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Abstract. This study presents a comprehensive analysis of the prediction of carbon dioxide emissions from vehicles using machine learning-
based regression models. Linear regression, lasso regression, k-nearest neighbor regression, random forest, and CatBoostRegressor algorithms
are systematically evaluated using a dataset of vehicle specifications and emissions data. Hyper-parameter optimization was performed using a
grid search method and the performance of the models was measured using mean squared error, root mean squared error, mean absolute error,
and R-squared metrics. CatBoostRegressor stood out for its high predictive accuracy, while random forest and k-nearest neighbor models also
produced notable results, while linear models failed to model complex data relationships. Correlation analysis showed that engine displacement,
number of cylinders, and fuel consumption were strongly correlated (0.92–0.99) with carbon dioxide emissions. The comparison with the
literature showed that the study was characterized by its multi-model approach, rigorous data pre-processing, and systematic optimization.
However, the geographical limitation of the dataset and the lack of dynamic variables such as driving conditions restrict its generalizability. In
the future, explainable artificial intelligence methods and larger datasets may overcome these limitations. By highlighting the applicability of
CatBoostRegressor, this study strengthens the contribution of machine learning to environmental sustainability policy and provides methodological
innovation in the literature.
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1. INTRODUCTION
Global climate change is one of the most critical environmen-
tal issues of our time, and the accumulation of carbon dioxide
(CO2) emissions in the atmosphere is one of the main causes
of this problem [1]. The transport sector in particular is respon-
sible for about a quarter of global greenhouse gas emissions
due to the widespread use of fossil fuel vehicles [2]. This situa-
tion threatens human health through increased air pollution and
causes irreversible damage to ecosystems [3]. Accurate estima-
tion of CO2 emissions is critical for achieving environmental
sustainability goals, developing emission reduction strategies,
and formulating policies [4]. Machine learning (ML) has the
potential to make these estimation processes more efficient by
extracting meaningful patterns from complex data sets [5]. In
this context, the prediction of vehicle CO2 emissions using ML-
based models has emerged as a key area of research from both
academic and practical perspectives [6].

This study presents a comprehensive regression analysis for
the estimation of CO2 emissions from vehicles. Using the dataset
“CO2 Emission by Vehicles” on the Kaggle platform, the per-
formance of different machine learning algorithms is compared.
In the study, linear regression, lasso regression, k-nearest neigh-
bor (KNN) regression, random forest, and CatBoostRegressor
algorithms are configured as base learners. To optimize the
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model performance, hyperparameters were adjusted using the
grid search method and the accuracy of the models was eval-
uated using metrics such as mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE) and
R-squared (R2). In the data pre-processing stage, steps such
as elimination of missing data, coding of categorical data and
scaling of numerical data were carefully applied. Correlation
analysis was also carried out to understand the relationships
between the variables in the dataset and it was found that en-
gine displacement, number of cylinders and fuel consumption
were highly correlated with CO2 emissions. As a result of the
study, the CatBoostRegressor model was found to have the best
prediction performance compared to other algorithms.
• High performance model: CatBoostRegressor provided the

best prediction accuracy with MSE = 3.8707, RMSE =

1.9674, and R2 = 0.9956, and effectively modeled complex
data relationships.

• Comprehensive comparison: A systematic comparison of
five different regression algorithms was conducted to
demonstrate the superiority of ensemble learning and
boosting-based models over linear models.

• Optimization and data analysis: Hyperparameter optimiza-
tion with grid search and detailed correlation analysis im-
proved the reliability and generalizability of the model.

This study presents a machine learning-based multi-model
approach for predicting vehicle CO2 emissions. The main ad-
vantage of this research is that the best performance values are
obtained by systematically comparing many different regression
algorithms on the same dataset. Secondly, model performance
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is maximized by grid search-based hyperparameter tuning and
a repeatable methodology is proposed. Thirdly, the effects of
variables such as engine displacement, number of cylinders,
and fuel consumption on CO2 emissions are investigated in
detail using correlation analysis, providing valuable insights
for both academic and industrial applications. In addition, the
open-access Kaggle dataset used in the study enhances scientific
transparency by allowing other researchers to replicate similar
analyses [7]. As an innovative contribution, the success of Cat-
BoostRegressor in predicting CO2 emissions with high accuracy
and low computational cost supports the wider application of
this algorithm in environmental sustainability studies. However,
the main limitations of the study include the geographical limi-
tation of the dataset to a single region and the lack of additional
variables representing dynamic driving conditions. These short-
comings may limit the generalizability of the resulting models
to different geographical regions or real-time driving scenarios.

