓 .

• The disadvantage of using the Petrov-Galerkin method with
optimal test functions is that the matrix of optimal test func-
tions coefficient W may change with each time step. Thus,
W has to be computed in every time step, which brings the
additional cost of solving GW =B. We speed up this process
by exploring the Kronecker product structure of the matrix
W =𝑊 𝑥 ⊗𝑊 𝑦 .

• Another disadvantage of using the Petrov-Galerkin method
with optimal test functions is that the matrix of coefficients
of optimal test functions W is dense. As a remedy for this
problem, we will explore the Kronecker product structure
of the problem matrices B𝑇 resulting from the application
of the time integration skim, allowing for the variational
splitting. Then, the multiplication (𝐵𝑥

𝑞 ⊗ 𝐵
𝑦
𝑞)𝑇 (𝑊 𝑥

𝑞 ⊗𝑊 𝑦
𝑞 ) =

((𝐵𝑥
𝑞)𝑇𝑊 𝑥

𝑞 ) ⊗ ((𝐵𝑦
𝑞)𝑇𝑊 𝑦

𝑞 ).
Let us focus on the non-stationary cavity flow problem de-

scribed with the Navier-Stokes equation for the incompressible
fluid; see Fig. 5. The Dirichlet boundary condition drives the
cavity flow for the velocity 𝑢𝑥 = 1, 𝑢𝑦 = 0 on the top boundary.
On the remaining parts of the boundary, the velocity is equal to
0, and the 𝜖 thick transition zone in the left and right top cor-
ners ensures the possibility of a weak formulation. This problem
exhibits pressure singularities at the two top corners.

Fig. 5. Non-stationary cavity flow problem
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Let Ω = (0,1)2 be the open boundary and 𝐼 = [0,𝑇] ⊂ R be
the time interval. In this problem’s time-dependent version, we
introduce the variable Reynolds number 𝑅𝑒(𝑡) = 1+ 1999𝑡 for
𝑡 ∈ [0,2]. The problem reads: Find velocity 𝑢 and pressure field
𝑝 such that:

𝜕𝑡u+ (u · ∇)u− 1
𝑅𝑒(𝑡)Δu+∇𝑝 = 0 in Ω× 𝐼,

∇ ·u = 0 in Ω× 𝐼,
u = ℎ in Γ× 𝐼,

u(0) = 0 in Ω,

(11)

where

ℎ(𝑥, 𝑦) =



0 𝑥 ∈ (0,1), 𝑦 = 0,
0 𝑥 ∈ {0,1}, 𝑦 ∈ (0,1− 𝜖),
1 𝑥 ∈ (0,1), 𝑦 = 1,(
1− (1− 𝑦)

𝜖

)
𝑥 ∈ {0,1}, 𝑦 ∈ (1− 𝜖,1).

(12)

The Γ denotes the boundary of the spatial domain Ω.
To solve the cavity flow problem, we will use a fast time inte-

gration scheme proposed by [14]. We consider the alternating-
directions implicit (ADI) method with the Peaceman-Reachford
scheme applied to the velocity update. The time interval is uni-
formly partitioned 𝐼 = [0,𝑇] such that

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁−1 < 𝑡𝑁 = 𝑇,

and we denote the time step 𝜏 := 𝑡𝑛+1 − 𝑡𝑛 𝑛 = 0, . . . , 𝑁 − 1. We
calculate predicted value of the pressure in order to estimate
the value of the velocity. After we compute the velocity we can
correct the pressure.
• Pressure predictor

We define 𝑝𝑛+ 1
2 = 𝑝𝑛−

1
2 +𝜙𝑛− 1

2 , ∀𝑛 = 0, . . . , 𝑁 −1
and let 𝑝− 1

2 = 𝑝0 and 𝜙− 1
2 = 0.

