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Abstract. The paper presents approaches to levitation of permanent magnet levitation in a forced inhomogeneous magnetostatic 
field. For a permanent magnet ball, the magnetic field distribution is derived in analytical forms using the separation of variables 
separation method. Distribution is given by power functions and Legendre polynomials. The force (i.e. material force) is caused 
by  the  vertical  magnetization  of  a  permanent  magnet  and  reluctivity  change  at  the  magnet  boundary.  The  levitation  force  is 
evaluated  using  the  generalized  Maxwell  stress  tensor,  coenergy,  material  force  density,  and  equivalent  magnetic  dipole 
methods.  The  levitation  forces  are  presented  in  terms  of  both  magnetic  permeabilities.  The  stability  of  equilibrium  point  is 
investigated. The frequencies of free and damped oscillations are evaluated. 
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List of main symbols 
 

an, bn, cn, dn – constants for magnetic potentials,  
  b - damping force coefficient (of viscosity Stokes force), 

Br, B , Bφ ˗ magnetic flux density components, 
 g ˗ the acceleration of gravity e.g. 9.80665 m∙s–2, 
H0 ˗ forced magnetic field strength (constant item), 
h1 ˗ forced magnetic field strength gradient at z = 0, 
 

ui
 ˗ versor for uth coordinate, 

 m ˗ ball mass, 
N


˗ inhomogeneity force density (material force), 
  Pn(x) ˗ Legendre polynomials, 

Q


˗ magnetization force density (material force), 

 R ˗ radius of the ball, 
Vµ ˗ magnetic scalar potential, 
WC ˗ coenergy, 

M


  ˗ magnetization of the permanent magnet, 
  ˗ conductivity,  
δD(r – R) ˗ Dirac delta for singularity point r = R,  
δik ˗ Kronecker’s delta,  
0 ˗ dielectric permittivity of free space, 
ε ˗ dielectric permittivity, 
µ0 ˗ magnetic permeability of free space, 
µout ˗ magnetic permeability out of permanent magnet, 
µ ˗ magnetic permeability inside permanent magnet, 
0 ˗ reluctivity of free space, 
ν ˗ reluctivity, 
ρ ˗ radius/distance from z˗axis, 
σuw ˗ Maxwell stress tensor for u˗w axes. 

 
 
 
 

1. INTRODUCTION 
Levitation driven by an inhomogeneous magnetostatic field 
(e.g. a gradient field) is often applied in many technological 
solutions ( [1],  [2],  [3],  [4],  [5],  [6]). Nowadays, technological 
engineering and analysis often focus on magnetostatic 
levitation arising in the presence of magnets for maglev trains 
( [7]) and energy harvesting ( [8]). Contemporary medicine 
applies levitation for drug delivery and tissue cure ( [3]). 
Magnetic levitation allows for the simulation of conditions to 
advance tissue engineering for regenerative medicine ( [9]). 
The interest of both engineers and medics is focused on 
antibiotic treatment and some laboratory investigations ( [6]). 
There are often applied technologies that use the phenomenon 
of levitation in electromagnets, valves and separators ( [10], 
 [11]). 

The paper considers magnetostatic levitations driven by 
material forces acting on a permanent magnet ball. The 
material forces arise for two reasons: Firstly, there are 
magnetization forces. Secondly, of lower impact, there are 
inhomogeneous forces (Table I). 

It should be pointed out that magnetostatic forces can act 
either separately ( [11],  [12],  [13]) or in combination with other 
electromagnetic forces ( [4],  [14],  [15],  [16]). 

This paper investigates the magnetostatic levitation forces, 
the stability of equilibrium points, and the oscillations 
frequencies of a permanent magnet ball in a magnetostatic 
field. Analytical solutions are obtained by the method of 
separation of variable potential. The magnetic field 
distributions are given by power functions and Legendre 
polynomials. The analytical solutions reveal knowledge about 
the influence of magnetization and magnet parameters on the 
field distribution and magnetic forces.  

