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Abstract. Currently, high-performance electrical drives with advanced control schemes are presented in the literature. Many of them will
not be used in the industry because of implementation issues or difficulties in the optimal selection of control parameters. In this paper, two
different Model Predictive Control (MPC) schemes are developed for PMSM drive and compared in experimental tests both in time and fre-
quency domains. To provide high-performance operation of the drive, a complex cost function is constructed, and a metaheuristic optimization
algorithm is utilized for the automatic selection of weighting factors. Developed control schemes were implemented in a microprocessor-based
prototype drive and examined in terms of robustness for three different moments of inertia. Trajectory tracking ability for step and ramp
reference angular velocity, as well as load torque compensation, have also been investigated. The study makes an important contribution as a
reliable and robust model predictive control scheme for PMSM drive with potential for industrial applications.
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1. INTRODUCTION

Modern electrical drives must provide several expectations,
such as superior trajectory tracking, disturbance compen-
sation, robustness against parameter uncertainties, and en-
ergy efficiency. To meet the above-mentioned require-
ments, high-performance permanent magnet synchronous mo-
tors (PMSMs) and novel, advanced control schemes are pro-
posed [1]. One of the most promising and developing ap-
proaches is model predictive control (MPC) [2]. It is caused
by several advantages of MPC, such as intuitive concept, the
inclusion of constraints and nonlinearities, and relatively sim-
ple implementation of the resulting controller [3]. On the other
hand, the control performance depends on the model quality,
and computational complexity is higher compared to a classic
control scheme [4]. The robustness againts parameter changes
is also a challenge [2]. MPC has recently been applied to elec-
tromobility, unmanned aerial vehicles, ship control, and blade
pitch control of wind turbines [5, 6, 7]. In [5], MPC is used
to adjust torque for wheel speed relies on steering wheel po-
sition, accelerator pedal, and car dynamics parameter. In this
approach, energy losses and tire longitudinal slip are applied in
the cost function. Unfortunately, the computational complexity
of this approach is large. In [6], an inner control loop respon-
sible for attitude control is based on the MPC approach. In the
outer position control loop, an optimal backstepping controller
was implemented. The latter control loop requires coefficients
to be tuned. Therefore, Genetic Algorithm has been used as
a metaheuristic tool to solve this problem. As shown in [6],
hybrid control structures with MPC in the inner loop enhance
control performance compared to classic approaches, but se-
lecting a complex outer controller requires expert knowledge.
In [7], MPC is used to adjust the blade pitch of a wind turbine,
while a PI-based torque controller operates in parallel. The
MPC structure also includes a preview filter and a state con-
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structor, which operates in a feedback loop with MPC. The au-
thors reported satisfactory performance, but the computational
burden is high, and no sensitivity analysis was conducted

MPC is still being developed, and two main directions can
be identified. In the finite control set (FCS) approach, where
the number of possible solutions is limited, further optimiza-
tion of the search procedure is desired. In the classical FCS
method applied for the power converter or electrical drive con-
trol, full voltage vectors are taken [2, 3, 4]. This means that
power transistors are opened for the whole sampling time, and
a space vector modulator (SVM) does not need to be used.
The number of vectors depends on the inverter’s topology. For
a most popular 2-level voltage source inverter (VSI), 8 vec-
tors are available, but the computational complexity increases
with the increase of the prediction horizon. To overcome this
disadvantage, an optimization of the search procedure is pro-
posed. For example, in [8], the selection of the voltage sector
is based on deadbeat control theory. This approach simplifies
FCS but introduces some limitations, such as higher depen-
dency on the model, which increases sensitivity to parameters
mismatch, for example, inductances or inertia. This problem
may cause lower performance. In the Continuous Control Set
(CCS) MPC, a better solution can be found since the whole
space is searched. Several optimization algorithms are used in
this approach, for example, quadratic programming (QP) [9].
In this method, it is possible to introduce constraints in a sim-
ple way. On the other hand, the computational burden of the
proposed is 24.8 µs, and there is no information about the outer
controller used. In [10], it was shown that FCS MPC could
give a similar performance and lower complexity than CCS
MPC with the QP algorithm. In this solution, a cascade struc-
ture with both angular velocity and torque MPC controllers is
proposed for the induction motor. It was found that the FCS
provides a better torque capability at high-speed levels com-
pared to CCS. Moreover, the outer loop performance is related
to the inner loop method. Other optimization approaches were
presented in [11]. In this approach, several methods and MPC