• Velocity update

𝒖𝑛+ 1
2 − 𝜏

2
1

𝑅𝑒(𝑡) 𝜕𝑥𝑥𝒖
𝑛+ 1

2 = 𝒖𝑛 + 𝜏
2

1
𝑅𝑒(𝑡) 𝜕𝑦𝑦u𝑛 − 𝜏

2
∇𝑝𝑛+ 1

2

+ 𝜏
2

f𝑛+
1
2 + (u𝑛 · ∇)u𝑛,

𝒖𝑛+ 1
2 = 0 in Γ𝑥 ,

𝒖𝑛+1 − 𝜏
2

1
𝑅𝑒(𝑡) 𝜕𝑦𝑦𝒖

𝑛+1 = 𝒖𝑛+ 1
2 + 𝜏

2
1

𝑅𝑒(𝑡) 𝜕𝑥𝑥u𝑛+ 1
2

− 𝜏
2
∇𝑝𝑛+ 1

2 + 𝜏
2

f𝑛+
1
2 ,

𝒖𝑛+1 = 0 in Γ𝑦 ,

• Penalty step

𝜓− 1
𝑅𝑒(𝑡) 𝜕𝑥𝑥𝜓 = −1

𝜏
∇ ·u𝑛+1, 𝜕𝑥𝜓 = 0 in Γ𝑥 ,

𝜙𝑛+
1
2 − 1

𝑅𝑒(𝑡) 𝜕𝑦𝑦𝜙
𝑛+ 1

2 = 𝜓, 𝜕𝑦𝜙
𝑛+ 1

2 = 0 in Γ𝑦 ,

• Pressure update 𝑝𝑛+ 1
2 = 𝑝𝑛−

1
2 +𝜙𝑛+ 1

2 − 𝜒∇ ·
(

1
2 (𝑢

𝑛+1 +𝑢𝑛)
)
.

To solve the problem numerically, we introduce the weak form

(𝒖𝑛+ 1
2 ,v) + 𝜏

2
1

𝑅𝑒(𝑡) (𝜕𝑥𝒖
𝑛+ 1

2 , 𝜕𝑥v)

= (𝒖𝑛,v) − 𝜏
2

1
𝑅𝑒(𝑡) (𝜕𝑦u𝑛, 𝜕𝑦v)

− 𝜏
2
(∇𝑝𝑛+ 1

2 ,v) + 𝜏
2
(u𝑛 · ∇)u𝑛 + 𝜏

2
(f𝑛+ 1

2 ,v),

∀𝑣 ∈ 𝑉

(𝒖𝑛+1,v) + 𝜏
2

1
𝑅𝑒(𝑡) (𝜕𝑦𝒖

𝑛+1, 𝜕𝑦v)

= (𝒖𝑛+ 1
2 ,v) − 𝜏

2
1

𝑅𝑒(𝑡) (𝜕𝑥u𝑛+ 1
2 , 𝜕𝑥v)

− 𝜏
2
(∇𝑝𝑛+ 1

2 ,v) + 𝜏
2
(f𝑛+ 1

2 ,v),

∀𝑣 ∈ 𝑉

The weak formulations for the penalty/update formulas read

(𝜓,𝑤) + (𝜕𝑥𝜓, 𝜕𝑥𝑤) = −1
𝜏
(∇ ·u𝑛+1,𝑤), ∀𝑤 ∈ 𝑉,

(𝜙𝑛+ 1
2 ,𝑤) + (𝜕𝑦𝜙𝑛+

1
2 , 𝜕𝑦𝑤) = (𝜓,𝑤) ∀𝑤 ∈ 𝑉.

Now, we reformulate this fast time integration scheme for
Navier-Stokes equations in the matrix form. To achieve this, we
introduce discretization with trial B-spline basis functions, and
we test with optimal test functions computed for 1/𝑅𝑒(𝑡). We
introduce the following matrices

𝑀 𝑥
𝑖,𝑘 =

(
𝐵𝑥
𝑖, 𝑝 , 𝐵

𝑥
𝑘, 𝑝

)
Ω
, 𝐾 𝑥

𝑖,𝑘 =

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥

)
Ω

,

𝑅𝑥
𝑖,𝑘 =

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
, 𝐵𝑥

𝑘, 𝑝

)
Ω

, 𝑀
𝑦

𝑗,𝑙
=

(
𝐵
𝑦

𝑗, 𝑝
, 𝐵

𝑦

𝑙, 𝑝

)
Ω
,

𝐾
𝑦

𝑗,𝑙
=

(
𝜕𝐵

𝑦

𝑗, 𝑝

𝜕𝑦
,
𝜕𝐵

𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

, 𝑅
𝑦

𝑗,𝑙
=

(
𝜕𝐵

𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵

𝑦

𝑙, 𝑝

)
Ω

.