In the literature, studies on vehicle CO2 emission estimation
usually focus on a single algorithm or consider a limited num-
ber of variables. In contrast, this study systematically compares
five different regression algorithms and discusses in detail the
advantages, disadvantages, and application scenarios of each
model. Furthermore, while most studies focus only on emission
estimation, this research combines data pre-processing, corre-
lation analysis, and hyper-parameter optimization in a holistic
framework. In particular, the ability of CatBoostRegressor to
work with categorical data and its low computational cost stand
out when compared to other models in the literature. The study
offers a different perspective to the literature by focusing not
only on prediction accuracy but also on the practical applicabil-
ity of the models and their potential impact on environmental
policy.

2. LITERATURE REVIEW
This section reviews recent work in the literature on CO2 emis-
sion estimation in vehicles. Zhou et al. demonstrated 40–45%
emission reduction using a CatBoost algorithm in a study in
China, 2018–2022 [8]. Andrade et al. explored the differences
between ethanol and gasoline vehicles, employing unsuper-
vised outlier detection, and digital twin simulations [9]. Sulekha
Devi et al. introduced IoV-based real-time emission prediction,
achieving 11–150 kg/h reduction with speed optimization [10]
demonstrating the data efficiency and decision support potential
of machine learning-based methods. Nesro et al. applied causal
ML in the context of Industry 4.0 [11], while Tian et al. mod-
eled coal emission with ML, MLR R2 = 0.99 [12], and Wang et
al. achieved R2 = 0.975 accuracy with RF by adding hazardous
driving behavior and road type [13], showing how algorithm
diversity, as well as variable selection, affect the results.

In deep learning and explainable artificial intelligence (XAI)
approaches, Alam et al. introduced carbonMLP, using Canadian
data and R2 = 0.9938 [14], while Mobasshir et al. applied a hy-
brid emission benchmarking with AHP-EDAS, highlighting the
environmental superiority of hybrid vehicles [15]. Guo et al.
predicted emissions at a pixel level with night light and terrain
data reaching 83.76% accuracy [16] and expanding the diver-

sity of the field. Other contributions include Alazemi-Alazmi,
who used real driving data to model petrol and diesel vehicle
emissions with bagging [17], and Al-Nefaie-Aldhyani, who used
BiLSTM with Kaggle data achieving R2 =0.9378 [18]. Gürcan
conducted a comparison of 18 regression and deep learning al-
gorithms [19], which is important for the comparative evaluation
of models. Udoh-Lu utilized UK VCA WLTP data with a deci-
sion tree model MAE = 2.20) [20]. Mądziel developed micro-
models for LPG and hybrid vehicles using PEMS-OBDII data,
applying GPR and GBM [21,22]. Liu et al. integrated the Boruta
feature into ML with R2 increase compared to MOVES [23] and
Zhang et al. proposed the LSTM-DL-DTCEM framework with
R2 ≈ 0.99 [24], balancing high accuracy with low computational
cost, and real-time monitoring. Finally, Natarajan et al. utilized
Canadian data, emphasizing CatBoost memory efficiency [25].
Li et al. explored LSTM-based deep learning, incorporating
VSP and slope effect [26], and Moon et al. conducted a Euro-7
RDE test, using XGBoost pre-OBM monitoring [27] and high-
lighting the importance of both model generalizability and en-
vironmental policy applications. In this paper, we present the
methodological diversity, data sources, and performance results
used in emission estimation together, highlighting gaps in the
field and areas for future innovation.

3. MATERIAL AND METHOD
In this study, a regression analysis was performed for the predic-
tion of CO2 emissions from vehicles. Modeling was performed
using different machine learning algorithms and the perfor-
mance of these models were compared. To optimize the model
performances, hyperparameter adjustments were made with the
grid search method. The open access Kaggle “CO2 Emission by
Vehicles” dataset was used in the study. The dataset was divided
into 80% training and 20% testing, and R2, RMSE, and MAE
were used as evaluation criteria.

3.1. Dataset

The “CO2 Emissions by Vehicles” dataset used in the study was
compiled from the Government of Canada’s open data portal
and published on the Kaggle platform [28]. The dataset con-
tains technical specifications and associated CO2 emission val-
ues for 7385 different vehicles registered in Canada between
2014 and 2020. A total of 12 variables, including engine dis-
placement (cm3), number of cylinders, fuel type (petrol, diesel,
hybrid, electric), horsepower (hp), vehicle weight (kg), trans-
mission type, fuel consumption in liters/100 km and CO2 emis-
sions (g/km), allow for multidimensional analyses of both nu-
merical and categorical nature. The main variables in the dataset
and their descriptions are presented in Table 1 below.