1

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,

but has not been fully edited. Content may change prior to final publication.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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structures are compared in terms of computational complexity.
Sequential MPC is used, and it should be treated as a cascade
approach that affects the system’s dynamics. In this concept,
establishing priority control for the investigated model is es-
sential. A relevant example is a wind turbine application pre-
sented in [12]. In that study, MPC was applied to both the mo-
tor and the inverter, with the cost function in one case based
on voltage and in the other on switching frequency. Despite
the structural diversity of MPC, the most common approach
is referred to as Simplified Model-Based MPC in [11]. In the
literature, MPC structures typically involve current prediction,
while speed prediction is often omitted, with control handled
by a PI regulator [13, 14]. However, these studies provide no
justification for the use of PI control. The focus is primarily on
current performance, likely leading to the exclusion of speed
considerations—an issue in real applications, such as in [14],
where the motor operates as a wind turbine. An alternative
is Full MPC, which, unlike the simplified version, includes
speed prediction [15]. Here, the authors propose a speed pre-
diction method based on a third-order Taylor series expansion
and present robustness test results where friction was varied.
However, they do not explain why direct speed MPC was cho-
sen over model predictive current control with a PI speed reg-
ulator.

A key element of MPC is the cost function, which defines
the influence of various factors on regulation. Different cost
function designs exist in the literature. A common approach
uses dq-axis current, comparing measured and predicted val-
ues [16]. Its advantage is simple measurement and prediction,
but it lacks direct torque and flux control. To address this, some
researchers use torque and flux instead [17], though this in-
creases computational complexity and estimation challenges.
One benefit of cost functions is their flexibility in incorporat-
ing additional components. For example, the Mean Square Er-
ror (MSE) criterion [18] improves tracking accuracy and is re-
ferred to as a target-oriented method. Finite Control Set MPC
eliminates the need for a modulator, reducing computational
complexity. However, maintaining a constant switching fre-
quency requires alternative methods. Researchers often add
a term to the cost function to account for transistor switch-
ing [19]. In [19], three cost function designs were compared,
showing that precise formulations lower switching frequency
while maintaining accuracy. Cost functions for current control
are more complex than those for speed control, where the cost
function simply compares the reference and predicted values.
The main difference in speed control methods lies in speed
prediction, while in current-based cost functions, only the ref-
erence value for q-axis current is adjusted.

Many studies on MPC focus on robustness to inductance
variations, while the impact of inertia changes and reference
speed frequency variations is often overlooked [20]. This
omission is primarily due to technical challenges, such as the
difficulty of modifying test benches for such studies. While
real-world applications like robots or CNC machines could
provide better insights, they are costly. Additionally, tradi-
tional controllers are often combined with adaptive methods
like Recursive Least Squares (RLS) or the Kalman filter, re-

ducing the need for direct inertia robustness analysis. Some
researchers address robustness issues using RLS adaptation
with classical input-output-error data, fuzzy logic, or multi-
layer neural networks [21, 22]. In [21], a fuzzy logic–neural
network hybrid optimizes the cost function, improving rise
time. In [22], adaptive RLS-based systems were compared
with classical PI regulators across various models, showing
enhanced robustness. Robustness is typically evaluated via
time response; however, this study proposes Bode character-
istic analysis. Frequency response was examined under two
conditions: a sinusoidal reference signal and a sinusoidal load
torque at zero speed. While this method provides high robust-
ness, it significantly increases computational complexity. In
applications with rapid and substantial variations, selecting a
more resilient controller becomes essential.

In advanced control systems, the cost function is often sig-
nificantly extended, for example, in multi-level inverters and
advanced battery management systems [23, 24]. In such cases,
applying weighting factors is necessary. However, tuning
them can be challenging, making this an ideal area for nature-
inspired optimization algorithms. MPC commonly employs
Particle Swarm Optimization (PSO) [25], and Genetic Algo-
rithms (GA) [26] to address this issue. The latter demonstrates
how weighting factors of additional cost function compo-
nents—such as switching frequency and DC grid ripple—can
be optimized using a genetic algorithm. To minimize ripple,
the authors measured the Total Harmonic Distortion (THD) in-
dicator and included it in the GA cost function. In [25], PSO
is used to tune flux and switching frequency weighting fac-
tors. The sequential MPC method discussed earlier, does not
require weighting factors, as priorities are determined by the
sequential structure. Meanwhile, other control methods, such
as SFC, CCS, or Multiresonant Controllers, utilize different
optimization techniques, including the Artificial Bee Colony
(ABC) algorithm [27], a grey wolf optimizer (GWO), and a
PSO [28].