(13)

We summarize the matrix formulation for the velocity[
(𝑀 𝑥+ 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑥) ⊗𝑀 𝑦 0

0 (𝑀 𝑥+ 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑥) ⊗𝑀 𝑦

]
︸                                                             ︷︷                                                             ︸

B𝑛+ 1
2


𝑢
𝑛+ 1

2
1

𝑢
𝑛+ 1

2
2

︸  ︷︷  ︸
𝑢
𝑛+ 1

2

=


(
𝑀 𝑥 ⊗ (𝑀 𝑦 − 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑦) − 𝜏

2 (𝑢
𝑛
1𝐾

𝑥 +𝑢𝑛2𝐾
𝑦)

)
𝑢𝑛1(

𝑀 𝑥 ⊗ (𝑀 𝑦 − 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑦) − 𝜏
2 (𝑢

𝑛
1𝐾

𝑥 +𝑢𝑛2𝐾
𝑦)

)
𝑢𝑛2


−𝜏

2

[
𝑅𝑥 ⊗𝑀 𝑦 0

0 𝑀 𝑥 ⊗ 𝑅𝑦

] [
𝑝𝑛+

1
2

𝑝𝑛+
1
2

]
+ 𝜏

2


𝐹
𝑛+ 1

2
1

𝐹
𝑛+ 1

2
2

︸                                                        ︷︷                                                        ︸
𝑓
𝑛+ 1

2

,
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[
𝑀 𝑥 ⊗ (𝑀 𝑦+ 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑦) 0

0 𝑀 𝑥 ⊗ (𝑀 𝑦+ 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑦)

]
︸                                                             ︷︷                                                             ︸

B𝑛+1

[
𝑢𝑛+1

1
𝑢𝑛+1

2

]
︸ ︷︷ ︸
𝑢𝑛+1

=


(
(𝑀 𝑥 − 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑥) ⊗𝑀 𝑦 − 𝜏

2 (𝑢
𝑛+ 1

2
1 𝐾 𝑥 +𝑢𝑛2𝐾

𝑦)
)
𝑢
𝑛+ 1

2
1(

(𝑀 𝑥 − 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑦) ⊗𝑀 𝑦 − 𝜏
2 (𝑢

𝑛+ 1
2

1 𝐾 𝑥 +𝑢𝑛2𝐾
𝑦)

)
𝑢
𝑛+ 1

2
2


−𝜏

2

[
𝑀 𝑥 ⊗ 𝑅𝑦 0

0 𝑅𝑥 ⊗𝑀 𝑦

] [
𝑝𝑛+

1
2

𝑝𝑛+
1
2

]
+ 𝜏

2


𝐹
𝑛+ 1

2
1

𝐹
𝑛+ 1

2
2

︸                                                        ︷︷                                                        ︸
𝑓 𝑛+1

,

Each of these sub-steps (14)–(14) results in two sub-problems.
We also introduce the penalty steps

(𝑀 𝑥 +𝐾 𝑥) ⊗𝑀 𝑦𝜓 = −1
𝜏
(𝑅𝑥 ⊗𝑀 𝑦𝑢

𝑛+ 1
2

1 +𝑀 𝑥 ⊗ 𝑅𝑦𝑢
𝑛+ 1

2
2 ),

𝑀 𝑥 ⊗ (𝑀 𝑦 +𝐾 𝑦)𝑝𝑛+ 1
2 = 𝑀 𝑥 ⊗𝑀 𝑦𝜓.

𝑀 𝑥 ⊗ (𝑀 𝑦 +𝐾 𝑦)𝜓 = −1
𝜏
(𝑀 𝑥 ⊗ 𝑅𝑦𝑢𝑛+1

1 +𝑅𝑥 ⊗𝑀 𝑦𝑢𝑛+1
2 ),

(𝑀 𝑥 +𝐾 𝑥) ⊗𝑀 𝑦 𝑝𝑛+1 = 𝑀 𝑥 ⊗𝑀 𝑦𝜓.

