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Underwater acoustic target classification has become a key area of research for marine vessel classification,
where machine learning (ML) models are leveraged to identify targets automatically. The major challenge
is inserting area-specific understanding into ML frameworks to extract features that effectively distinguish
between different vessel types. In this study, we propose a model that uses the coherently averaged power spec-
tral estimation (CAPSE) algorithm. Vessel frequency spectra is first computed through the CAPSE analysis,
capturing key machinery characteristics. Further, the features are processed via a vision transformer (ViT)
network. This method enables the model to learn more complex relationships and patterns within the data,
thereby improving the classification performance. This is accomplished by using self-attention mechanisms to
capture global dependencies between features, enabling the model to focus on relationships throughout the
entire input. The results, evaluated on standard DeepShip and ShipsEar datasets, show that the proposed
model achieved a classification accuracy of 97.98% and 99.19% while utilizing just 1.90 million parameters,
outperforming other models such as ResNet18 and UATR-Transformer in terms of both accuracy and compu-
tational efficiency. This work offers an improvement to the development of efficient marine vessel classification
systems for underwater acoustics applications, demonstrating that high performance can be achieved with re-
duced computational complexity.
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1. Introduction

Accurate classification of underwater acoustic tar-
gets is crucial in naval defense, underwater surveil-
lance, and environmental monitoring (Bjørnø, 2017;
Domingos et al., 2022; Thomas et al., 2020). The
ability to distinguish between different types of marine
vessels based on their acoustic signatures is essential
for operations such as threat detection and marine traf-
fic management (McKenna et al., 2024). However, the
underwater acoustic environment poses unique chal-
lenges due to complex propagation effects, ambient
noise, and interference from various sources, making
this task particularly difficult (Aslam et al., 2024).
Traditional classification methods, while effective in

controlled conditions, become less efficient with high
levels of noise and randomness present in real-world
underwater scenarios. This creates a need for improved
methods that can enhance the quality of the tar-
get signature and take advantage of deep learning to
achieve more accurate and reliable classification (Luo
et al., 2023).
Conventional underwater acoustic target classifica-

tion has relied on signal processing techniques such
as Fourier transforms, wavelet analysis, and mel-
frequency cepstral coefficients (MFCC), which are ef-
fective for identifying specific features in clean signals
(Müller et al., 2024). However, these methods face dif-
ficulties when dealing with highly noisy or distorted
signals. With the rise of deep learning, convolutional
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neural networks (CNNs) have been employed to clas-
sify acoustic signals by first transforming them into
spectrograms and then treating the problem as an im-
age classification task (Zeng et al., 2019). CNNs le-
verage spatial hierarchies to capture local features from
these spectrograms, but their reliance on local convo-
lutions limits their ability to capture global dependen-
cies in the data (Yang et al., 2024). This shortcom-
ing is particularly problematic for underwater acoustic
signals, where the temporal and spectral relationships
within the signal are essential for accurate target clas-
sification. Local features in a spectrogram refer to
specific, small-scale patterns over short time or fre-
quency ranges, such as individual machinery noises
(Feng, Zhu, 2022). Global features, in contrast, repre-
sent broader patterns across time and frequency, cap-
turing the overall acoustic signature of the source or
vessel. The vision transformer (ViT), a recently de-
veloped deep learning model, offers an alternative ap-
proach by employing a self-attention mechanism that
captures both local and global dependencies, making it
more suited for tasks that require holistic data analysis
(Dosovitskiy et al., 2020).
Another major challenge in underwater acoustics is

the low signal-to-noise ratio (SNR), making target de-
tection and classification challenging. Earlier research
indicates that targets become undetectable when SNR
falls below critical levels of −14.4 dB, and with nearly
90% of vessels receiving SNR below 0 dB in ambient
noise conditions (Siddagangaiah et al., 2016). Another
significant challenge in underwater acoustics is the low
SNR of acoustic signatures resulting from environmental
noise, surface reflections, and interference (Lampert,
O’Keefe, 2013). Preprocessing techniques, such as
the coherently averaged power spectral estimation
(CAPSE), are designed to enhance the quality of
acoustic signals by averaging power spectra across mul-
tiple observations, thus reducing noise and improving
the clarity of key signal features (Lan et al., 2020).
The integration of CAPSE and ViT forms the core

of this study. We use CAPSE as a preprocessing step to
improve tonal signals and minimize noise, highlighting
target-specific features through coherent spectral av-
eraging. The processed signals are then converted into
low frequency analysis and recording (LOFAR) grams,
which are fed into the ViT model for classification. The
ViT ability to capture both local and global machin-
ery features dependencies using its attention mecha-
nism is exploited. The proposed method was assessed
using DeepShip (Irfan et al., 2021) and ShipsEar
(Santos-Doḿınguez et al., 2016), a publicly avail-
able dataset, where it outperformed other methods re-
ported in the literature, delivering higher accuracy and
enhanced generalization. This approach highlights the
potential for incorporating CAPSE and the modified
ViT deep learning method for improving classification
performance in noisy underwater.