The magnetic forces are evaluated using the following five 
methods 

- Maxwell stress tensor generalized method ( [5],  [17]), 
- both magnetization and inhomogeneity material force 
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densities (Table I), 
- coenergy, 
- magnetization current, and 
- equivalent dipole (only for isotopic ball).  
The presented solutions can also be treated as default 

solutions to magnetostatic problems. Moreover, the analytical 
solution is immanently a benchmark test for numerical 
algorithms. The presented solution can also constitute starting 
points for numerical algorithms and be part of hybrid methods 
combining analytical and numerical procedures ( [1],  [18]).  

The novelty of the presented analyses and solutions consists 

in taking into account: 
- thorough force analyses by means of five evaluation 

methods, 
- material forces arising at the surface of permanent magnet 

imposed by not only magnetization but also by reluctivity 
change, 

- extension (compared to  [4],  [5]) of imposed fields class in 
the form of polynomials  (1), 

- analysis of the vertical levitations stability, and 
- evaluation of oscillations frequencies. 
 

TABLE I 
LEVITATIONS IN ELECTROMAGNETIC FIELD AND ACTING FORCES 

 

Electrostatic levitations Magnetostatic levitations Electromagnetic levitations 

charged objects 
or 

capacitances 

non-charged objects, polarized 
dielectrics or dielectric 

permittivity changes 

objects without magnets, 
magnetic permeability 
(reluctivity) changes 

objects with magnets conductive 
and 

nonmagnetic objects 

conductive  
and 

magnetic objects 

Coulomb forces 
material forces (of inhomogeneity 

and polarization) 
material forces 

(of inhomogeneity) 
material forces  

(of magnetization) 
Lorentz force 

Lorentz force 
and 

material forces 

Ef


Q  

)(grad2
1

ε uwwu εEEN 


 

)Δgrad(

)Δgrad(2
1

ε

uu

uu

PE

EPQ






 )(grad2
1

μ uwwu νBBN 


)Δgrad(

)Δ(grad2
1

μ

uu

uu

MB

MBQ




  

BJf


L  
 

μL Nf


  

 
2. MAGNETOSTATIC LEVITATION OF PERMANENT 
MAGNET 

Let us consider static magnetic field which component 
along z-axis is oriented upwards (F ig.1). 

 

 
 

ig.1 F ig.1. A permanent magnet ball in an imposed magnetostatic field 

 
The field wraps a homogeneous and magnetized ball, 

i.e. permanent magnet. Magnetization of a permanent magnet 
is vertical. In such a case magnet can be raised by the 
phenomena of both magnetization of the magnet and the 
inhomogeneity of the reluctivity at the magnet boundary ( [18], 
 [19]). 

The strength of the imposed magnetic field strength (far 
from the ball) along the z axis is given by the sum of N terms 
as follows 

(1) 





1

1
0

N

k

k
kz zhHH ,                            (1) 

where H0 and hk are real constants. For N > 2 the imposed 
field gradient can be spatially variable (for N = 2 field gradient 
along z axis is always constant). For non-currents problems, 
the magnetostatic field can be described by magnetic scalar 
potential Vµ ( [12],  [18]). The axially symmetric magnetostatic 
field is independent of the longitudinal angle φ, thus  

(2) ),(),,( μμ  rVrV  .                           (2) 

Hence, according to relation 

(3) )(grad μVH 


,                              (3) 

results 

(4) 0
sin

)(grad μ
μ 





 r

V
VH .         (4) 

For permanent magnet, the constitutional relation is given in 

the following form 

(5) 

.μ

)(μμ

mag0

magprop_H00

MμHμMHμ

MMHB







                    (5) 

The magnetization is the only anisotropic parameter of 

a permanent magnet (it is oriented along z axis – F ig.1). The 

magnetization of a permanent magnet is constant inside and 

outside the ball, thus 

(6) 0)(div M


.                               (6) 

Only the magnetization at the boundary of the permanent 

magnet changes.  
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Gauss’s law for magnetic field as follows 

(7) 0)(div)(divdiv  HμMμHμB


,             (7) 

and  (4) lead to partial differential equation for inside or 

outside region of the magnet as follows 

(8) 0sin
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It should be emphasized that for inhomogeneous 

divergence-free field  (7) there is an immanent radial 

component. This fact is considered in the following stability 

analysis (paragraph III).  