Recent advancements in Model Predictive Control (MPC)
for electric drives have emphasized the integration of high-
performance hardware platforms to meet real-time computa-
tional demands. Studies have demonstrated the efficacy of
Field-Programmable Gate Arrays (FPGAs) and high-speed
Digital Signal Processors (DSPs) in executing complex MPC
algorithms with reduced latency, catering to applications re-
quiring high control frequencies [29]. For instance, the uti-
lization of OPAL-RT systems has been validated for imple-
menting robust MPC strategies in Permanent Magnet Syn-
chronous Motors (PMSMs), ensuring accurate real-time em-
ulation and effective handling of load variations [30]. Addi-
tionally, simulation environments like MATLAB/Simulink and
PLECS have been employed for the development and testing
of MPC schemes, facilitating the transition from theoretical
models to practical applications [31]. These platforms collec-
tively contribute to the advancement of MPC in electric drive
systems by providing reliable and efficient means for real-time
control implementation.

Summary literature overview, the majority of papers about
MPC structure focused on the current control loop. If authors
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decide to make a robustness analysis, they usually investigate
inductance or resistance variations. Research usually are based
on time responses, Fast Fourier Transformation, and the THD
indicator. The frequency response is skipped, while the com-
parison includes different MPC approaches. Therefore, in this
paper, the authors decided to investigate PI-MPCC and DS-
MPC in terms of the moment of inertia and reference speed
frequency variations. To the best of the author’s knowledge,
ABC was not used for MPC weighting factors tuning, so in this
paper, it is presented. That decision was made because ABC
has shown promising results in other optimization contexts.
ABC mimics the foraging behavior of honeybees to search for
optimal solutions in high-dimensional spaces, making it well-
suited for the complex optimization required in MPC tuning.
MPC structure with optimally selected weighting factors was
chosen.

This paper is divided into six sections. In Section 2, a math-
ematical model of PMSM is described. Section 3 presents the
proposed DS-MPC control method, while Section 4 focuses
on the ABC tuning algorithm. Experimental results for the in-
vestigated method and reference PI-MPCC-based solution are
shown in Section 5. Here, robustness analysis in the time and
frequency domain is included. The conclusion is presented in
section 6.

2. MODEL OF PMSM

Since MPC requires a model of the plant to calculate future
states for optimization tasks, electrical and mechanical differ-
ential formulas describing considered machines need to be in-
troduced. These are as follows:

dψd(t)
dt

= ud(t)−Rid(t)+ pω(t)ψq(t) (1)

dψq(t)
dt

= uq(t)−Riq(t)− pω(t)ψd(t) (2)

J
dω(t)

dt
= Te(t)−Bω(t)− T̂L(t)−Fcsign

(
ω(t)

)
(3)

where: ud(t), uq(t), id(t), iq(t) - voltage, current components
in the direct and quadrature axis, R - stator resistance, ψ f -
magnet flux, p - number of pole pairs, ω(t) - rotational ve-
locity of the rotor, J - moment of inertia, B - viscous friction
coefficient, T̂L(t) - estimated load torque, Fc - static friction co-
efficient. In order to develop current control, it is necessary to
substitute flux with respective currents:

ψd(t) = Ld id(t)+ψ f (4)

ψq(t) = Lqiq(t) (5)

Finally, the formula describing the electromagnetic torque
should be introduced:

Te =
3
2

p
[
ψ f iq(t)+

(
Lq −Ld

)
id(t)iq(t)

]
(6)

Since the proposed control scheme will be developed for
PMSM with surface-mounted permanent magnets, the follow-
ing simplification can be made: Ls = Lq = Ld . Finally, the

model of the PMSM described in the continuous time domain
is as follows:

did(t)
dt

=
Kp

Ls
ud(t)−

R
Ls

id(t)+ pω(t)iq(t) (7)

diq(t)
dt

=
Kp

Ls
uq(t)−

R
Ls

iq(t)−
pψ f

Ls
ω(t) (8)

J
dω(t)

dt
=

3
2

pψ f iq(t)−Bω(t)− T̂L(t)−Fcsign
(

ω(t)
)

(9)

From (7) – (8), it can be seen that non-linearity and cross-
coupling exist. Such phenomena are problematic for FOC
with linear PID-based controllers, and these require a decou-
pling method, as shown in [1]. In the case of MPC structure,
the above-mentioned drawback is not a key since this control
scheme can be directly developed for a non-linear model.

