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In recent years, single vector hydrophones have attracted widespread attention in target direction esti-
mation due to their compact design and advantages in complex underwater acoustic environments. However,
traditional direction of arrival (DOA) estimation algorithms often struggle to maintain high accuracy in non-
stationary noise conditions. This study proposes the novel DOA estimation method based on a convolutional
neural network (CNN) and the convolutional block attention module (CBAM). By inputting the covariance
matrix of the received signal into the neural network and integrating the CBAM module, this method enhances
the model’s sensitivity to critical features. The CBAM module leverages channel and spatial attention mech-
anisms to adaptively focus on essential information, effectively suppressing noise interference and improving
directional accuracy. Specifically, CBAM improves the model’s focus on subtle directional cues in noisy envi-
ronments, suppressing irrelevant interference while amplifying essential signal components, which is crucial for
an accurate DOA estimation. Experimental results under various signal-to-noise ratio (SNR) conditions val-
idate the method’s effectiveness, demonstrating superior noise resistance and estimation precision, providing
a robust and efficient solution for underwater acoustic target localization.
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1. Introduction

In recent years, vector hydrophones have gained
a wide range of research and applications in underwa-
ter target detection and localization. Compared with
traditional scalar hydrophones, vector hydrophones
can record acoustic pressure information and partially
mitigate isotropic noise. Traditional direction of arrival
(DOA) estimation algorithms primarily include high-
resolution algorithms based on eigenvalue decomposi-
tion, such as multiple signal classification (MUSIC)
and estimation of signal parameters via rotational
invariance techniques (ESPRIT) (Tichavsky et al.,
2001), which perform well in idealized stationary noise
environments. However, nonlinear effects, noise inter-
ference, and multipath effects in real marine environ-
ments often degrade the algorithm performance.

Advances in deep learning have facilitated the ap-
plication of various neural networks in the under-
water DOA estimation. Xiao et al. (2020) proposed
a deep unfolding network called DeepFPC, which is
based on a fixed-point algorithm, utilizes 1-bit quan-
tization measurements for sparse signal recovery, and
has been successfully applied to the DOA estimation,
significantly improving estimation accuracy and com-
putational efficiency. In parallel with deep learning
advancements, Xu et al. (2022) developed a block
sparse-based dynamic compressed sensing estimator
for underwater acoustic communication, addressing
challenges like impulsive noise. This method’s adapt-
ability to varying underwater channel conditions en-
hances the potential of neural network-based ap-
proaches for improving estimation accuracy in noisy,
real-world marine environments. Liu et al. (2024) in-
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troduced a deep learning-based method for graph sim-
ilarity computation, which contributes to the field of
signal processing and could further enhance DOA es-
timation techniques. In parallel, Xu et al. (2019) pro-
posed the M-SIMMUKF algorithm for tracking under-
water maneuvering targets, demonstrating its robust-
ness under dynamic and noisy conditions. Moreover,
Wajid et al. (2020; 2022) explored direction estima-
tion and tracking methods using acoustic vector sen-
sors, highlighting their ability to improve source lo-
calization in underwater environments, providing in-
sights that complement deep learning methods for the
robust DOA estimation in real-world conditions. Liu
et al. (2021) proposed the DOA estimation method for
underwater acoustic arrays based on a convolutional
neural network (CNN), which significantly enhanced
the direction estimation accuracy of underwater sig-
nals, with strong adaptability and excellent noise re-
sistance. Varanasi et al. (2020) combined spherical
harmonic decomposition with a deep learning frame-
work to achieve the robust DOA estimation in complex
environments, providing an effective solution for sig-
nal direction estimation under high-noise conditions.
Numerous studies have shown that neural network-
based methods can effectively improve the DOA es-
timation accuracy and adaptability in complex noise
environments. For example,Yao et al. (2020) proposed
a recursive neural network model that achieves the
DOA estimation for unknown signal sources through
the Toeplitz matrix reconstruction. Niu et al. (2017a;
2017b) investigated the performance of three machine
learning methods – feedforward neural networks, sup-
port vector machines, and random forests – based on
vertical arrays for source ranging and validated the fea-
sibility and effectiveness of these methods at different
signal-to-noise ratios (SNR). Progress has also been
made in machine learning applications for underwater
surface and subsurface target resolution in vertical ar-
rays, and direction estimation with horizontal arrays.
Chi et al. (2019) employed a feedforward neural net-
work combined with early stopping for source ranging,
which effectively enhanced the model’s generalization
ability, allowing it to maintain strong ranging perfor-
mance across various environments. Choi et al. (2019)
used supervised learning methods to classify surface
and submerged vessels in the ocean, significantly im-
proving classification accuracy, demonstrating the po-
tential of their method for practical marine monitor-
ing. Ozanich et al. (2020) employed a feedforward
neural network for the DOA estimation, demonstrat-
ing the efficiency and accuracy of their method in un-
derwater acoustics, further validating the potential of
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deep learning in this field. These methods demonstrate
excellent performance not only in synthetic data but
also show significant potential in practical ocean ex-
periments. The application of neural networks and ma-
chine learning expands the possibilities for the DOA es-
timation with single vector hydrophones, particularly
in terms of adaptability and real-time performance.
This paper proposes the CNN-CBAM-based DOA