The variable separation method in the form of  

(9) )(P)(R),(μ  rrV                           (9) 

enables to separate  (8) into two independent equations 

(10) 0)()1(
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where n is an integer ( [10],  [20]). The solution of  (10) inside 

the ball takes the form of  

(12) 1)(  n
n

n
nn rdrcrR .                        (12) 

For positive integer n the functions nr  are increasing, but 
1nr  are decreasing. Hence, it has to be set dn = 0 to obtain 

a limited solution for the magnetic field strength inside the 

ball. Solutions of  (11) are well-known Legendre polynomials 

Pn(cos(θ)) ( [20]). The magnetic scalar potential solutions for n 

= 1, 2, …, N create a general solution in the form of a sum as 

follows 

(13) 



N

n
n

n
n rcrV

1
μ ))(cos(P),(  ,                  (13) 

which is a series developed to satisfy all boundary conditions.  

Namely, the continuity of the tangential magnetic field 

strength Hθ and the normal magnetic flux density Br on the 

surface of the ball constitute two conditions. The third 

condition for constants an, bn and cn results form the fact that 

the distribution of the magnetic field strength must be 

described by  (1) at a large distance from the permanent 

magnet ball. Hence, the constants cn (n = 1, 2, …, N) are as 

follows 

(14) 
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where constants  a1 = – H0,  an = – hn–1/n  (n = 2, …, N), and 

(15) 
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Outside the permanent magnet  (12) and  (13) lead to the 

solution 

(16) 



N

n
n

n
n

n
n rbrarV

1

1
outμ, ))(cos(P)(),(  .            (16) 

The magnetic scalar potential  (13) and  (16) lead to magnetic 
field strength (F ig.2) via the gradient formula  (3) and to the 
magnetic flux density via formula  (5), subsequently.  

 

0.05 0 0.05
1

0

1

2

3

0

2

Haxis z( )

k M

R R

z  
 
 

ig.2 F ig.2 Exemplary relative magnetic field strength distribution along z 
          axis (kµ = 1/(1+2µout/µ)) 

 
The magnetic field strength and flux density determine the 

force acting on the permanent magnet ball, i.e. magnetostatic 
levitation force that may lift the magnet. Magnetostatic forces 
physically acts at the boundary of a permanent magnet ball, 
because only there do both the changes in magnetization and 
isotropic reluctivity occur. These parameters change abruptly 
at the boundary (as the Heaviside step function). 

The magnetostatic force is evaluated using the following 
five methods. 

a) Maxwell stress tensor ( [4],  [5],  [10],  [18])  

(17) 2/)( BHiBHσ zzz


 ,                   (17) 

method leads to the force 

(18) zzz FFF ΔM  ,                      (18) 

where integral over the sphere surrounding the permanent 
magnet equals to 

(19)  
π

0

2
μ

out
Mz dsin)cos(π2  Re

μ

BB
F rz ,    (19) 

and ΔFz is volume integral of Maxwell stress tensor 
generalized method ( [5]). The additional summand ΔFz can be 
easily calculated using the following formula 

(20)   
π

0 0

2 dd)(sin)(π2Δ
R

rrz θrrθF   ,                 (19) 

and it vanishes if reluctivity is an isotropic parameter and the 
magnetization is constant ΔFz = 0 ( [4],  [5]). 

b) Coenergy method ( [10],  [18]) requires to calculate 
derivative of magnetic coenergy as follows 

(21) 
z

W
F z 


 C

C
.                                 (21) 

c) Physically, the magnetostatic levitation force is driven 
by: the magnetization force that acts on the magnets and the 
inhomogeneity force that acts where the reluctivity changes (at 
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the magnet boundary). Both forces constitute the so-called 
material force FNz. 