Finally, a discrete form of the PMSM model should be de-
termined. After the application of the Tustin method, the fol-
lowing model is obtained:

id(k+1) = x1ud(k)+ x2id(k)+ x3ω(k)iq(k) (10)

iq(k+1) = x1uq(k)+ x2iq(k)− x3ω(k)id(k)− x4ω(k) (11)

with:

x1 =
Ts

Ls
, x2 =

(
1−R

Ts

Ls

)
, x3 = pTs, x4 = pψ f

Ts

Ls

where: Ts - the discrete sample time.

ω(k+1) = (1− TsB
J

)ω(k)+
Ts

J

(
Kt iq(k)− T̂l(k)

−Fcsign
(

ω(k)
)) (12)

3. MODEL PREDICTIVE CONTROL OF PMSM

As described before, MPC is a flexible control structure that
allows for the use of different approaches to voltage vector se-
lection. In the literature, the most popular methods are FCS,
CCS, or Deadbeat Control (DBC) [8]. Due to the low com-
plexity, it was decided to use FCS in this paper. In its basic
form, FCS utilizes all possible states of the VSI’s power tran-
sistors. In this approach, a space vector modulator (SVM) is
not necessary, and selected transistors are opened for the entire
time period (i.e., the sampling time). The lack of SVM was
somewhat important in the past due to the low computational
abilities of the microprocessors. Currently, SVM is applied to
mitigate current ripples, noise, and vibrations of the motor.

3.1. Current prediction
In the MPC scheme, the prediction of future plant states plays
an essential role. The simplest way to obtain predicted state
variables is to discretize the model containing differential or-
dinary equations. For the considered PMSM drive, discrete
equations were presented in (10) and (11). However, it is worth
noting that the MPC scheme’s computational complexity is
high, so measurement delays may appear. In order to overcome
this flaw, the current is usually predicted for two-time samples
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ahead. During this prediction, it is assumed that the speed and
voltage set remain constant, resulting following formulas:

id(k+2) = x1ud(k+1)+ x2id(k+1)
+x3ω(k)iq(k+1)

(13)

iq(k+2) = x1uq(k+1)+ x2iq(k+1)
−x3ω(k)id(k+1)− x4ω(k)

(14)

3.2. Speed prediction
As stated before, the direct speed FCS-MPC is proposed in
this approach. Due to this, it is necessary to obtain the future
value of the angular speed. Similar to the current prediction
described before, the simplest way to predict the speed is to
discretize (12). Here, it was decided to adapt the 3rd Taylor
series discretization proposed in [15]:

ω(k+2) = y1id(k+1)ω(k)+ y2iq(k+1)+y3ω(k)+

y4T̂L(k)+ y5uq(k+1)
(15)

with:

y1 =
−3ψ f T 2

s p2

4J
, y2 =

3ψ f Ts p
2J

−3T 2
s ψ f p

3B
2J2 +

R
2JLs

2
,

y3 = 1− 3TsB
J

+T 2
s

B2

J2 −
3p2ψ2

f
2JLs

2
,

y4 =
T 2

s B
2J2 − Ts

J
, y5 =

3ψ f T 2
s p

4JLs

3.3. Direct speed control structure
In direct speed MPC, it is necessary to calculate the reference
values of currents. Since a surface-mounted permanent mag-
net machine is considered here, it’s reasonable to implement a
control strategy with zero d-axis current. In the case of q-axis
current, the formula based on (12) was used [15]:

iqre f =
Bωre f (k)

Kt
+

T̂L(k)
Kt

+
Fc

Kt
sign(ω(k))+K f f (16)

with:

K f f = Kg
ωre f (k)−ωre f (k−1)

Ts

One can see that the above-mentioned formula refers to iqre f
in steady-state because it has to compensate for all kinds of
disturbances (e.g., friction) in the system. Since steady-state
is considered, the left side of (9) is omitted, and the moment
of inertia does not affect iqre f . Finally, to improve dynamics
properties for a higher order reference signal (e.g., ramp) and
to compensate back-emf, a feedforward path with gain coeffi-
cient Kg and ωre f was introduced.