estimation method that uses a normalized covariance
matrix as input and incorporates the convolutional
block attention module (CBAM) to enhance key fea-
ture extraction (Woo et al., 2018) this design is par-
ticularly advantageous for the underwater DOA esti-
mation, where capturing subtle directional cues amidst
noise is critical. The model is trained on a simulated
dataset to improve generalization. Experimental re-
sults validate the performance advantages of this ap-
proach under varying signal-to-noise conditions, pro-
viding an efficient and robust solution for underwater
target direction estimation.

2. Vector signal model and data preprocessing

2.1. Single vector hydrophone signal model

Under the far-field plane wave assumption, a single
vector hydrophone can measure the sound pressure p
and the three velocity components, νx, νy, and νz,
at a single point in the sound field. Under ideal con-
ditions, the sensitivities of the sound pressure sensors
and velocity sensors are identical, so the received signal
for a single vector hydrophone can be represented as

p(t) =
N

∑

i=1

si(t) + np(t),

νx(t) =
N

∑

i=1

si(t) cos θi cosφi + nx(t),

νy(t) =
N

∑

i=1

si(t) sin θi cosφi + ny(t),

νz(t) =
N

∑

i=1

si(t) sinφi + nz(t),

(1)

where si(t) represents the incident signal from the i-th
source; θi and φi denote the horizontal and pitch an-
gles, respectively; np(t), nx(t), ny(t), and nz(t) indi-
cate the noise in the sound pressure and three velocity
channels. This expression can be rewritten in a matrix
form for further processing:

x(t) = A ⋅ s(t) + n, (2)

x(t) = [p(t) vx(t) vy(t) vz(t)]
T, (3)
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s(t) = [s1(t) s2(t) . . . si(t) . . . sN(t)]
T, (5)

n = [np(t) nx(t) ny(t) nz(t)]
T. (6)

2.2. Data preprocessing

Before the received signal x(t) is input into the neu-
ral network, it requires preprocessing to enable the neural
network to more effectively extract features. First, the
covariance matrix Rxx of the received signal is com-
puted:

Rxx = E [x(t)xT
(t)] , (7)

followed by normalization of Rxx:

Rxxi,j =
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2 ×
Rxxi,j −minval

maxval −minval
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0, Rxxi,j = 0,

(8)

where Rxxi,j represents the element at the i-th row
and j-th column of the matrix Rxx; minval and maxval
are the minimum and maximum elements of the matrix
Rxx, respectively. By normalizing only the non-zero
elements, we retain the sparse structure of Rxx, which
is crucial for maintaining the integrity of the signal
representation.

3. Network-based direction estimation
of a single vector hydrophone

3.1. Convolutional neural network

A CNN is a feedforward deep neural network based
on convolutional computations and consists of input,
hidden and output layers. The hidden layers include
convolutional layers, activation functions, pooling lay-
ers, and fully connected layers. The convolutional layer
performs convolution operations on input data using
kernels of various sizes, with each layer containing mul-
tiple kernels. Each kernel consists of weight coefficients
and biases and is activated by an activation function.
The convolutional layers are connected in sequence to
extract higher-dimensional data features through mul-
tiple convolution operations. The formula for the con-
volutional layer is as follows:

f
(l)
j = g (

n

∑

i=1

w
(l)
ij ⋅ x

(l−1)
i + b

(l)
j ), (9)