Mathematically, the material force ( [10],  [15],  [21]) 
describes the magnetization force density 

(22) )Δgrad()Δ(grad2
1

μ uuuu MBMBQ 


,             (22) 

and the inhomogeneity force density 

(23) )(grad2
1

μ uwwu νBBN 


,                       (23) 

where the summation of dummy indices (i.e. summation of 
repeated indices) is assumed. In the case under consideration, 
the reluctivity changes (in a stepwise manner) only at the 
boundary of the permanent magnet. The inhomogeneity force 
density is zero both inside and outside a homogeneous 
magnet. 

The magnetizing force FΔMz is integral over the region V 
(including the entire permanent magnet) as follows 

(24)  

π

0

2
μμMz dsincosπ2dcos  RQVQF r

V

r
.   (25) 

Subsequently, force density  (22) leads to relation 

(25) 

.dcos)}Δ(grad)Δ(grad{
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The step-way changes in magnetization at the boundary of 
a permanent magnet are given by the Heaviside step function 
ΔMu(r, R) = ΔMu 1(r – R) where u = r, . Hence, ΔM(r,R) = 
ΔM 1(r – R) and gradr(X ΔMu 1(r – R)) = ΔX ΔMu δ(r – R) 
where 

(26) .1d)(δ
0


R

rRr                               (25) 

Moreover, it is satisfied as follows 

(27)  
π

0

2
av dsincosπ2dcos)(grad  RMXVMX u

V

ur
,  (25) 

where Xav is the average value of X over the radial integration 
interval. Hence,  (25) can be rewritten as follows, 

(28) 
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where ΔMr = – ΔM cos,  ΔM = + ΔM sin. The radial flux 
density is continuous at the boundary, thus Br,av = Br. 
However, the tangential component of the magnetic flux 
density is not continuous, so its average value B,av = (B,in + 
B,out)/2. 

The inhomogeneity force appears at the magnet boundary 
and leads to the following force formula 

(29) .dsincos})()
11

{(π
π

0

22
out

2

out
N   

  RHμB
μ

F rz
  (29) 

The total force – the so-called material force – arising along z 
axis is equal to 

(30) zzz FFF NM   .                          (30) 

d) The magnetostatic force can be also calculated for an 
isotropic permanent magnet ball using an equivalent magnetic 
dipole ( [10],  [18]). Namely, the second term in equation  (16) 
has the same form as the field distant from a dipole with the 
equivalent moment, as follows 

(31) 1outeff1 4π bm  ,                           (31) 

and analogously for the higher terms of the dipole. The force 
acting on a dipole is given by the formula 

(32) 





1

1
outDz 4π

N

k
kk hbF  .                      (32) 

According to formula  (15) it follows that levitation force is 
a polynomial of ball radius odd powers, i.e. R3,…, R2N – 1 – 
F ig.3. 

 

ig.3 F ig.3. Magnetostatic levitation force for a permanent magnet ball 
evaluated by Maxwell stress tensor method (points), material force 
(dash-dot line) vs. ball radius  R = (15 ÷ 45) mm  (μrrel = 5,  µoutrel = 1,  
H0 = 7 kAꞏm–1,  h1 = 1.8 MAꞏm–2,  h2 = 0,  h3 = 0,  ΔMz = 500 kAꞏm–1) 

 
e) The method of equivalent magnetizing currents (in free 

space) bases on the basic formula ( [10],  [18],  [19]) 

(33) 
μmag )(curl JM


 ,                            (33) 

where according to  (5) is satisfied .μ mag0 MμM


  For 

a given magnetization in the spherical coordinate system, the 
material current density  (33) is as follows 

(34) )(δ)sin(
μ D

0
μ RrMiJ  




.               (34) 

Hence, the force given by the Lorentz force density  

(35) HJf


0μJ μ
μ

 ,                         (35) 

leads to the force acting on the magnet along z axis as follows 

(36)  
π

0

22
av,

0
Jμ dsin}cossin{

μ
π2 

 RHHMF rz
.  (36) 

The total force equals to 

(37) zzz FFF NJμ  .                          (37) 

The forces evaluated for magnetostatic levitation using the 
methods of: Maxwell stress tensor Fz, coenergy FCz, material 
force FΔMz + FNz, equivalent dipole FDz and equivalent 
magnetizing currents Fµz + FNz always lead to the same results 