In the next step, a cost function must be constructed. Since
it will be optimized to provide a high-performance drive oper-
ation, it should contain components related to the most impor-
tant requirements, such as [32] (i) steady-state error-free angu-
lar velocity and q-axis current control, (ii) zero d-axis current

control strategy, (iii) low level of the current and the velocity
ripples and, (iv) current limitation in transient. Therefore, the
following formula was proposed:

fcost =Wwcω +Wdcid +Wqciq +Wlimit (17)

where:

cω =
(

ωre f −ω(k+2)
)2

(18)

cid =
(

id(k+2)
)2

(19)

ciq =
(

iqre f − iq(k+2)
)2

(20)

Wlimit =

{
∞ for |is(k+1)| ≥ iN
0 for |is(k+1)|< iN

(21)

where: Ww, Wd , Wq - weighting coefficients, is - stator current,
iN - rated stator current. One can see that several weighting
coefficients are introduced in (17). Their values will be au-
tomatically selected using a metaheuristic optimization algo-
rithm. The procedure will be described in the following sec-
tion. The scheme of the described control algorithm is pre-
sented in Fig. 2 (a).

N

END

Y

Stop crit.
reached?

START

Initialization phase

Global searching phase

Local searching phase

Fig. 1. General flowchart of ABC optimization algorithm

4. TUNING OF WEIGHTING FACTORS

From (21), it can be seen that values of weighting coeffi-
cients need to be chosen to provide high-performance drive
behavior. As mentioned before, the considered task can be ac-
complished using a metaheuristic optimization algorithm. As
shown in [33], such algorithms are used due to better conver-
gence and robustness against local minima compared to the
exact optimization methods. Recently, several metaheuristic
optimization algorithms (e.g., PSO, GA) have been used in
electrical drive applications [25, 26]. In this paper, it was de-
cided to apply ABC optimization algorithm. It was selected
because of the confirmed convergence and repeatability of re-
sults obtained in similar tasks [27]. The general principle of
ABC operation is presented in Fig. 1. It is worth noting that in
all phases of the optimization, the cost function is minimized.
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Fig. 2. Block diagrams of considered control structures with MPC - model predictive control, PI - speed controller, SVM - space vector modulator:
(a) DS-FCS-MPC, (b) PI-FCS-MPCC

Here, it was decided to develop the cost function based on the
ISE performance index, and this is as follows:

fABC = αISEω +β ISEq + γISEd (22)

with:

ISEω =
N

∑
g=0

(
ωre f (g)−ω(g)

)2
Ts,

ISEd =
N

∑
g=0

id(g)2Ts,

ISEq =
N

∑
g=1

(
iq(g)− iq(g−1)

)2

Ts

where: α = 1, β = 0.01, γ = 0.05 - manually selected weight-
ing factors. After analysis of (17) and (22), one can see that
the same number of coefficients (three in this particular case)
must chosen. On the other hand, the manual selection of ABC
weighting factors seems to be simpler since each of them in-
dependently influences the measured currents and speed in the
optimization process. The procedure is more intuitive since
the user only needs to define values that determine the indi-
vidual approximate impact of currents and speed on the opti-
mization outcome. Such an approach is more universal since
it can be applied to tuning more complex cost functions and
hybrid regulators, which will be presented in the later part of
this paper. The tuning process was carried out using a Mat-
lab environment, but data was collected from the experimental
setup described in this paper. The control parameters of ABC
are listed in Table 1. As a stop criterion indicated in Fig. 1, the
maximum number of iterations equal to 10 was set.