where f (l)j represents the feature value of the j-th fea-
ture in the l-th layer, capturing the output of the con-
volution operation for this feature; w(l)ij is the weight
coefficient connecting the i-th input feature in the
(l − 1)-th layer to the j-th feature in the current layer;
x
(l−1)
i denotes the feature value of the i-th input in the
(l−1)-th layer, serving as the input to the current layer;

b
(l)
j represents the bias term corresponding to the j-th
feature in the l-th layer, which offsets the weighted sum
of inputs; g(⋅) is the activation function, unlike a sig-
moid function, which is inherently nonlinear, ReLU is
piecewise linear but still allows the network to model
complex relationships through its composition across
multiple layers. Lastly, n is the number of input fea-
tures in the previous layer. The fully connected layer
links the extracted features through neurons and uses
ReLU as the activation function:

g(x) =max (0, x) . (10)

In recent years, CNNs have shown significant po-
tential for improving the DOA estimation accuracy
through their feature extraction capabilities. However,
underwater acoustic environments present unique chal-
lenges; complex noise and interference can hinder CNN’s
ability to focus on key features. These challenges ne-
cessitate an enhanced model structure that can effec-
tively extract features while dynamically adjusting its
focus to prioritize relevant information within high-
dimensional data.
The CBAM addresses this issue by introducing an

adaptive attention mechanism that refines feature se-
lection based on channel and spatial importance. In-
tegrating CBAM into the CNN architecture enables
the model to selectively enhance informative features
while suppressing irrelevant background noise. This de-
sign is particularly advantageous for the underwater
DOA estimation, where capturing subtle directional
cues amidst noise is critical. By leveraging the chan-
nel and spatial attention, CBAM integration not only
enhances directional discrimination but also improves
the robustness and accuracy of the DOA estimation
process.

3.2. CBAM module

To fully leverage the CNN’s capability for feature
extraction from high-dimensional data matrices, this
study improves the traditional neural network by in-
troducing CBAM to the CNN structure, thereby en-
hancing the model’s detail extraction capability for the
DOA estimation. The CBAM spatial-channel attention
module is illustrated in Fig. 1.
The channel attention module (CAM) adaptively

adjusts channel weights in the feature map, enhancing
feature selection. For instance, CAM effectively em-
phasizes subtle directional cues in underwater acous-
tic data, improving the model’s focus amidst noise
interference. First, the input feature map undergoes
global average pooling and max pooling along the spa-
tial dimension, resulting in two channel descriptors
that represent global average and maximum features.
Next, these descriptors pass through a shared fully
connected layer sequence, including layers for dimen-
sionality reduction and restoration, with a ReLU ac-
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Fig. 1. Working principle of the CBAM attention mechanism in feature enhancement.

tivation function connecting the intermediate layers.
Then, the two feature vectors are summed and passed
through a Sigmoid activation function to obtain the at-
tention weights for each channel. Finally, these weights
are multiplied by the original input feature map on
a per-channel basis, completing the channel weight-
ing process. This design allows the network to adap-
tively allocate attention based on the global features
of each channel, thereby effectively enhancing its focus
on target features. The Sigmoid activation function is
defined as follows:

σ(x) =
1

1 + e−x
, (11)

where x represents the input value, and σ(x) repre-
sents the output of the Sigmoid function.
The spatial attention module (SAM) learns the

weight distribution in the spatial dimension to high-
light key area information, suppressing interference
from background or irrelevant regions. First, the input
feature map undergoes average pooling and max pool-
ing along the channel dimension to produce two single-
channel feature maps, representing spatial average and
maximum information, respectively. Next, these two
feature maps are concatenated along the channel di-
mension to form a two-channel feature map. This con-
catenated feature map is then processed by a convo-
lutional layer with a kernel size of 7× 7, capturing
a broader range of spatial dependencies and produc-
ing a single-channel spatial attention weight map. Fi-
nally, this weight map is passed through a Sigmoid ac-
tivation function and multiplied element-wise with the
original input feature map to complete spatial weight-
ing. Through this approach, the SAM can adaptively

focus on key regions within the feature map, enhancing
the model’s spatial representation capability.
The CBAM combines channel attention and spa-

tial attention to dynamically adjust the weights of key
information within the feature map. Channel attention
emphasizes key feature channels to enhance the role of
different channel features in the network, while spatial
attention focuses on critical regions within the feature
map, thus capturing essential information required for
accurate direction estimation.