Each of the systems

B𝑛+ 1
2 𝑢𝑛+

1
2 = 𝑓 𝑛+

1
2 , B𝑛+1𝑢𝑛+1 = 𝑓 𝑛+1 (14)

solved for a big Reynolds number 𝑅𝑒 results in unstable behav-
ior. It is similar to 𝜖 in the advection-dominated diffusion prob-
lem. At high Reynolds numbers, the coefficient 1

𝑅𝑒
becomes

very small, which can negatively impact the numerical stability.
During the simulations with the time-dependent Navier-Stokes
equations, the 𝑅𝑒 number can change from one step to another;
thus, it requires stabilization. It can be obtained by solving sta-
bilized formulations

(B𝑛+ 1
2 )𝑇W𝑛+ 1

2 𝑢𝑛+
1
2 = (W𝑛+ 1

2 )𝑇 𝑓 𝑛+ 1
2 ,

(B𝑛+1)𝑇W𝑛+1𝑢𝑛+1 = (W𝑛+1)𝑇 𝑓 𝑛+1.
(15)

The matrices of coefficients of the optimal test functions
W𝑛+ 1

2 , W𝑛+1 can be obtained by solving

G𝑛+ 1
2 W𝑛+ 1

2 = B𝑛+ 1
2 , G𝑛+1W𝑛+1 = (B𝑛+1), (16)

where [
(𝑀 𝑥 +𝐾 𝑥) ⊗𝑀 𝑦 0

0 (𝑀 𝑥 +𝐾 𝑥) ⊗𝑀 𝑦

]
︸                                             ︷︷                                             ︸

G𝑛+ 1
2


W𝑛+ 1

2
1

W𝑛+ 1
2

2

︸   ︷︷   ︸
𝑊

𝑛+ 1
2

(17)

=

[
(𝑀 𝑥 + 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑥) ⊗𝑀 𝑦 0

0 (𝑀 𝑥 + 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑥) ⊗𝑀 𝑦

]
︸                                                                 ︷︷                                                                 ︸

B𝑛+ 1
2

,

and [
𝑀 𝑥 ⊗ (𝑀 𝑦 +𝐾 𝑦) 0

0 𝑀 𝑥 ⊗ (𝑀 𝑦 +𝐾 𝑦)

]
︸                                             ︷︷                                             ︸

G𝑛+1

[
W𝑛+1

1
W𝑛+1

2

]
︸   ︷︷   ︸
𝑊

𝑛+ 1
2

(18)

=

[
𝑀 𝑥 ⊗ (𝑀 𝑦 + 𝜏

2
1

𝑅𝑒 (𝑡 )𝐾
𝑦) 0

0 𝑀 𝑥 ⊗ (𝑀 𝑦 + 𝜏
2

1
𝑅𝑒 (𝑡 )𝐾

𝑦)

]
︸                                                                 ︷︷                                                                 ︸

B𝑛+1

(19)

Each of these sub-steps (17)–(18) results in two sub-problems.
There is a significant difference in the numerical results for
the non-stationary cavity flow problem modeled by the Navier-
Stokes equations, depending on whether we use the stabiliza-
tion using the Petrov-Galerking formulation with the optimal test
functions. The results obtained by the classical Galerkin method
remind us of chaotic behavior compared to the Petrov-Galerkin
method with the optimal test functions; see Fig. 6. This is re-
lated to the fact that high Reynolds results in very small values
of the coefficient 1

𝑅𝑒
, which negatively impacts the numerical

stability.