The rest of the article is arranged as follows: Sec. 2
is an overview of existing studies in literature; Sec. 3
highlights the proposed methodology, dataset pre-
processing techniques, and the model parameters em-
ployed in the experiments; Sec. 4 showcases the results,
emphasizing the advantages of the proposed methodol-
ogy; finally, Sec. 5 provides a conclusion, summarizing
the main contributions and proposed future work.

2. Related works

Research on marine vessel classification using
acoustic noise has explored a range of signal process-
ing techniques and machine learning models (Bianco
et al., 2019). Early methods relied heavily on manual
interpretation of acoustic signatures by sonar opera-
tors, depending entirely on their expertise (Domingos
et al., 2022). However, with advancements in computa-
tional power and deep learning techniques, automated
classification has become an area of increasing interest.
One of the most established techniques is the fast

Fourier transform (FFT), which converts time-domain
signals into the frequency domain, enabling the identi-
fication of spectral components, for understanding the
underlying patterns (Feng et al., 2021). However, it
is ineffective for representing underwater acoustic sig-
nals due to their non-stationary nature. The wavelet
transform offers both time and frequency information,
providing variable resolution that makes it effective
for analyzing non-stationary signals with varying pat-
terns, but it is sensitive to ambient noise (Kim et al.,
2021). MFCCs are frequently applied in sound analy-
sis due to their ability to capture the perceptual char-
acteristics of audio signals (Lim et al., 2007). They
are also designed to mimic the human ear’s sensitiv-
ity to different frequencies, making them particularly
useful in tasks such as speech and sound classification
(Sharma et al., 2020). The constant-Q transform of-
fers constant resolution across octaves, making it well-
suited for logarithmic frequency analysis (Singh et al.,
2021). In addition to these general techniques, LOFAR
is a method focused on detecting long-term spectral
patterns, which is particularly useful for identifying
sustained sounds such as engine noise or other mechan-
ical signals (Li et al., 2023). On the other hand, the de-
tection of envelope modulation on the noise (DEMON)
technique is specifically designed to detect modulation
spectrum caused by rotating components such as pro-
pellers and blades (Park, Jung, 2021).
Numerous multi-modal recognition techniques have

been investigated for marine vessel classification. In
(Yuan et al., 2019), a method was developed that
combines both optical images and radiated noise from
vessels as input data, allowing for a more compre-
hensive classification approach. Luo et al. (2021) ap-
plied a multi-window spectral analysis method to
capture a range of in-band frequency features, provid-
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ing a more detailed and accurate representation of the
acoustic environment. Additionally, Song et al. (2021)
significantly improved underwater noise classification
by extracting the one-third octave noise spectrum,
power spectral density, and MFCC features. These var-
ious approaches aim to increase classification accuracy
by integrating and leveraging multiple feature sets, en-
hancing the robustness of the recognition process.
Machine learning techniques, such as support vec-

tor machines (SVM) and shallow neural networks
(SNN), have long been used in underwater acoustic
classification. These techniques rely on efficient fea-
ture extraction methods to transform raw acoustic sig-
nals into feature vectors, which are subsequently in-
put into the network (De Moura, De Seixas, 2016).
For example, Sherin and Supriya (2015), used en-
hanced SVM classifiers to differentiate types of vessel
noise. With advances in deep learning, research has in-
creasingly focused on more complex neural networks.
Khishe and Mohammadi (2019) applied MFCC as
inputs to a neural network optimized by the salp
swarm algorithm and achieved an accuracy of 97.1%
(Hegazy et al., 2020). However, these fully connected
networks still face challenges in capturing deep, com-
plex features in multiple-class scenarios due to their
relatively simple architecture.
To overcome these limitations, CNNs have been

used to map raw waveforms or time-frequency repre-
sentations directly to vessel types (Hu et al., 2021; Luo
et al., 2021). CNNs have demonstrated good perfor-
mance in classifying vessels using acoustic signals. For
instance, Cao et al. (2019), introduced the CNN com-
bining second-order pooling (SOP) and the constant-Q
transform for feature extraction, outperforming tra-
ditional classifiers such as VGG-Net and deep belief
networks by achieving an accuracy of 96.3%. Custom
CNN architectures, such as VesselNet, have also been
proposed to enhance the classification of LOFAR spec-
trograms. Cinelli et al. (2018) designed VesselNet
specifically for spectrogram classification, using the
two-pass split-window filter with resulting in a pre-
cision of 88.1% on proprietary dataset (de Carvalho
et al., 2021).
The transformer architecture has been extensively