3.3. Network structure

The overall network structure is illustrated in
Fig. 2. This network model is a deep learning archi-
tecture based on a CNN combined with a CBAM, de-
signed for the DOA estimation. The model includes
two convolutional layers: the first layer increases the
input feature channels from 1 to 32, and the second
layer further increases the channels to 64. In the con-
volutional layers, ‘3× 3’ specifies the kernel size, and
the third number indicates the number of kernels.
Each convolutional layer is immediately followed by
a CBAM module to enhance channel and spatial at-
tention for the features. After processing by the con-
volutional layers and CBAM modules, the feature data
is flattened and passed to two fully connected layers,
containing 128 and 64 neurons, respectively, ultimately
outputting two directional estimation values. Through
the integration of convolution and attention mecha-
nisms, this network structure can more effectively ex-
tract key features, thereby improving the accuracy of
the DOA estimation.
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Fig. 2. Network architecture of CNN-CBAM.

3.4. Training process

Monte Carlo simulation is used to generate received
signals x(t) without added colored noise according to
Eqs. (2)–(6); then, the covariance matrix Rxx of the
received signal is computed according to Eq. (7) and
normalized to a 4× 4 matrix to serve as input for the
neural network.
Each sample includes the covariance matrix of

noiseless signals generated at the specific azimuth and
elevation angles. First, an angle conversion factor, the
number of array elements, the sampling frequency,
and the time sequence are set up to simulate the basic
received signal. Sample angles are randomly generated
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Fig. 3. Time-domain signals for four channels when the SNR is 0 dB.

within the specified azimuth and elevation ranges,
and their corresponding array manifold vectors are
calculated and multiplied with the basic signal to
obtain the received data. The covariance matrix is
then constructed from the received data, and its
non-zero elements are normalized by mapping their
values to the range [−1, 1], resulting in a normalized
covariance matrix. All generated covariance matrices
form a dataset for a neural network input, with the ar-
ray of the sample azimuth and elevation angles serving
as output labels for training the deep learning model.
The training data consists of noiseless, clean data, with
target angles randomly selected between 0○ and 359○.
Figure 3 shows the time-domain waveforms of the
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received signal x(t) for each of the four channels when
the SNR is 0.
Training uses the mean squared error (MSE) loss

function and the Adam optimizer. The model under-
goes training for 180 epochs, with each epoch begin-
ning by initializing the accumulated loss in training
mode. Data is loaded in batches to the specified com-
putation device (e.g., GPU), and the model outputs
are obtained through forward propagation, with losses
calculated between the output and true labels. Loss
is backpropagated to update model parameters, and
the mean loss for each epoch is accumulated. During
training, a StepLR scheduler adjusts the learning rate
dynamically every 100 epochs to enhance convergence.
At the end of each epoch, the loss and current learn-
ing rate are recorded and displayed to monitor training
progress. The training loss is shown in Fig. 4.
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Fig. 4. Training loss variation.

To evaluate the potential overfitting issue, we con-
ducted K-fold cross-validation (K = 4) and recorded
the training and validation losses. The key parameters
used in the validation process are as follows:

– K-value (n splits): 4, indicating the dataset was
divided into 4 subsets for cross-validation;
– batch size: 32, defining the number of samples pro-
cessed in each iteration;
– number of epochs: 180, representing the total
training iterations;
– optimizer: Adam, with a learning rate of 0.001;
– loss function: MSE, used to measure the discrep-
ancy between predicted and true labels.

The results of the K-fold cross-validation are visu-
alized in Fig. 5, which depicts the average training loss
(blue line) and average validation loss (red line) over
the epochs. The figure shows that both the training
and validation losses exhibit a sharp decline in the ini-
tial epochs, followed by a gradual stabilization as the
number of epochs increases. Notably, the training and
validation loss curves remain closely aligned through-
out the training process, the convergence of the loss
curves to a low and stable level, along with the min-
imal gap between the training and validation losses,
suggests that the model effectively avoids overfitting.
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Fig. 5. Training and validation loss curves over epochs
in K-fold cross-validation.

This demonstrates the model’s ability to fit the data
well.