Fig. 6. Left panel: The unstable behavior of the cavity flow problem
is solved with the Galerkin formulation for 𝑅𝑒 = 2000. The instability
results in some unphysical oscillations visible in the velocity profile.
Right panel: The stabilized behavior of the cavity flow problem was
obtained using the Petrov-Galerkin formulation with the optimal test
functions computed for 𝑅𝑒 = 2000. The stabilization removes the os-
cillations from the velocity profile. Bottom panel: The matrix of co-
efficients of the optimal test functions computed for 𝑅𝑒 = 2000. This
matrix has been decomposed into the Kronecker product structure and

employed to stabilize the solution
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3. SOLVER ALGORITHM USING KRONECKER PRODUCT
STRUCTURE

Each of the systems (15) have the following structure

(𝐵𝑥
𝑞 ⊗ 𝐵

𝑦
𝑞)𝑇Wq𝑢𝑞 = Wq

𝑇 𝑓𝑞 , (20)

where
(𝐺𝑥

𝑞 ⊗𝐺
𝑦
𝑞)W𝑞 = 𝐵𝑥

𝑞 ⊗ 𝐵
𝑦
𝑞 . (21)

Here we introduce the Gram matrix for each sub-problem hav-
ing a Kronecker product structure as well. From the properties
of the Kronecker product we have

W𝑞 = (𝐺𝑥
𝑞 ⊗𝐺

𝑦
𝑞)−1𝐵𝑥

𝑞 ⊗ 𝐵
𝑦
𝑞

= (𝐺𝑥
𝑞)−1 ⊗ (𝐺𝑦

𝑞)−1 (𝐵𝑥
𝑞 ⊗ 𝐵

𝑦
𝑞)

= (𝐺𝑥
𝑞)−1𝐵𝑥

𝑞 ⊗ (𝐺𝑦
𝑞)−1𝐵

𝑦
𝑞 , (22)

thus W𝑞 has the Kronecker product structure W𝑞 = (𝑊 𝑥
𝑞 ⊗𝑊 𝑦

𝑞 ),
and our original system(

(𝐵𝑥
𝑞)𝑇𝑊 𝑥

𝑞 ⊗ (𝐵𝑦
𝑞)𝑇𝑊 𝑦

𝑞

)
𝑢𝑞 =

(
(𝑊 𝑥

𝑞 )𝑇 ⊗ (𝑊 𝑦
𝑞 )𝑇

)
𝑓𝑞 . (23)

The system (23) can be solved in two steps(
(𝐵𝑥

𝑞)𝑇𝑊 𝑥
𝑞

)
𝑍𝑞 =

(
(𝑊 𝑥

𝑞 )𝑇 ⊗ (𝑊 𝑦
𝑞 )𝑇

)
𝑓𝑞 , (24)(

(𝐵𝑦
𝑞)𝑇𝑊 𝑦

𝑞

)
𝑈𝑞 = 𝑍𝑇

𝑞 . (25)

The matrices 𝐵𝑥
𝑞 ∈M �̂�𝑥×𝑁𝑥 ,𝑊 𝑥

𝑞 ∈M �̂�𝑥×𝑁𝑥 , 𝑍𝑞 ∈M𝑁𝑥×𝑁𝑦 ,
and 𝐵𝑦

𝑞 ∈M �̂�𝑦×𝑁𝑦 ,𝑊 𝑦
𝑞 ∈M �̂�𝑦×𝑁𝑦 , and𝑈𝑞 is the solution vec-

tor 𝑢𝑞 projected onto M𝑁𝑦×𝑁𝑥 . Here 𝑁𝑥 ×𝑁𝑦 is the dimension
of the trial space, and �̂�𝑥 × �̂�𝑦 is the dimension of the test space.
In general, the matrices 𝐵𝑥

𝑞 , 𝐵𝑦
𝑞 constructed from B-splines of

order 𝑝 are 𝑝 + 2 diagonal, but the matrices 𝑊 𝑥
𝑞 and 𝑊 𝑦

𝑞 are
dense.