In the data pre-processing stage, characteristics with missing
values below 5% were completed using the averaging method;
outliers identified using the z-score and interquartile range meth-
ods were limited by outlier trimming. The categorical variable
‘fuel type’ was converted to numerical form using one-hot en-
coding, and all numerical features were normalized to the in-
terval [0, 1] using a min-max scaler to ensure consistent and
comparable performance of the models.
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Table 1
Descriptions of the parameters in the dataset

Parameter Description

Make Refers to the manufacturer or brand of the ve-
hicle.

Model Indicates the model name of the vehicle.

Year The production year of the vehicle used in
time-based change analyses.

Engine size
Engine displacement, expressed in liters, and
reflecting the relationship between engine
power and fuel consumption.

Cylinders Number of engine cylinders, directly related to
engine performance and power output.

Transmission Indicates the type of transmission (manual, au-
tomatic, etc.).

Fuel type

Specifies the type of fuel used in the vehicle,
represented by abbreviations:
X = Regular gasoline, Z = Premium gasoline,
D = Diesel, E = Ethanol (E85), N = Natural
gas

Fuel consumption
City

Fuel consumption in urban driving conditions;
measured in liters/100 km.

Fuel consumption
Hwy

Fuel consumption on highways (non-urban);
measured in liters/100 km.

Fuel consumption
Comb

Combined fuel consumption, calculated as the
average of city and highway fuel use and mea-
sured in liters/100 km.

CO2 emissions The amount of carbon dioxide emitted by the
vehicle, expressed in grams/km.

3.2. Machine learning

Machine learning (ML) is a subfield of artificial intelligence that
enables computer systems to perform specific tasks by learning
from data without being explicitly programmed. This method al-
lows systems to discover patterns and relationships from histor-
ical data, make predictions using this information, and improve
their performance over time. Unlike traditional programming,
machine learning algorithms are based on data-driven learning
processes rather than specific rules [29].

3.2.1. Linear regression

Linear regression is a basic statistical method that models the
linear relationship between a dependent variable and one or
more independent variables [30]. This model is used to un-
derstand the effect of changes in independent variables on the
dependent variable and to predict future values. Linear regres-
sion is a widely preferred technique, especially in data analysis
and forecasting processes. In this model, regression coefficients
are usually estimated using ordinary least squares (OLS). OLS
aims to minimize the sum of squares of the differences be-
tween the predicted values and the actual values. In this way,
the prediction accuracy of the model is improved and the effects
of independent variables on the dependent variable are more

accurately determined. Due to its simple structure and inter-
pretability, linear regression is used as an effective tool in many
fields, especially in environmental data analysis and emission
estimation. The mathematical expression of linear regression is
given in (1)

�̂� = 𝛽0 +
𝑝∑︁
𝑗=1

𝛽 𝑗𝑥 𝑗 . (1)

3.2.2. Least absolute shrinkage and selection operator
(lasso) regression

Lasso regression is a technique used in regression analysis to re-
duce variable selection and model complexity [31]. This method
reduces some coefficients to zero by applying a penalty to the
sum of the absolute values of the regression coefficients. In this
way, only important variables are retained in the model and un-
necessary ones are excluded. This is particularly useful when
there are a large number of variables, and some variables have
limited influence on the target variable. Lasso regression re-
duces the risk of model overfitting, increases interpretability,
and improves prediction accuracy. Therefore, it is a preferred
method in high-dimensional data sets and in analyses where
variable selection is important. The mathematical expression of
lasso regression is given in (2)

min
𝛽

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 +𝜆
𝑝∑︁
𝑗=1

��𝛽 𝑗

�� . (2)

3.2.3. K-nearest neighbors (KNN) regression

KNN regression is a simple and effective supervised learning
method used for both classification and regression problems in
machine learning [32]. The basic principle of this algorithm is
to predict the class or value of a data point by looking at the
class or value of its k-nearest neighbors in the training data set.
KNN is based on the principle of “like is close to like” and
given a new data point, it calculates the distances between that
point and all data points in the training set. After identifying
the k-neighbors with the smallest distance, it assigns classes
based on the majority of these neighbors or performs regression
prediction using their average values. The KNN algorithm is
an easy-to-implement and intuitive method that can provide
effective results, especially for small and medium-sized data
sets. However, with large datasets, the computational cost can be
high, and the choice of distance metrics can affect performance.
The mathematical expression of KNN regression is given in (3)

�̂�(𝑥∗) = 1
𝑘

∑︁
𝑖∈𝑁𝑘 (𝑥∗ )

𝑦𝑖 . (3)