4. Simulation results analysis

The study evaluates the CNN-CBAMmodel’s single-
target direction estimation performance across varying
SNRs. In the simulation, the target azimuth and ele-
vation angles are randomly selected within the range
of 0○ to 359○. SNR values are set to −5 dB, 0 dB, 5 dB,
10 dB, and 15 dB in 5 dB increments, with 10 000 data
samples generated for each SNR, totaling 50 000 sam-
ples. The sampling frequency of the single vector hy-
drophone is 1Hz, with each snapshot containing 1024
sample points and one direction estimated per snap-
shot. The x-axis and y-axis represent the azimuth and
elevation angle errors relative to the target’s true po-
sition, with blue points indicating errors within 10○

for both angles. In Fig. 6, the left subfigure shows
the histogram of azimuth estimation errors, while the
right subfigure shows the histogram of elevation esti-
mation errors. Each subfigure displays the error distri-
butions under SNRs of 15 dB, 10 dB, 5 dB, 0 dB, and
−5 dB. As SNR decreases, the error distribution grad-
ually broadens, and errors increase. At higher SNRs,
such as 15 dB, 10 dB, and 5 dB azimuth and eleva-
tion errors are primarily within 5○. At lower SNRs,
like 0 dB and −5 dB, the CNN-CBAM model demon-
strates reliable performance, with the majority of es-
timation errors not exceeding 15○ in azimuth and 10○

in pitch.
In this simulation, the target azimuth and elevation

angles were set to [45○, 45○], with other simulation pa-
rameters remaining consistent with previous settings.
The target direction was estimated using the weighted
histogram method, MUSIC, Capon, the fourth-order
cumulant method (Guo et al., 2018), SBL (Liang
et al., 2021), and the CNN-CBAM model. Figure 7
illustrates the CNN-CBAM model’s estimation results
under various SNR conditions, where the x-axis and
y-axis represent the azimuth and elevation angle errors
relative to the true target position, with blue points
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Fig. 6. Random direction estimation results of the
CNN-CBAM method under different SNRs: a) SNR
= 15 dB; b) SNR = 10 dB; c) SNR = 5 dB; d) SNR =

0 dB; e) SNR = −5 dB.
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Fig. 7. Estimation results of the CNN-CBAM method
for [45○, 45○] under different SNRs: a) SNR = 15 dB;
b) SNR = 10 dB; c) SNR = 5 dB; d) SNR = 0 dB;

e) SNR = −5 dB.
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indicating errors within 10○ for both angles. The re-
sults show that under SNR conditions of 5 dB, 10 dB,
and 15 dB, the CNN-CBAM model achieves effective
direction estimation with azimuth and elevation errors
not exceeding 2○. Even under SNR conditions of −5 dB
and 0 dB, the model successfully estimates the source’s
direction with errors in both azimuth and elevation
within 7○.
The analysis of azimuth and pitch angle error dis-

tributions under varying SNR conditions (SNR = 15,
10, 5, 0, −5) reveals a systematic increase in distribu-
tion non-uniformity and measurement inaccuracy as
SNR decreases. At high SNR (15 dB, 10 dB), the ma-
jority of error points are clustered in the southwest
direction relative to the origin, indicating high mea-
surement precision with minimal deviation. As SNR
reduces to 5 dB, the error distribution shifts predom-
inantly to the west, reflecting a moderate decline in
accuracy. In low SNR conditions (0 dB and −5 dB),
the error points are concentrated in the northwest di-
rection, demonstrating significant dispersion and the
emergence of systematic errors. This directional non-
uniformity in the error distribution is attributed to
noise interference and system instability, which are
exacerbated under low SNR conditions. To quantify
this systematic deviation, we introduce the concept of
bias (B), defined as the mean difference between the
estimated angles (ŷi) and the true angles (yi):

B =
1

n

n

∑

i=1

(ŷi − yi), (12)

where n is the total number of measurements. This
bias term captures the systematic error component,
which becomes increasingly significant as SNR de-
creases, highlighting the need for robust error correc-
tion strategies in low SNR environments.
The bias in azimuth and pitch measurements re-

fer to the systematic deviation of the estimated values
from their true values. In this study, the bias is quan-
tified as the mean error of azimuth and pitch measure-
ments under different SNR conditions. As shown in
Table 1, the mean azimuth errors exhibit a consistent
negative bias across all SNR levels, ranging from −0.27○

at 15 dB to −1.82○ at −5 dB. This indicates that the az-
imuth estimates are systematically lower than the true
values, and the magnitude of this bias increases with
decreasing SNR.