From the properties of the Kronecker product, the right-
hand side in (24) can be computed as

(
(𝑊 𝑥

𝑞 )𝑇 ⊗ (𝑊 𝑦
𝑞 )𝑇

)
𝑓𝑞 =

(𝑊 𝑦
𝑞 )𝑇𝐹𝑞 (𝑊 𝑥

𝑞 ), where 𝐹𝑞 is the projection of 𝑓𝑞 vector into
M �̂�𝑦×�̂�𝑥 . The cost of formulation of the right-hand side is then
O(𝑁𝑥 �̂�

2
𝑥 +𝑁𝑦 �̂�

2
𝑦). The cost of solving system (24) is O(𝑁2

𝑥 �̂�𝑥)
and the cost of solving system (25) is O(𝑁2

𝑦 �̂�𝑦).
The Kronecker product components of W𝑥 are computed

from 𝑊 𝑥
𝑞 = (𝐺𝑥

𝑞)−1𝐵𝑥
𝑞 and 𝑊 𝑦

𝑞 = (𝐺𝑦
𝑞)−1𝐵

𝑦
𝑞 , thus, they can be

obtained from factorizations of

𝐺𝑥
𝑞𝑊

𝑥
𝑞 = 𝐵𝑥

𝑞 ,

𝐺
𝑦
𝑞𝑊

𝑦
𝑞 = 𝐵

𝑦
𝑞 .

(26)

Since 𝐵𝑥
𝑞 , 𝐵𝑦

𝑞 , 𝐺𝑥
𝑞 , and 𝐺𝑦

𝑞 constructed from B-splines have a
multi-diagonal structure, these systems can be solved in linear
computational costs O(𝑁𝑥) or O(𝑁𝑦).

We summarize the computational costs in Table 1. Recall
𝑁𝑥 ×𝑁𝑦 is the dimension of the trial space, and �̂�𝑥 × �̂�𝑦 is the

Table 1
Computational costs of the Kronecker product-based solver

Step Computational cost

Generation of (24) RHS O(𝑁𝑥 �̂�
2
𝑥 +𝑁𝑦 �̂�

2
𝑦)

Solution of (24) O(𝑁2
𝑥 �̂�𝑥)

Solution of (25) O(𝑁2
𝑦 �̂�𝑦)

direction of the test space. The total computational cost of one-
time step of the simulation is then O(𝑁𝑥 �̂�

2
𝑥 +𝑁𝑦 �̂�

2
𝑦 +𝑁2

𝑥 �̂�𝑥 +
𝑁2
𝑦 �̂�𝑦) = O(𝑁𝑥 �̂�

2
𝑥 +𝑁𝑦 �̂�

2
𝑦) since 𝑁𝑥 < 𝑁𝑥 and 𝑁𝑦 < 𝑁𝑦 .

Alternative methods include the multi-frontal solver [23] or
an iterative solver [24]. The multi-frontal solver executed for
the system (20) has the computational cost of O((𝑁𝑥𝑁𝑦 +
𝑁𝑥𝑁𝑦)

3
2 ). An iterative solver would have a computational cost

of O(𝜓((𝑁𝑥𝑁𝑦) + (𝑁𝑥𝑁𝑦)), where 𝜓 is the number of the it-
erative solver steps, which depends on the problem setup and
the type of iterative solver. However, the construction of an
iterative solver for high Reynolds number Navier-Stokes equa-
tions is challenging; it usually requires the application of special
preconditioners, and it provides an approximate solution. Our
solver does not require a preconditioner, and it is a direct solver
that provides the solution with accuracy up to the numerical
representation and factorization errors.

4. PROBLEM WITH MANUFACTURED SOLUTION

We consider the non-stationary Stokes equation over a 2D spa-
tial domain Ω = (0,1)2 and 𝐼 = (0,2] with no-slip boundary
conditions: Find v = (𝑣1, 𝑣2) and 𝑝 such that

𝜕𝑡v−
1

𝑅𝑒(𝑡)Δv+∇𝑝 = f,

∇ ·v = 0,
v|𝜕Ω = 0,
v(0) = v0,

(27)