(38) zzzzzzz FFFFFFF NJμDNMC   .       (38) 
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3. STABILITY. FREE AND DAMPED OSCILLATIONS 
If the magnetic force lifts the permanent magnet ball (Fz = 

mg), then let us virtually move it by a displacement Δz along 
the z axis (F ig.4). Thus, the axial component of the magnetic 
field strength in the ball changes as follows 

(39) ......)Δ( 1010  zhHzzhHH z
'      , (39) 

where the changed value of the constant item is equal to 

(40) zhHH Δ100 ' .                               (40) 

 

 
ig.4 F ig.4. Infinitesimal displacement Δz → 0 of the ball along the z axis 

 

 
ig.5 F ig.5. Magnetostatic levitation force for a permanent magnet ball 

evaluated by Maxwell stress tensor method (points), material force 
(dash-dot line) vs. magnet displacement Δz [mm]  (R = 25 mm,  µrel = 
5,  µoutrel = 1,  H0 = 7 kAꞏm–1,  h1 = 1.8 MAꞏm–2,  h2 = 0,  h3 = 0,  ΔMz = 
500 kAꞏm–1) 

The imposed field  (1) horizontal component is as follows 

(41) 
z

B
B z




  2
1 ,                           (41) 

and results simply from  (1),  (5) and Maxwell relation 

(42) 0)(div B


,                               (42) 

for an axially-symmetric field Bφ = 0.  
For the gradient field (N = 2) or when second term in  (1) 

dominates, relation  (41) takes the following form 

(43) 12
1 hB   .                              (43) 

As a consequence, the total force acting on the displaced 
stationary ( 0z ) magnet ball is as follows 

(44) zkFzF Δ)Δ( 0  ,                             (44) 

where the elastic k constant graphically represents the slope of 
the curve F(Δz) – F ig.5. If elastic constant is positive k > 0, 
then the levitation equilibrium point Δz = 0 is stable. 

Additionally, in F ig.6 and F ig.7 the levitation forces are 
presented vs. broad relative permeability changes 
± 50 %. The forces increase as each permeability rises and  
µ > µout. 

 

ig.6 F ig.6. Magnetostatic levitation force for permanent magnet ball 
evaluated by Maxwell stress tensor method (points), material force 
(dash-dot line) vs. magnet relative magnetic permeability  µ [-] 
(R = 25 mm,  μrrel = (0.5 ÷ 1.5),  µoutrel = 1,  H0 = 7 kAꞏm–1,  h1 = 
1.8 MAꞏm–2,  h2 = 0,  h3 = 0,  ΔMz = 500 kAꞏm–1) 

 

 

ig.7 F ig.7. Magnetostatic levitation force for permanent magnet ball 
evaluated by Maxwell stress tensor method (points), material force 
(dash-dot line) vs. outer region relative magnetic permeability  µ_out [-]  
(R = 25 mm,  μrrel = 5,  µoutrel = (2.5 ÷ 7.5),  H0 = 7 kAꞏm–1,  h1 = 
1.8 MAꞏm–2,  h2 = 0,  h3 = 0,  ΔMz = 500 kAꞏm–1) 

 
For checking, a global average relative error is defined as 

follows 

(45) 


 




n

i zi

ziizi

F

FFF

n
err

0 M

MNzM )(

1

1 .                (45) 

Exemplary, for forces in F ig.7 (n = 20 intervals per curve) the 
average relative error is equal to 1.6E–11. 
 

The movement of the ball leads to change in the magnetic 
field inside the ball (0 < r ≤ R). Hence, according to Faraday 
law, the electric field is the induced electric field Eind and 
satisfies the relation 

zΔ

z


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(46) zhrrE Δππ2 1
2

ind  .                      (46) 

If the permanent magnet conductivity is positive ( > 0), the 
induced currents of density γEind are subject to Lorentz forces 
of density as follows 

(47) zrhBEf Δ)sin(πΔ 22
1

2
4
1

indLz    ,       (47) 

hence the total Lorentz force along z axis equals to (b > 0) 

(48) zbzRhVfF
V

 ΔΔπdΔΔ γ
52

1
22

20
1

LzLz    .     (48) 