5. EXPERIMENTAL RESULTS

5.1. Laboratory setup

The developed control scheme was investigated on the labora-
tory stand with two PMSM drives. The main drive is fed by a
two-level VSI with SiC power devices. The control algorithm

Table 1. The control parameters of ABC

Parameter Value
Colony size 30

Food number 15
Modification rate 0.8

Scout production period 45
Control parameter 45

Lower bound of all parameters 1.0 ·10−3

Upper bounds of Wd and Wq 15.0 ·103

Upper bounds of Ww 40.0 ·105

Table 2. Selected parameters of PMSM drive

Parameter Symbol Value & Unit
Rated angular velocity ωN 300 rad/s

Rated current iN 5 A
Minimal moment of inertia Jmin 7.2 ·10−3 kgm2

Nominal moment of inertia Jnom 17.7 ·10−3 kgm2

Maximal moment of inertia Jmax 31.3 ·10−3 kgm2

Viscous friction B 1.4 ·10−2 Nms/rad
Static friction Fc 30.4 ·10−2 Nms/rad

Torque constant Kt 1.14 Nm/A
Switching frequency fs 10 kHz

is implemented in an ARM microcontroller with a Cortex 4
core from STMicroelectronics. The second drive is controlled
by commercial VSI, and it is used to generate load torque.
Both motors are connected using a clutch and a mechatronic
system that allows for changes in the moment of inertia. The
laboratory setup is presented in Fig. 3, and the parameters of
the main PMSM drive are defined in Table 2. Current and volt-
age measurements were performed using LEM LTS15NP and
LV25P transducers, respectively. Position measurement was
ensured by a Stick Stegmann SRS50 absolute encoder. The
load PMSM drive was controlled via a Kollmorgen AKD drive.

The implementation of MPC algorithm is presented in
Alg. 1. At the beginning of each iteration, auxiliary vari-
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Fig. 3. The experimental setup with: (a) simplified electrical scheme, (b) power supplies and drive, (c) machinery unit

Algorithm 1 MPC implementation algorithm

f min
cost = ∞

uopt
q = 0

uopt
d = 0

Tcnt = Tcnt +Ts
ωmax = 10 ▷ maximal reference speed
if αTcnt is greater than ωmax then

ωre f = ωmax
else

ωre f = αTcnt
end if
Calculation of id(k+ 1) and iq(k+ 1) for delay compensa-
tion, as well as other variables such as load torque and ref-
erence current.
m = 0
for m smaller than 7 do

calculation id(k+2), iq(k+2) and ω(k+2)
from (13)-(15), as well as fcost from (17) or (23)
if fcost is smaller than f min

cost then
f min
cost = fcost

uopt
q = uq(m)

uopt
d = ud(m)

end if
m = m+1

end for
send uopt

q and uopt
d to invert Clarke-Park transformation and

SVM.

Table 3. Value of weighting factors for DS-FCS-MPC and PI-FCS-
MPCC structure

Symbol of coefficient DS-FCS-MPC PI-FCS-MPCC
KP - 1.4866
KI - 87.7740
Wω 1516200 -
Wq 3149.8 121380
Wd 13136.9 65552

ables—such as the minimum value for the optimization loop
and the initial cost function value—are initialized. Next, refer-
ence speed values are determined based on the selected slope,
using an appropriate structure. In the following step, the can-
didate voltage vectors are generated. This procedure relies on
calculating the dq-axis voltages from constant αβ -axis volt-
ages and the rotor angle, using the Clarke–Park transforma-
tion. The resulting set of voltage candidates is then processed
in an optimization loop, where the values of ud and uq yield-
ing the lowest cost function value are stored. Upon completion
of the loop, the optimal voltages are passed to the Space Vec-
tor Modulation (SVM) module, which computes the transistor
switching times. Additionally, it is worth noting that measure-
ments are triggered by an interrupt on the microcontroller at the
midpoint of the PWM cycle. This ensures acquisition of aver-
aged current values and mitigates ripple effects caused by the
structure of the VSI and the switching frequency. Immediately
after the measurements are completed, the control algorithm is
executed.

As described before, the ABC optimization algorithm has
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been used to optimal tune coefficients of the cost function (17),
and obtained values are listed in Table 3. For the sake of
comparison, the proposed control scheme was confronted with
a reference solution, namely a cascade structure with FCS-
MPCC inner current control loop and PI-based angular veloc-
ity controller. This is shown in Fig. 2 (b). As in the case of the
developed direct speed MPC, a similar cost function has been
used:

fcost =Wdcid +Wqciq +Wlimit (23)

Also here, coefficients were selected using the ABC-based op-
timization method. Its values, along with automatically se-
lected PI controller coefficients, are listed in the last column
in Table 3.