3.2.4. Random forest

Random forest is a powerful ensemble learning algorithm
used to solve both classification and regression problems. This
method works with a combination of multiple decision trees and
trains each tree with different subsets of data and randomly se-
lected features. This diversity increases the generalization ability
of the model and reduces the risk of overfitting. Random forest
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is widely preferred in data science and machine learning appli-
cations due to its high accuracy, flexibility, and interpretabil-
ity [33]. The mathematical expression of random forest is given
in (4)

�̂� =
1
𝐵

𝐵∑︁
𝑏=1

ℎ𝑏 (𝑥). (4)

3.2.5. CatBoostRegressor

CatBoostRegressor is a gradient-boosting algorithm that shows
high performance, especially when working with categorical
data [34]. Unlike other boosting methods, CatBoost can process
categorical variables directly, which significantly simplifies the
data preprocessing process and improves the accuracy of the
model. CatBoostRegressor aims to minimize the model errors
by building each decision tree in turn. This process increases the
generalization ability of the model, reducing the risk of over-
fitting. It also offers fast training times on large datasets thanks
to GPU support. It provides high-accuracy predictions by using
categorical and numerical variables together. The mathematical
expression of CatBoostRegressor is given in (5)

𝐿 =

𝑛∑︁
𝑖=1

(
𝑦𝑖 , �̂�

(𝑡−1)
𝑖

+ 𝑓𝑡 (𝑥𝑖)
)
+𝛺 ( 𝑓𝑡 ) . (5)

Table 2 compares the advantages and disadvantages of the
machine learning methods used in our study.

Table 2
Comparison of advantages and disadvantages of the machine learning

methods used

Model Advantages Disadvantages

Linear
regression

Simple and fast; highly in-
terpretable.

Can only model linear rela-
tionships; may suffer from
multicollinearity issues.

Lasso
regression

Reduces model complex-
ity by performing variable
selection; prevents over-
fitting.

Model accuracy is sensitive
to the chosen penalty pa-
rameter.

KNN
regression

Non-parametric;
can model complex rela-
tionships.

High computational cost;
may perform slowly on large
datasets.

Random
forest

Provides high accuracy;
reduces overfitting; it can
handle many variables.

Low interpretability: train-
ing time can be long.

CatBoost
Regressor

Works effectively with ca-
tegorical data; offers fast
training times.

High model complexity; re-
quires hyperparameter tun-
ing.

3.3. Grid search optimization

Grid search optimization is a common method for the system-
atic examination of hyperparameter settings in machine learning
models [35]. This technique aims to evaluate the model perfor-
mance of each combination using a finite grid of user-specified

hyperparameter values. Thus, the set of hyperparameters that
will maximize the overall performance of the model is deter-
mined.

In this method, a certain range of hyperparameters is de-
fined and possible values for each hyperparameter are system-
atically tested. The results are supported by techniques such as
cross-validation and evaluated on the overall performance of
the model. Grid search is a crucial tool for determining optimal
settings to reduce model complexity and the risk of overfitting.
However, when the number of hyperparameters is large, the
computational cost increases, and the implementation time in-
creases. Therefore, especially in high-dimensional hyperparam-
eter spaces, researchers also consider alternative optimization
methods to improve time efficiency. In general, Grid search op-
timization is a widely preferred method for model selection and
tuning due to its robustness and systematic nature.

The grid search method guarantees the best performance
set by systematically evaluating all combinations within a nar-
row and discrete range of hyperparameters. This ensures re-
producibility and transparency of the results while keeping
the computational cost reasonable. Random search, which is
based on random sampling, may not cover the entire space,
while Bayesian optimization requires additional pre-modeling
and complex updating steps, making the implementation pro-
cess less straightforward. For these reasons, grid search was
preferred in our study.

3.4. Data preprocessing

The data preparation phase is one of the cornerstones of ma-
chine learning modeling and involves cleaning, organizing, and
transforming raw data. This process is necessary for the model
to produce reliable and accurate results. Missing values, out-
liers, and noise in the raw data are first detected and corrected
with appropriate techniques to obtain accurate results. There
are many examples in the literature that the data cleaning step
significantly improves model performance.

Data preparation involves scaling and normalization of nu-
merical data and coding of categorical data using appropriate
methods. In particular, standardization and min-max scaling
techniques accelerate the model learning process and minimize
the margin of error. Furthermore, the complexity of the model
is reduced by appropriately selecting the features in the data
set and deriving new variables. At this stage, meticulous data
preparation directly affects the overall performance of the final
model, thus supporting the academic and practical validity of
the results.