with f and v0 defined in such a way that the manufactured
solution is v(𝑥, 𝑦, 𝑡) = (sin(𝑥) sin(𝑦 + 𝑡),cos(𝑥) cos(𝑦 + 𝑡)) and
𝑝(𝑥, 𝑦) = cos(𝑥) sin(𝑦+ 𝑡), for (𝑥, 𝑦) ∈ Ω = [0,1]2 and 𝑡 ∈ [0,2],
where 𝑅𝑒(𝑡) = 1+1999∗ 𝑡. We consider time interval 𝑡 ∈ [0,2].
We compute 128-time steps uniformly distributed over the inter-
val [0,2]. We employ the same matrix of the optimal test func-
tions as in the cavity flow example. The mesh size is 40× 40;
we employ cubic B-splines, 𝐶2, for the trial and quartic B-
splines, 𝐶2, for the test. We use identical B-splines to approxi-
mate the velocity and pressure fields. The dimension of the trial
space is 𝑑𝑖𝑚𝑡𝑟𝑖𝑎𝑙 = 5547, and the dimension of the test space is
𝑑𝑖𝑚𝑡𝑒𝑠𝑡 = 20667.

The problem dimensions and costs for the first and last it-
erations are summarized in Tables 2–3. We run the simulation
on Intel(R) Core(TM) i7-9750H processor with 2.60 GHz clock
and with 32 GB of RAM. The snapshots from the simulation
are presented in Fig. 7. The sub-problem dimensions, execution
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times, and FLOPS for particular velocity and pressure solvers
are for the simulation first and last time-step. We can observe a
slight increase in the execution time, which results from the in-
creasing temperature of the laptop processor, which slows down
the clock so as not to overheat the processor. For this problem
with manufactured solution, we can measure the relative error
in 𝐿2 norm, and it is less than 1 percent, as presented in Fig. 9,
except for the initial state and the final state, where it goes up to
around 2.5 percent.

Table 2
Problem dimensions and execution times for particular velocity

and pressure solvers for the first time-step of the simulation

Solver # non-zero entries time [s]

velocity 1: 1770294 2.867

velocity 2: 1770294 2.936

pressure 1: 931731 4.778

pressure 2: 931731 5.014

Table 3
Problem dimensions, and execution times for particular velocity

and pressure solvers for the last time-step of the simulation

Solver # non-zero entries time [s]

velocity 1: 1770294 3.872

velocity 2: 1770294 4.043

pressure 1: 931731 6.516

pressure 2: 931731 6.508

Fig. 7. Snapshots from the simulations from time steps 0, 20, 40, 64.
Solution of the problem with manufactured solution employed for test-
ing of the stabilized solver. For this problem, we know the exact solution

so we can compute the numerical errors, see Fig. 9

Fig. 8. Further snapshots from the numerical results of the problem
with the manufactured solution were employed to test the numerical
accuracy of the solver. Snapshots from the simulations from time steps

80, 100, 120, and 128. These 128 times steps span interval [0,2]

Fig. 9. The relative 𝐿2 norm error for the entire simulation for 𝑡 ∈ [0,2],
increasing mesh size from 4×4, 8×8, 16×16, up to 32×32 elements,
for the linear B-splines for trial and quadratic B-splines for the test (𝐶0

plot), quadratic B-splines for trial and cubic B-splines for test (𝐶1 plot)
and cubic B-splines for trial and quartic B-splines for test (𝐶2 plot)

5. CONCLUSIONS

This paper combined the following unique features to obtain
an efficient solver for transient Navier-Stokes equations. First,
we considered a direction-splitting solver for transient Navier-
Stokes equations. Second, for high Reynolds numbers, the solver
was stabilized using the Petrov-Galerkin formulation with the
matrix of coefficients of the optimal test functions. Third, we
discovered its Kronecker product structure for the matrix of co-
efficients of the optimal test functions (called the stabilization
matrix). We employed the Kronecker product structures of the
problem matrices, resulting from the time integration scheme
suitable for the variational splitting. These components allowed
us to develop a fast, stabilized solver of transient Navier-Stokes
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equations for sequential execution on a laptop. We tested our
methodology on two model problems: the cavity flow problem
and the manufactured solution problem. The future work may
involve extension to the refined isogeometric analysis [25] in-
corporating 𝐶0 separators into mesh.

A. COLLECTION OF SYMBOLS

The Appendix collects all the symbols in Table 4.