Table 1. Biases of azimuth and pitch angles under different
SNR conditions.

SNR [dB] Azimuth error mean [○] Pitch error mean [○]

15 −0.27095 −0.29417

10 −0.29320 −0.24869

5 −0.37225 −0.11144

0 −0.68524 0.28555

−5 −1.82368 1.33251

Similarly, the mean pitch errors demonstrate a tran-
sition from negative to positive bias as the SNR de-
creases. At higher SNR levels (e.g., 15 dB), the pitch
errors show a negative bias of −0.29○, suggesting that
the pitch estimates are slightly lower than the true val-
ues. However, as the SNR decreases, the bias shifts to-
wards positive values, reaching 1.33○ at −5 dB. This in-
dicates that the pitch estimates become systematically
higher than the true values under low SNR conditions.
The observed biases in both azimuth and pitch

measurements highlight the influence of SNR on the
accuracy of the estimation process. The increasing neg-
ative bias in azimuth and the transition from negative
to positive bias in pitch suggest that the estimation
algorithms may be more susceptible to noise in cer-
tain directions or dimensions. These findings empha-
size the need for bias correction techniques, particu-
larly in low SNR environments, to improve the accu-
racy of azimuth and pitch measurements.
Figure 8 shows the estimation results of differ-

ent methods under a −5 dB SNR. MUSIC, Capon,
weighted histogram, and fourth-order methods use
a spectral peak search step size of 0.1○, while SBL em-
ploys a grid step size of 0.1○. CNN-CBAM and SBL
stand out as the most effective methods for the DOA
estimation, offering high accuracy. While weighted his-
togram and fourth-order cumulant methods remain
competitive. MUSIC and Capon methods are more
sensitive to noise and exhibit higher estimation errors.
However, a notable limitation of CNN-CBAM in this
scenario is that a significant portion of its estimates
do not uniformly distribute around the origin, as ob-
served in the error distribution plot. This deviation in-
dicates that while CNN-CBAM achieves high accuracy
in many cases, its estimates can be biased or skewed
under low SNR conditions, leading to occasional insta-
bility. This limitation highlights the need for further re-
finement of the method to ensure more consistent and
uniform performance across all scenarios. Future work
could focus on enhancing the noise resilience of CNN-
CBAM by optimizing its attention mechanisms, incor-
porating additional noise suppression techniques, or in-
tegrating it with probabilistic frameworks like those
used in SBL to address this issue and improve its ro-
bustness in highly noisy environments.
This study adopts the root mean square error

(RMSE) as the performance metric for direction es-
timation, where ŷi represents the estimated data and
yi represents the actual data:

RMSE =

¿

Á
ÁÀ

1

n

n

∑

i=1

(yi − ŷi)
2
. (13)

Figure 9 illustrates the RMSE of six DOA esti-
mation methods, weighted histogram, MUSIC, Capon,
fourth-order, CNN-CBAM, and SBL, across SNR lev-
els ranging from −5 dB to 15 dB. As SNR increases,



F. Zeng et al. – Single Vector Hydrophone DOA Estimation: Leveraging Deep Learning with CNN-CBAM 195

a)

-4 -3 -2 -1 0 1
Azimuth error [°]

-1

0

1

2

3

4

Pi
tc

h 
er

ro
r [

°]

Errors 10°
Errors >10°

b)

-10 -8 -5 5 8 10

-8

-5

-2

0

2

5

8
Errors  10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

-2
Azimuth error [°]

20

c)

-20 -10 10 200
Azimuth error [°]

-20

-10

0

10

20
Errors   10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

d)

-20 -10 10 20
-20

-10

0

10

Errors  10°
Errors >10°

0
Azimuth error [°]

Pi
tc

h 
er

ro
r [

°]

e)

-10 -5 5 10

-10

-5

0

5

10 Errors  10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

0
Azimuth error [°]

Fig. 8. Estimation results of various methods for
[45○, 45○] when the SNR is −5 dB: a) CNN-CBAM;
b) weighted histogram; c) MUSIC; d) Capon;

e) fourth-order cumulant; f) SBL.
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Fig. 9. RMSE of various methods for estimating [45○, 45○]
under different SNRs.