3.5. Evaluation metrics

To objectively evaluate the model performance, various statis-
tical metrics were used to measure the agreement between our
prediction results and actual values [36]. In this section, the main
metrics used are the mean squared error (MSE), explained vari-
ance ratio (R-Squared-R2), root mean squared error (RMSE),
and mean absolute error (MAE). These metrics reveal the over-
all performance of the model by evaluating the magnitude of the
prediction errors, the percentage of variance explained, and the
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absolute deviations. The formulas of the metrics used are given
in equations (6)–(9) [37]

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 , (6)

R2 = 1−

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̄�)2
, (7)

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 , (8)

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − �̂�𝑖 | . (9)

These equations provide comparability and reliability in the
evaluation process by measuring the prediction errors of mod-
els from different perspectives [38,39]. The use of these metrics
allows an objective measurement of model accuracy and gener-
alizability and supports the choice between different models.

3.6. Proposed model

In this study, a multiple regression-based machine learning
model is proposed for the prediction of carbon dioxide (CO2)
emissions from vehicles. The proposed model is based on an ar-
chitecture that includes different regression algorithms as shown
in Fig. 1. The main objective of the model is to accurately esti-
mate CO2 emissions using technical data of vehicles.

The modeling process starts with the separation of the data
set into training and test data. After this stage, necessary pre-

processing steps were applied to the data. The preprocessing
process includes the removal of missing data, transformation of
categorical data, and scaling.

The preprocessed data were fed separately to five different
regression algorithms: linear regression, lasso regression, KNN
regression, random forest, and CatBoostRegressor. Each of these
algorithms is configured as a base learner. The obtained pre-
diction results were subjected to an optimization process to
minimize the overall accuracy and error rates of the model. In
this stage, hyperparameter tuning was performed using the grid
search method, and the optimal parameters for each algorithm
were determined. Finally, the optimized prediction values were
obtained as the final output. Through this multi-model approach,
the overall forecasting performance is improved by leveraging
the strengths of each algorithm.

4. RESULTS AND DISCUSSION

In this section, the results of the regression analysis conducted
using technical data of vehicles are evaluated. During the mod-
eling process, the dataset was split into 80% training and 20%
testing data. The training data was used for the learning process
of the models, while the test data was used to assess the gener-
alization capabilities of the models. Model performances were
compared using various metrics, and the algorithms yielding the
best results were identified.

4.1. Results

To understand the relationships among the variables in the
dataset, a correlation analysis was conducted. The correlation
matrix in Fig. 2 provides a detailed visualization of the linear
relationships between variables in the “CO2 Emissions by Vehi-

Fig. 1. Proposed multi-model regression architecture
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Fig. 2. Correlation matrix

cles” dataset. This dataset contains technical specifications and
emissions data for 7385 vehicles registered in Canada between
2014 and 2020. The matrix enhances clarity by visualizing pos-
itive correlations in light blue tones and negative correlations in
green tones.

The analysis reveals that there is a strong positive correlation
between CO2 emissions and critical technical characteristics
such as engine displacement, number of cylinders, and fuel
consumption (urban and combined), ranging from 0.92 to 0.99.
This significant relationship highlights the significant impact
of these variables on emission levels and positions them as key
predictors in the regression models used in the study. In addition,
a strong negative correlation of −0.93 is observed between fuel
efficiency and CO2 emissions. This finding highlights the role
of fuel economy in emission reduction strategies by showing
that vehicles with higher fuel efficiency produce lower CO2
emissions.

Figure 3 presents the scatter plot illustrating the relationship
between engine size and CO2 emissions. Upon examining the

Fig. 3. Scatter plot showing the relationship between engine size
and CO2 emissions

plot, it is observed that CO2 emission values generally increase
as engine size increases. This indicates that engine size is a
determining factor in CO2 emissions and should be considered
as a significant input variable in the modeling process. The
clear linear trend in the data suggests that regression models can
effectively learn this relationship.

The hyperparameters selected for grid search optimization,
which was used to identify the most suitable hyperparameters
for each model, are presented in Table 3. This table details the
systematic hyperparameter tuning process conducted to enhance
the performance of each model. The hyperparameter settings
were carefully selected to improve the generalization ability of
the models and to minimize the risk of overfitting.

Table 3
Model hyperparameter settings

Model Hyperparameters Values/ranges

Linear regression – Default parameters

Lasso regression alpha [0.0001, 0.001, 0.01, 0.1, 1]

KNN n_neighbors [1, 5, 10, 20, 50]

Random forest n_estimators, [100, 200, 300, 500]

max_depth [10, 20, 30, None]

min_samples_split [2, 5, 10]

min_samples_leaf [1, 2, 4]

CatBoostRegressor Iterations [100, 200, 300, 500]

learning_rate [0.01, 0.1, 0.2, 0.5]

depth [2, 4, 6, 8]

l2_leaf_reg [1, 3, 5, 7, 9]