5.2. Time responses
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Fig. 4. Time responses for speed reference value set to 10 rad/s and
different moments of inertia: (a) DS-FCS-MPC, (b) PI-FCS-MPCC

This subsection presents drive responses for step and ramp
reference signals. In the first case, experiments were con-
ducted for ωre f = 10 rad/s, and Tl = 2 Nm. The load torque
was imposed at t = 0.35 s and removed at t = 0.6 s. Firstly,
it is important to consider Fig. 4, which shows how DS-FCS-
MPC and PI-FCS-MPCC work for different moments of iner-
tia. From Fig. 4 (b), it can be seen that the overshoot exists for

Table 4. Selected parameters of time responses

parameter
DS-FCS-MPC PI-FCS-MPCC

Jmin Jnom Jmax Jmin Jnom Jmax

tr [s] 42.2 42.4 59.4 22.2 34.8 53.8
tst [s] 142.7 97.5 152.6 146.5 81.6 197.5

Mload [rad/s] 1.012 0.845 0.832 0.845 0.619 0.624

all moments of inertia. Such behavior results in a better load
torque compensation, but it is also responsible for oscillations
observed in ωm and iq, resulting in longer transient. In the sec-
ond row in Fig. 4, enlarged parts of angular speed for PMSM
with imposed load torque are presented. From the obtained
results, it can be seen that the DS-FCS-MPC control structure
gives more predictable responses for different moments of in-
ertia. The above-described observation is confirmed by the pa-
rameters listed in Table 4. The rise time tr is lower for PI-FCS-
MPCC than for DS-FCS-MPC, independently of the moment
of inertia. On the other hand, tr values change less between dif-
ferent moments of inertia for DS-FCS-MPC. The steady-state
time tst is shorter for PI-FCS-MPCC than for DS-FCS-MPC in
the case of Jnom, but for a changed moment of inertia, the tst of
PI-FCS-MPCC is longer than that of the opposite method. DS-
FCS-MPC exhibits lower tst variation for different moments of
inertia, similar to tr. The overshoot for load torque Mload is
definitely lower for the scheme with a PI controller than for di-
rect speed control. Summarizing the above analysis, PI-FCS-
MPCC has a higher potential for faster and more rapid load
torque compensation, while DS-FCS-MPC has greater robust-
ness to moment of inertia variations.

Fig. 5 presents a response test system for a ramp input sig-
nal. In order to achieve perfect tracking of the reference signal
in transient, it was necessary to add feedforward gain in iqre f
signal (16)) and in PI structure. The value of Kg was deter-
mined experimentally to obtain the best possible performance
of the drive and finally set to 0.02.

To begin with, one should look at signals for Jnom. It is pos-
sible to notice a great tracking trajectory for both controllers.
Differences appear for mismatch moment of inertia. It can
be observed that DS-FCS-MPC is less sensitive to changes in
motor parameters. This is particularly evident for Jmax. At
this point, it is worth noting that both controllers didn’t pro-
vide ideal trajectory tracking without feedforward. Looking at
Fig. 5 can be noticed that problems appear for the ramp with a
small slope. Therefore, it was decided to carry out frequency
research. To provide a precise analysis, robustness indicators
were calculated for transient with α equal to 150, and respec-
tive results are presented in the following subsection.

5.3. Robustness analysis

To further investigate the robustness of the developed predic-
tive control schemes, the performance indicators have been in-
troduced. These are based on the Mean Square Error (MSE).
In the first step, MSE for the angular velocity speed was calcu-
lated for the considered set of the moment of inertia.
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Fig. 5. PMSM drive responses for ramp acceleration with different
slope angles and three moments of inertia: (a) DS-FCS-MPC, (b) PI-
FCS-MPCC

MSE j =
1
N

N

∑
g=kTs

(p j
g − p

jre f
g )2 (24)

where: N - number of samples, p j
g - value of measured param-

eters, j = is,ω in g-th sample time, p
jre f
g - value of respective

reference signal, k = 1,2, ...N. In the next step, percentage er-
rors in relation to nominal value were calculated.