applied in fields such as natural language process-
ing (NLP) (Raffel et al., 2020), computer vision
(CV) (Dosovitskiy, 2020), and audio classification
(Noumida, Rajan, 2022), consistently demonstrating
superior performance. Recently, Chen et al. (2024)
introduced Swin transformer for ship-radiated noise
classification, combining DEMON spectra and mel-
spectrograms through feature fusion and attention
mechanisms. The achieved performance on standard
dataset was 98.62% and 99.01%. However, its per-
formance with weak acoustic signals due to masking
by both self-generated broadband noise, an increase in
distance from the receiver, and ambient noise from nat-

ural sources is unknown. This masking effect degrades
the clarity and detectability of the vessel’s tonal com-
ponents (Ikpekha et al., 2018). Similarly, the large
size of the deep learning network makes it unsuit-
able for real-time applications. This paper introduces
the ViT, with self-attention, as the classifier. This
lightweight transformer architecture significantly re-
duces training time and resource requirements (Chen
et al., 2024).

3. Methodology

This section details the methodology for underwa-
ter acoustic target classification, using CAPSE for sig-
nal enhancement and ViT for classification. CAPSE
improves spectral clarity by reducing noise, while ViT
leverages self-attention mechanisms to capture pat-
terns in the enhanced spectrograms and improve clas-
sification accuracy.

3.1. CAPSE

CAPSE is a signal processing technique designed
to enhance the detection of sinusoids in noisy environ-
ments. Unlike traditional methods such as the peri-
odogram and Welch’s method, CAPSE preserves phase
coherence across multiple signal segments, resulting in
a substantial improvement in SNR (Feng et al., 2021).
For a sinusoidal signal S0 embedded in noise, the

Fourier transform for each segment, Sk can be ex-
pressed as

Sk(ω) = S0(ω)e(jϕk), (1)

where ϕk = ω0kD represents the phase difference be-
tween the Fourier transforms of the k-th and the 1st
segments at frequency ω0. CAPSE aims to coherently
average the signal across multiple segments K, thus
enhancing SNR:

X(ω) = (1K)
K−1

∑
k=0

Xk(ω)e(−jϕk). (2)

This offset introduces a phase variation across seg-
ments, which can be corrected by applying an addi-
tional DFT along the segment indices given in Eq. (3),
yielding:

X̂ ˙(ωl, ωm) = (1/K)
K−1

∑
k=0

Xk(ωl)e(−jωvk), (3)

ωl = argmax
ωm

∣X(ωl, ωv)∣2 . (4)

CAPSE spectrum is then defined in Eq. (5), where
ωl and ωm are the indices of angular frequencies, mea-
sured in radians per second, and K is the number of
segments (Lan et al., 2020):

PCAPSE
xxx

(ω) = (1/UM) ∣X̂(ωl, ωδl)∣
2
. (5)
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By maximizing the energy component, CAPSE pre-
serves the most significant spectral information, mak-
ing it a robust method for tonal detection in noisy
environments. Details of the algorithm can be found
in (Feng et al., 2021).

3.2. Vision transformer

ViT is employed as the classification model,
leveraging its self-attention mechanism to capture
both local and global dependencies on data features
(Dosovitskiy et al., 2020). The acoustic signals pre-
processed with CAPSE are transformed into LOFAR
grams and treated as 2D images, displaying frequency
components along the horizontal axis and temporal
progression along the vertical axis. Let LOFAR gram
be denoted as x ∈ RW×H , where W is the number of
frequency bins and H is the number of time steps.
The LOFAR gram is divided into non-overlapping
patches, each of size Q × P , where Q and P repre-
sent the patch dimensions in frequency and time do-
mains, respectively. These patches are then flattened
into 1D vectors, creating a sequence of patch embed-
dings, Xp = [x1, x2, ..., xN ], where N = 400 is the total
number of patches. Each patch acts as an independent
token for the transformer input. Positional encodings
E ∈ RN×D are added to the patch embeddings to retain
the relative positional information, creating the input
sequence, z0 for the transformer layers,

z0 = [x1E,x2, ..., xNE] +E. (6)

The core of the ViT model is its multi-head self-
attention mechanism, which allows the model to com-
pute attention weights between different patches in the
sequence. For each attention head, the input sequence
z0 is transformed into a query (Q), key (K), and value
(V) matrices:

Q = z0WQ, K = z0WK, V = z0WV, (7)
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Fig. 1. Modified ViT network architecture with custom size LOFAR gram images (Dosovitskiy et al., 2020).

whereWQ,WK,WV ∈ RD×D are the learnable weight
matrices. The attention score for each patch is com-
puted as (Pang et al., 2023)