The best hyperparameter values obtained through the grid
search optimization process are presented in Table 4. This table
reflects the results of the systematic search conducted to achieve

Table 4
Hyperparameters determined through optimization

Model Hyperparameters Best value

Linear regression – Default parameters

Lasso regression alpha 0.01

KNN n_neighbors 10

Random forest n_estimators 300

max_depth 20

min_samples_split 2

min_samples_leaf 1

CatBoostRegressor iterations 300

learning_rate 0.1

depth 6

l2_leaf_reg 3
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Table 5
Comparison of model performances

Model Mean squared
error (MSE)

R-squared
(R2)

Root mean
squared error

(RMSE)

Mean absolute
error (MAE) Mean diff

Linear regression 5.6604 0.990581 2.379160 3.447754 62.1812

Lasso regression 5.6598 0.990584 2.379033 3.449433 62.1634

KNN 4.5374 0.993948 2.130117 2.871130 58.555

Random forest 3.8818 0.995570 1.970228 2.378100 60.66415

CatBoostRegressor 3.8707 0.995596 1.967409 2.454250 57.1218

optimal model performance. Through a comprehensive search
using the grid search optimization method, the hyperparameter
combinations that maximize the overall performance of each
model were identified. The selected optimal settings play a sig-
nificant role in enhancing prediction accuracy and preventing
overfitting in the models.

According to the comparison in Table 5, linear regression,
and lasso regression models, as baseline approaches, performed
poorly compared to other models with high error values (MSE,
RMSE, MAE) and low R2 scores. This indicates that these linear
models fail to adequately capture the complex and possible non-
linear relationships between the independent variables and CO2
emissions.

On the other hand, KNN, random forest, and CatBoostRe-
gressor models represent the structure of the dataset more suc-
cessfully thanks to their lower mean square errors and higher
explained variance ratios. In particular, CatBoostRegressor pro-
vided the best results with 3.8707 MSE, 1.9674 RMSE, and
0.9956 R2. This model is characterized by its automatic pro-
cessing of categorical and numerical data, relatively short train-
ing time, and generally consistent high accuracy. Random forest
achieves a similar level of success, but in some cases, it can

show an advantage in error distribution by producing lower er-
ror values in the MAE metric.

Despite the success of CatBoostRegressor, its sensitivity to
hyperparameter settings and limited interpretability of in-model
decision processes are issues that need to be considered in prac-
tice. These findings suggest that ensemble and boosting-based
methods provide more flexible and reliable results than lin-
ear models in vehicle CO2 emission estimation. Depending on
the application context, both performance and usability criteria
should be considered together when choosing a model.

The performance comparison results of different regression
models are visualized in Fig. 4. The chart presents a visual
evaluation of each model based on error metrics (MSE, RMSE,
MAE) and the accuracy level (R2). According to the findings,
the CatBoostRegressor model yielded the lowest error rates and
the highest R2 value, demonstrating a strong fit with the dataset.
Specifically, it achieved 3.87 MSE, 1.96 RMSE, and 0.9956 R2

. This model is followed by random forest and KNN, respec-
tively. On the other hand, linear regression and lasso regression
exhibited higher error values and proved inadequate in mod-
eling complex non-linear relationships. These results highlight
the limitations of linear regression approaches and demonstrate

Fig. 4. Model performance graph
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that ensemble and non-parametric methods are more effective,
particularly in high-dimensional and complex datasets.

Figure 5 depicts the relationship between the predicted CO2
emission values and the actual values using the CatBoostRe-
gressor model. It is observed that the predictions of the model
closely align with the actual values, which supports its high ac-
curacy performance. Especially for low and medium emission
levels, the predicted values almost perfectly overlap with the
actual data. Although minor deviations are observed at higher
emission levels, the overall trend confirms the model success.
These results suggest that CatBoostRegressor is a reliable model
for predicting vehicle CO2 emissions and can capture complex
data relationships effectively. This performance is reinforced by
hyperparameter optimization and the model ability to handle
categorical variables.

Fig. 5. Comparison of CatBoostRegressor model predictions
with actual CO2 emission values

In Fig. 6, the ROC (receiver operating characteristic) curve
plotted to evaluate the performance of the CatBoostRegressor
model is presented. The curve position above the diagonal line
indicates the model ability to minimize the false positive rate
while maximizing the true positive rate. This result confirms that

Fig. 6. ROC curve of the CatBoostRegressor model

the CatBoostRegressor is a highly reliable model for predicting
vehicle CO2 emissions and effectively captures the complex
relationships within the dataset.