δ
j

inc =
MSEmax

j −MSEnom
j

MSEnom
j

·100 (25)

δ
j

dec =
MSEmin

j −MSEnom
j

MSEnom
j

·100 (26)

where: MSEmin
ω , MSEnom

ω , MSEmax
ω - the mean square errors

calculated for j signal collected during the experiments with
decreased (Jmin), nominal (Jnom), and increased (Jmax) moment
of inertia. The above-described formulas were applied to in-
vestigate the ripples of the phase current and the angular veloc-
ity. The robustness indicator was calculated for phase current
ripple as an example of energetic robustness. Based on values
listed in Table 5, it can be concluded PI-FCS-MPCC does not
significantly increase or decrease current ripples.

Table 6 presents values for both considered control schemes
in three sectors: A - at transient for a step signal, B - at steady-
state with Tl , and C - at transient for a ramp signal. Sectors
A and B are indicated in Fig. 4 while sector C is indicated
in Fig. 5. Indicators δ ω

inc and δ ω
dec listed in Table 6 refer to

Table 5. Robustness indicator δ
is
dec and δ

is
inc for phase current

DS-FCS-MPC PI-FCS-MPCC
δ

is
dec δ

is
inc δ

is
dec δ

is
inc

-8.72 5.7697 -1.38 0.087

Table 6. Robustness indicators δ ω
dec and δ ω

inc for angular velocity

sector analysed
DS-FCS-MPC PI-FCS-MPCC

δ ω
dec [%] δ ω

inc[%] δ ω
dec [%] δ ω

inc [%]
sector A 39.54 53.05 42.16 52.16
sector B 0.11 0.09 0.01 0.36
sector C 720.37 586.17 242.36 698.96

increased and decreased moments of inertia. From Fig. 4, it
can be seen that DS-FCS-MPC exhibits higher robustness for a
lower moment of inertia than PI-FCS-MPCC at transient. Such
a behavior is indicated by δ ω

dec value. In the case of δ ω
inc, the

values are similar for both schemes. Conversely, for steady-
state conditions with Tl , the conclusions are reversed. The
last row presents percentage differences in MSE for Jmin and
Jmax compared to Jnom. It can be concluded that DS-FCS-MPC
is worse than PI-FCS-MPCC when the moment of inertia de-
creases but greater when it increases. It has been caused by sta-
bility and predictable steady-state times for DS-FCS-MPCC.
Thanks to that, the difference between δdec and δinc is less than
in the case of PI-FCS-MPCC.

5.4. Frequency responses

In this subsection, Bode’s characteristics are presented. These
are obtained experimentally for both considered control
schemes. Initially, the PMSM was accelerated to 5 rad/s, and
after 300 ms, a sinusoidal signal with an amplitude equal to 0.5
rad/s was added to the reference velocity.

In the case of a decreased moment of inertia shown in
Fig. 6 (a), a similar behavior is observed. From Fig. 6 (b)
and (c), differences in the behavior of considered control struc-
tures are visible. The proposed DS-FCS-MPC control struc-
ture shows better attenuation in the range of 3 to 15 Hz and a
lower pick of amplification in resonant frequency equal to 200
Hz. For considered moment of inertia values, characteristics in
the range of 1 to 140 Hz are more similar for DS-FCS-MPC,
which proves better robustness compared to PI-FCS-MPCC.

6. CONCLUSIONS

In this paper, a direct speed finite control set model predictive
control has been proposed for PMSM drive and experimentally
validated in both time and frequency domains. The developed
control scheme was compared with a cascade control structure
based on a finite control set model predictive current control
and PI velocity controller. The cost function that provides a
high-performance drive operation was successfully developed,
and the ABC metaheuristic algorithm has been adopted for the
automatic selection of weighting factors.

It was found that PI-FCS-MPCC better compensates load
torque, but time response parameters depend on the moment of
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Fig. 6. PMSM drive frequency responses for DS-FCS-MPC and PI-FCS-MPCC excited by sinusoidal reference signal for: (a) Jmin, (b) Jnom, (c) Jmax

inertia value. It was particularly evident in the robustness in-
dicator. From the results obtained in the frequency domain, it
can be concluded that DS-FCS-MPC is more predictable com-
pared to PI-FCS-MPCC, and therefore, this structure is rec-
ommended in applications where robustness and predictable
behavior are required. On the other hand, better load torque
compensation is observed for PI-FCS-MPCC in the whole fre-
quency domain.

In the future, it is planned to propose predictive control
methods with increased robustness and optimized voltage vec-
tor selection procedures. Testing the mentioned methods on a
robotic arm is also planned.
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