Table 4
Collection of symbols

Symbol Definition

𝜉𝑖 𝑝𝑜𝑖𝑛𝑡𝑠_𝑥 [𝑘𝑛𝑜𝑡𝑥 [𝑖] +1]
𝐵𝑥
𝑖,0 (𝑥) 1 if 𝜉𝑖 ≤ 𝑥 ≤ 𝜉𝑖+1, otherwise 0

𝐵𝑥
𝑖, 𝑝

(𝑥) 𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝐵𝑖, 𝑝−1 (𝑥) +
𝜉𝑖+𝑝+1 − 𝑥
𝜉𝑖+𝑝+1 − 𝜉𝑖

𝐵𝑖+1, 𝑝−1 (𝑥)

𝜂 𝑗 𝑝𝑜𝑖𝑛𝑡𝑠_𝑦[𝑘𝑛𝑜𝑡𝑦 [𝑖] +1]
𝐵
𝑦

𝑗,0 (𝑦) 1 if 𝜂 𝑗 ≤ 𝑦 ≤ 𝜂 𝑗+1, otherwise 0

𝐵
𝑦

𝑗, 𝑝
(𝑦)

𝜂−𝜂 𝑗

𝜂 𝑗+𝑝 −𝜂 𝑗

𝐵 𝑗 , 𝑝−1 (𝑦) +
𝜂 𝑗+𝑝+1 − 𝑦
𝜂 𝑗+𝑝+1 −𝜂 𝑗

𝐵 𝑗+1, 𝑝−1 (𝑦)

𝑛 𝑖 + ( 𝑗 −1)𝑁𝑦

𝑚 𝑘 + (𝑙 −1)𝑁𝑦

B𝑛,𝑚

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
, 𝐵

𝑥𝑦

𝑘𝑙, 𝑝

)
Ω

+ 𝜖
(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+ 𝜖
(
𝐵𝑥
𝑖, 𝑝

𝜕𝐵
𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

𝑓𝑚 −
(
(sin(𝜋𝑦), 𝐵𝑥𝑦

𝑘𝑙, 𝑝

)
Ω
− 𝜖

(
sin(𝜋𝑦),

𝜕𝐵𝑥
𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+𝜖
(
(1− 𝑥)𝜋 cos(𝜋𝑦), 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙,𝑝

𝜕𝑦

)
Ω

G𝑛,𝑚

(
𝐵
𝑥𝑦

𝑖 𝑗, 𝑝
, 𝐵

𝑥𝑦

𝑘𝑙, 𝑝

)
Ω
+ 𝜖

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
𝐵
𝑦

𝑗, 𝑝
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥
𝐵
𝑦

𝑙, 𝑝

)
Ω

+ 𝜖
(
𝐵𝑥
𝑖, 𝑝

𝜕𝐵
𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵𝑥

𝑘, 𝑝

𝜕𝐵
𝑦

𝑙, 𝑝

𝜕𝑦

)
Ω

W [𝑤1, · · · ,𝑤𝑛]

𝑀 𝑥
𝑖,𝑘
,𝐾 𝑥

𝑖,𝑘

(
𝐵𝑥
𝑖, 𝑝
, 𝐵𝑥

𝑘, 𝑝

)
Ω

,

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
,
𝜕𝐵𝑥

𝑘, 𝑝

𝜕𝑥

)
Ω

𝑅𝑥
𝑖,𝑘
, 𝑀

𝑦

𝑗,𝑙

(
𝜕𝐵𝑥

𝑖, 𝑝

𝜕𝑥
, 𝐵𝑥

𝑘, 𝑝

)
Ω

,
(
𝐵
𝑦

𝑗, 𝑝
, 𝐵

𝑦

𝑙, 𝑝

)
Ω

𝐾
𝑦

𝑗,𝑙
, 𝑅

𝑦

𝑗,𝑙

(
𝜕𝐵

𝑦

𝑗, 𝑝

𝜕𝑦
,
𝜕𝐵

𝑦

𝑙,𝑝

𝜕𝑦

)
Ω

,

(
𝜕𝐵

𝑦

𝑗, 𝑝

𝜕𝑦
, 𝐵

𝑦

𝑙, 𝑝

)
Ω
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