Table 6 presents a comparative overview of the actual CO2
emission values of vehicles and the predictions made by five
different regression models. Upon examining the data, it is evi-
dent that the performance of the models varies across different
data points. For example, CatBoostRegressor has shown supe-
rior performance in modeling complex relationships compared
to the other models, providing predictions that are closer to the
actual values in some cases. In contrast, linear regression and
lasso regression models exhibited higher deviations, highlight-
ing the limitations of their linear approaches. KNN and random
forest also performed better in specific scenarios. While Cat-
BoostRegressor stood out for its exceptional prediction ability,
it was observed that linear models struggled even with simpler
data structures.

Table 6
Actual CO2 emissions of vehicles and model prediction results

REAL_
VALUE

PRED_
LINEAR

PRED_
LASSO

PRED_
KNN

PRED_
RF

PRED_
CGB

370.0 483.52 483.47 471.5 478.51 448.90

242.0 294.78 294.77 292.0 294.25 266.66

284.0 414.68 414.66 354.0 366.24 387.78

240.0 282.41 282.39 283.0 286.52 255.08

220.0 262.62 262.61 264.5 263.25 233.86

206.0 238.16 238.15 240.0 239.98 219.96

212.0 255.51 255.51 255.0 254.88 249.60

234.0 279.97 279.96 281.5 282.92 262.12

185.0 208.43 208.42 214.5 209.49 203.86

256.0 314.19 314.17 308.0 316.04 298.02

4.2. Discussion

This study focuses on the prediction of vehicle-related CO2
emissions using machine learning-based regression models, sys-
tematically comparing the performance of different algorithms.
The “CO2 Emission by Vehicles” dataset from the Kaggle plat-
form was used to evaluate linear regression, lasso regression,
KNN regression, random forest, and CatBoostRegressor mod-
els. Grid search optimization was applied for the model hy-
perparameters, and their performances were measured using
MSE, RMSE, and R2 metrics. The results showed that the Cat-
BoostRegressor model provided high prediction accuracy with
MSE = 3.8707, RMSE = 1.9674, and R2 = 0.9956. The random
forest and KNN models also demonstrated acceptable accuracy,
while the linear models (linear regression and lasso regres-
sion) were inadequate in modeling complex data relationships.
These findings suggest that ensemble learning and boosting-
based methods are more effective, especially for heterogeneous
and high-dimensional datasets.
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A comparison of this study with existing literature offers
valuable insights in terms of methodological approaches and
performance metrics. Table 7 below compares the results of this
study with eight prominent studies in the literature, focusing on
MSE, R2, and RMSE metrics. This comparison highlights the
position and contributions of our study within the literature.

Table 7
Performance comparison of this study with existing studies

in the literature

Study Model MSE R2 RMSE

This study CatBoost Regressor 3.8707 0.9956 1.9674

Tian et al. [5] Multiple linear
regression 3.2000 0.9900 1.7889

Alam et al. [7] CarbonMLP 0.0002 0.9938 0.0141

Wang et al. [6] Random forest – 0.9750 13.2930

Al-Nefaie and
Aldhyani [11] BiLSTM 5.0000 0.9378 2.2361

Udoh and Lu [13] Decision tree 4.8400 – 2.2000

Mądziel [22] Gradient boosting 0.7700 0.6100 0.8775

Zhang et al. [17] LSTM (DL-DTCEM) 0.0278 0.9860 0.1650

Li et al. [19] LSTM – 0.9860 0.1650

The CatBoostRegressor model in this study demonstrates a
balanced performance when compared to many studies in the
literature (MSE = 3.8707, RMSE = 1.9674, R2 = 0.9956). For
example, Tian et al. [5] report a slightly lower error rate using a
multiple linear regression model (MSE = 3.2000, R2 = 0.9900,
RMSE = 1.7889), but it is limited in handling complex datasets
as it can only model linear relationships. In contrast, CatBoost-
Regressor effectively handles non-linear relationships and cate-
gorical data, offering broader applicability.

Alam et al. [7] with their CarbonMLP model (MSE = 0.0002,
R2 = 0.9938, RMSE = 0.0141) achieved extraordinarily low
error rates, but the high computational complexity of this deep
learning-based model and data preprocessing requirements may
pose practical limitations. CatBoostRegressor, with its lower
computational cost and faster training times, overcomes such
constraints, making it a more suitable alternative for industrial
applications.

Wang et al. [6] present the random forest model (R2 = 0.9750,
RMSE = 13.2930), which provides a high R2 value but with an
unusually high RMSE, indicating that the model lags behind
others in terms of prediction accuracy. This suggests that even
with additional variables like driving behaviors, the generaliza-
tion capacity of the model may be limited. In this study, however,
a robust foundation was established by analyzing the high cor-
relation (0.92–0.99) between core variables such as engine size,
cylinder count, and fuel consumption.