The equation of motion of a ball in a uniform gravitational 
field g takes the form 

(49) zbzkmgFzm   γ0 ΔΔ ,         (49) 

and is decisive for the stability of equilibrium point ( [3],  [13], 
 [22]). To the right-hand side of  (49) can be also incorporated 
some viscosity and damping forces provided by an outer 
medium. The eddy currents inside the ball are immanently 
related to the power losses as follows 

(50)   
π

0 0

22
ind

2
indind ddsinπ2d

R

V

rrEVEp  ,      (50) 

and taking into account  (46) one finally obtains  

(51) 
52

15
1

ind )(π RzGp   .                   (51) 

Moreover,  (49) indicates the oscillation frequency of value 

(52) 22
0

osc
osc π2

1

π2



f ,                     (52) 

where the free oscillation frequency is equal to 

(53) mkf /
π2

1

π2
0

0 
 ,                        (53) 

and the damping coefficient 

(54) 52
1

2
2

γ

40

π

2
Rh

mm

b
  .                     (54) 

The condition of equilibrium stability requires two 
inequalities F0 = ΔF(Δz = 0) > 0 and k > 0. According to  (32) 
the stability of magnet levitation (F ig.8) is guaranteed in the 
gradient field (N = 2) when it is satisfied 

(55) 011 hb .                                   (55) 

This condition can be easily derived by physical reasoning. 
There are two types of material forces acting, i.e. the 
magnetization (ΔMz ≠ 0) and inhomogeneity (µ ≠ µout). If µ > 
µout, then inhomogeneity forces act outward on the boundary 
sphere of the ball (F ig.8).  

If the permeability of the magnet ball is greater than the 
magnetic permeability of the surrounding region, i.e. µ > µout, 
and the magnitudes of the magnetic field vectors are grater in 
the upper hemisphere than in the lower hemisphere (imposed 
gradient field h1 > 0), then the total inhomogeneity force acts 
upwards (towards the axis z) (if µ < µout this force acts against 
z axis). Subsequently, the magnetization forces act on the 
boundary sphere and lift the ball for ΔMz > 0 (b1 > 0), which 
leads to condition  (55). 

The same can be concluded if both h1 < 0 and b1 < 0. 
 
If the magnetostatic levitation force along z axis exceeds the 

gravitational force mg (regarding buoyant force of outer 

medium), then the magnet can be lifted and its equilibrium is 
stable. 
 

 
 

ig.8 F ig.8. Material forces acting on permanent magnet ball for µ > µout. 
 

4. CONCLUSIONS 
The permanent magnet is placed in an inhomogeneous 

magnetostatic field, e.g. gradient field  (1). The magnetization 
of the magnet is vertical  (5). The analytical solutions of the 
problem of levitation of a permanent magnet ball has been 
presented  (16). 

The distribution of magnetic fields for the levitation 
problem was obtained by the method of separation of variables 
in the spherical coordinate system  (9).  

The levitation was evaluated using five methods: Maxwell 
stress tensor, coenergy, material force density (i.e. 
magnetization and inhomogeneity forces), magnetizing 
currents and equivalent dipole  (17) -  (32). All five methods 
give the same results  (45). 

The obtained solution is valid in a wide range of 
parameters, e.g. magnetic permeability of the magnet and its 
surrounding, radius, distribution of the imposed field, which is 
not easy to achieve using numerical methods. Hence, the 
presented analytical solutions can be used to test numerical 
algorithms.  

The presented analyses led to the following conclusions: 
- analytical solutions of the field and force distributions are 

rapid tools for design and calculations, 
- the permanent magnet movement, stability (if levitating) 

and oscillation frequencies are predicted by the model 
developed for a wide range of parameters (magnetic 
permeabilities, radius and imposed field shape – 
i.e. polynomial coefficients),  

- the obtained analytical solutions can be used as 
benchmark tasks for numerical algorithms, and 
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- they can be incorporated into hybrid analytical-numerical 
algorithms for magnetic field analysis. 

Furthers investigation can be focused on levitation of 
permanent magnets of different shapes. 
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