the RMSE for all methods decreases, reflecting im-
proved estimation accuracy. CNN-CBAM consistently
achieves the lowest RMSE values, demonstrating high
accuracy across all SNR conditions, particularly ex-
celling at higher SNR levels. The fourth-order also per-
forms well, closely following CNN-CBAM and SBL,
while MUSIC and Capon show moderate performance
with higher RMSE values at lower SNR. Overall, CNN-
CBAM, the fourth-order and SBL stand out as the
most effective methods, offering high accuracy and re-
liability in the DOA estimation.
Underwater environments are characterized by

complex noise conditions, including not only Gaus-
sian noise but also other types of noise such as im-
pulse noise, ambient noise, and biological noise. To
evaluate the adaptability of the CNN-CBAM model
to such environments, we conducted experiments by
adding impulse noise to the data at a SNR of 0 dB,
with impulse noise ratios ranging from 0.05 to 0.25.
We compared the RMSE of six DOA estimation meth-
ods. Figure 10 illustrates the RMSE performance of six
DOA estimation methods, the RMSE of all methods
generally rises, with MUSIC and Capon showing the
most significant degradation in performance. In con-
trast, CNN-CBAM performs well under low impulse
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Fig. 10. RMSE of various methods under varying impulse
noise ratios.
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noise ratios (5% and 10%), achieving lower RMSE
values, however, as the noise ratio increases, its per-
formance degrades rapidly, with RMSE rising signif-
icantly, highlighting its sensitivity to higher levels of
impulse noise, the fourth-order cumulant demonstrates
greater resilience, with a slower increase in RMSE. The
results suggest that CNN-CBAM, despite its advanced
architecture, may require enhancements such as noise
suppression techniques or hybrid approaches to im-
prove its performance in environments dominated by
impulse noise. Future work could focus on integrating
traditional signal processing methods with deep learn-
ing models to achieve better adaptability to complex
underwater noise conditions.
Table 2 presents the computation time of six DOA

estimation methods for single and multiple (10) tar-
gets, MUSIC, Capon, weighted histogram, and fourth-
order methods use a spectral peak search step size
of 1○, while SBL employs a grid step size of 1○, re-
vealing that CNN-CBAM, despite its slightly longer
computation time (0.125 s) for single-target estima-
tion compared to Capon (0.136 s) and weighted his-
togram (0.031 s), demonstrates superior scalability and
efficiency for multiple targets, requiring only 0.228 s
for 10 targets. This advantage stems from its parallel
processing capability, attention mechanism, and opti-
mized framework, which minimize computational over-
head in complex scenarios. In contrast, methods like
the fourth-order and SBL exhibit significantly longer
computation times (6.722 s and 13.279 s, respectively)
for multiple targets, making them less practical. Thus,
CNN-CBAM emerges as an efficient choice for the real-
time DOA estimation, particularly in applications in-
volving continuous estimation.

Table 2. Comparison of methods in processing time.

Method
Time

for single target
[s]

Time
for 10 targets

[s]
CNN-CBAM 0.125 0.228

MUSIC 0.226 3.306

Capon 0.136 1.437

Weighted histogram 0.031 0.359

Fourth-order 0.583 6.722

SBL 1.247 13.279

5. Discussions

The proposed CNN-CBAM model represents a sig-
nificant advancement in the DOA estimation for single
vector hydrophones, particularly in complex underwa-
ter acoustic environments. By integrating the CBAM
into a CNN, the model achieves superior noise resis-
tance and estimation accuracy across a wide range
of SNRs. This innovative approach addresses the lim-
itations of traditional methods such as MUSIC and

Capon, which often struggle with non-stationary noise
and multipath effects. The model’s ability to adap-
tively focus on critical features through channel and
spatial attention mechanisms establishes it as a robust
solution for real-time underwater target localization.
However, several challenges remain to be addressed.