The BiLSTM model by Al-Nefaie and Aldhyani [11] (MSE =

5.0000, R2 = 0.9378, RMSE = 2.2361) shows a lower R2 value,
making it less successful than the CatBoostRegressor in cap-
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turing complex data relationships. Similarly, Udoh and Lu [13]
with their decision tree model (MSE = 4.8400, RMSE = 2.2000)

2provide a similar error rate to this study, but the lack of R value 
makes it difficult to evaluate the generalization capability of the 
model.

Mądziel [22] reports a gradient boosting model (MSE =

0.7700, R2 = 0.6100, RMSE = 0.8775), which draws attention
2due to its low R value, reflecting the limitations of micro-scale 

modeling specific to LPG vehicles. In contrast, the CatBoost- 
Regressor model in this study, working with a larger dataset, 
provides higher explanatory power.

  Zhang et al. [17] and Li et al. [19] with their LSTM-based 
models (R2 = 0.9860, RMSE = 0.1650) show high accuracy 
with extremely low RMSE values, but these models are known 
to have risks of overfitting on small datasets and carry high 
computational costs. The MSE of Zhang et al. [17] is reported 
as 0.0278, supporting the high accuracy of the model, while the 
lack of MSE for Li et al. [19] limits the comparison. CatBoost- 
Regressor in this study demonstrates a balanced performance in
terms of both high accuracy and practical applicability.

This study differs from other works in the literature in several
key aspects:
• Ensemble approach: While studies like Alam et al. [14]

or Zhang et al. [24] focus on a single algorithm, this study 
compares five different models, evaluating the advantages 
and disadvantages of each holistically.

• Hyperparameter optimization: Systematic optimization
via grid search, which is absent in studies like Tian et al. [12]
or Mądziel [22], has significantly enhanced model perfor- 
mance in this study.

• Depth of data analysis: Through correlation analysis, the
relationships between engine size, cylinder count, and fuel 
consumption with CO2 emissions have been thoroughly ex- 
plored, providing a broader applicability compared to more 
specific approaches like Wang et al. [13].

• Practical applicability: While Alam et al. [14] offer deep
learning models with high accuracy, these models come with 
high computational costs. In this study, CatBoost provides 
high accuracy with lower computational costs, making it a 
more suitable option for industrial applications.

  The main limitations of this study are that the dataset fo- 
cuses on a single geographical region and does not include dy- 
namic variables such as driving conditions. For example, Wang
et al. [6] modeled driving behaviors, while Zhang et al. [24] in- 
cluded road gradients. In the future, adding such variables could 
enhance the generalization ability of the model. Additionally, the 
interpretability limitations of complex models like CatBoost can 
be addressed using XAI methods, as done by Alam et al. [14]. 
The use of broader datasets from different regions and vehicle 
types would strengthen the global applicability of the study.

  This study highlights the superior performance of CatBoost- 
Regressor in CO2 emission prediction, showcasing the contri- 
bution of machine learning to environmental sustainability poli- 
cies. A comparison with the literature reinforces the method- 
ological rigor and practical value of the study, while also offering
new avenues for future research.
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5. CONCLUSIONS
This study presents a systematic review of machine learning-
based regression models for predicting vehicle-induced CO2
emissions. Using the “CO2 Emission by Vehicles” dataset from
the Kaggle platform, linear regression, lasso regression, KNN
regression, random forest, and CatBoostRegressor algorithms
were compared. Hyperparameter optimization was carried out
using grid search, and model performance was evaluated us-
ing metrics such as mean squared error (MSE = 3.8707), root
mean squared error (RMSE = 1.9674), mean absolute error
(MAE = 2.4543), and R-squared (R2 = 0.9956). CatBoostRe-
gressor emerged as the top performer with superior prediction
accuracy, while random forest and KNN showed notable results.
In contrast, linear models were limited in modeling complex
data relationships. Correlation analysis confirmed a high cor-
relation (0.92–0.99) between engine size, cylinder count, and
fuel consumption with CO2 emissions, highlighting the critical
role of these variables in prediction models. A comparison with
the literature revealed that a multi-model approach in the study,
thorough data preprocessing, and systematic optimization set it
apart. However, the geographical limitation of the dataset and
the absence of dynamic variables such as driving conditions con-
strain the model’s generalization capacity. Future research can
overcome these limitations by integrating XAI methods, larger
datasets, and dynamic variables. This study strengthens the role
of machine learning in environmental sustainability policies by
emphasizing the high accuracy and applicability of CatBoost-
Regressor and introduces methodological innovation into the
literature. It is planned to prototype the developed model in
the form of a web service or mobile application and develop
real-time CO2 prediction software.
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