A notable limitation is the model’s performance in
multi-source environments or scenarios with overlap-
ping signal sources. While CNNs excel in one-to-one
mapping tasks, their performance deteriorates when
handling multiple concurrent sources. This degrada-
tion is primarily attributed to the inherent complex-
ity of disentangling overlapping signals, which de-
mands more sophisticated feature extraction and sep-
aration techniques. Future work should prioritize en-
hancing the model’s capability to handle multi-source
scenarios, potentially through the integration of ad-
vanced signal separation algorithms or hybrid architec-
tures that combine CNNs with other machine learning
paradigms.
The computational efficiency of the CNN-CBAM

model is another critical consideration. As demon-
strated in Table 2, the model exhibits competitive pro-
cessing times for single-target estimation and demon-
strates superior scalability for continuous estimation.
This efficiency is largely due to the parallel process-
ing capabilities of CNNs and the optimized attention
mechanisms of CBAM. Nevertheless, computational
requirements may escalate significantly in multi-source
environments, necessitating further optimization of the
network architecture and training process. Future re-
search should explore techniques such as model prun-
ing, quantization, and distributed computing to en-
hance scalability and reduce computational overhead.
Integrating the CNN-CBAM model into existing

underwater acoustic systems presents additional chal-
lenges. A key issue is compatibility with legacy hard-
ware and software, which may require substantial mod-
ifications to accommodate the deep learning frame-
work. Moreover, the model’s reliance on large datasets
for training poses logistical challenges in data collec-
tion and preprocessing. To address these issues, future
work should focus on developing modular and adapt-
able frameworks that can be seamlessly integrated into
existing systems, as well as exploring transfer learning
techniques to reduce dependency on extensive train-
ing data.
The CNN output, while not always precise, is ‘pre-

cisely wrong’ in the sense that it consistently deviates
from the true values in a predictable manner. This sys-
tematic bias, particularly evident in low SNR condi-
tions, underscores the need for robust error correction
strategies. Future research should investigate methods
to mitigate this bias, such as incorporating probabilis-
tic frameworks or ensemble learning techniques, to im-
prove the model’s reliability and accuracy. By address-
ing these challenges and advancing the proposed ap-
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proach, the CNN-CBAM model has the potential to
significantly enhance the state of the art in the DOA
estimation, providing a robust and efficient solution for
underwater acoustic target localization in real-world
applications.
Future research directions should focus on ad-

vancing the multi-source DOA estimation through
the integration of signal separation techniques or hy-
brid architectures, enhancing the model’s capability
in complex environments. Systematic biases in the
model’s output, particularly under low SNR condi-
tions, must be addressed through robust error cor-
rection strategies to ensure reliable and accurate esti-
mations. Computational efficiency and scalability can
be further optimized via techniques such as model
pruning and distributed computing, enabling real-time
applications. To facilitate seamless integration into ex-
isting underwater acoustic systems, modular frame-
works should be developed, overcoming compatibil-
ity and logistical challenges. Additionally, leveraging
transfer learning techniques can reduce dependency
on extensive training datasets while improving adapt-
ability to diverse operational scenarios. Furthermore,
real-world experiments will be conducted to validate
the method’s effectiveness in practical underwater en-
vironments, ensuring its robustness and applicability
in real-world scenarios. By addressing these critical ar-
eas, the CNN-CBAM model is poised to significantly
advance the state of the art in the DOA estimation,
offering a robust and efficient solution for underwater
acoustic target localization in real-world applications.

6. Conclusion

This study proposes a CNN-CBAM-based ap-
proach for the DOA estimation using a single vector
hydrophone, enhancing accuracy in complex under-
water environments. By integrating the CBAM with
a CNN, the model processes normalized covariance
matrices to focus on critical channels and spatial fea-
tures. Experimental results demonstrate robustness
across varying SNRs, with azimuth and elevation er-
rors within 5○ at higher SNRs (15 dB, 10 dB, 5 dB) and
within 15○ in azimuth and 10○ in pitch at lower SNRs
(0 dB, −5 dB).
The CNN-CBAM model outperforms traditional

methods such as MUSIC and Capon in precision and
noise resistance, addressing limitations of eigenvalue
decomposition-based methods in non-stationary noise
and multipath environments. Challenges remain in
multi-source environments, where overlapping signals
degrade performance. Future work will focus on en-
hancing the multi-source DOA estimation, optimizing
computational efficiency, leveraging transfer learning
for practical deployment, and conducting real-world
experiments to validate the method’s effectiveness.
These advancements will solidify the CNN-CBAM

model as a robust solution for real-time underwater
target localization.
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