Attention(Q,K,V) = softmax(QKT

√
D
)V. (8)

Multiple attention heads are applied in parallel, en-
abling the model to focus on different regions of the
LOFAR gram simultaneously. The outputs from the at-
tention heads are concatenated and then passed through
a feed-forward network for additional processing.
Following the attention module, a series of trans-

former encoder layers are applied, each containing
a multi-head self-attention block and a position-wise
feed-forward network. These layers help in progres-
sively learning higher-level representations from the
patch sequence. Each encoder layer includes residual
connections and layer normalization to stabilize train-
ing:

z′l = LayerNorm(zl−1 +MultiHeadAttention(zl−1)), (9)

zl = LayerNorm(z′l + FeedForward(z′l)), (10)

where l denotes the current transformer layer.
After passing through several transformer layers,

the final sequence representation zL is obtained from the
last encoder block. A class token is appended to
the patch sequence during input, and this token’s rep-
resentation at the final layer zclassL is extracted and
passed to a classification head. The classification head
consists of a fully connected layer followed by a softmax
activation function, which produces the class probabil-
ities for the acoustic target:

y = softmax (Wclassz
class
L ), (11)

whereWclass is the weight matrix of the classification
layer.
Figure 1 presents the process flow, where the clas-

sifier takes 50× 4000× 1 grayscale LOFAR grams as
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input and is divided into 400 patches of size 50× 10
to ensure that each patch spans the full temporal
resolution while maintaining fine spectral resolution,
allowing the model to preserve tonal shifts caused
by Doppler effects or environmental variability within
a single patch. The ViT model was trained using
stochastic gradient descent with momentum as the op-
timization method, with an initial learning rate set
to 0.001. Training was conducted over a maximum
of 10 epochs with a mini-batch size of 64, utilizing
a GPU to accelerate the process. A modified ViT net-
work model with description and learnable parame-
ters for each layer is presented in Table 1. The train-
ing was conducted on a system featuring an AMD
Ryzen 5 3600 processor (6-core), 32GB RAM, 500GB
SSD storage, and an NVIDIA GTX 1660 SUPER GPU
with 6GB of memory.

Table 1. Number of parameters of each layer
of the CNN architecture.

Modules Layers Number
of parameters

Input
processing

Image input –

Patch embedding 160 400

Embedding concatenation 400

Position embedding 200 400

Layer norm 800

Feature
extractor

Self-attention 641 600

Layer norm 800

Encoder block 1 480 400

Encoder block 2 480 400

Layer norm 800

Classifier Head 1604

Total parameters 1 967 604

3.3. Data preprocessing

The generation of LOFAR grams involves a sys-
tematic analysis of publicly available DeepShip and
ShipsEar datasets. The process starts with loading au-
dio files and configuring the key parameters of the
CAPSE algorithm. This includes setting a window size
of 16 000 samples with a 50% overlap and a sampling
rate of 8 kHz.
For the LOFAR gram, the algorithm processes the

audio signal in segments, applying a Hanning window
to reduce spectral leakage. A real FFT is performed
on each window, normalizing the power in each fre-
quency bin.
The first half of the bins is preserved, followed by

applying an FFT to each column of the spectrum.
After squaring the magnitudes, the maximum value
in each column is stored. The resulting spectrum is
saved as a row vector in a (50× 4000) matrix in log-
arithmic scale, and the matrix is saved as PNG im-
ages. Figure 2 shows samples of zoomed LOFAR gram

(0Hz–1600Hz) images generated for different classes in
DeepShip dataset (Irfan et al., 2021). Here, the spec-
tral components due to machinery are visible against
normalized broadband noise.

Cargo

LOFAR grams

Passenger ship

Tanker

Tug

Zoomed machinery components (0 Hz–1600 Hz)Time [s]

Frequency [Hz]

255

0

Fig. 2. Sample of LOFAR grams of DeepShip dataset
developed using CAPSE algorithm.

Following preprocessing, the dataset was randomly
divided into three distinct subsets: 70% of the data
was allocated for training, where the model learns pat-
terns and features within the data; 15% was kept for
validation, which is used to adjust the weights of the
neural networks of the model. Early stopping was used
to prevent overfitting by evaluating its performance on
unseen data during training; the remaining 15% of the
dataset was used for testing the trained model to eval-
uate its performance metrics.

4. Results and discussion

This section presents and analyzes the results of
our proposed method for underwater acoustic target
classification. The performance of the model is eval-
uated on a benchmark dataset, with a focus on clas-
sification accuracy, and the advantages of CAPSE en-
hanced spectral representations and ViT. Comparative
results with existing methods are also discussed. Fig-
ures 3 and 4 show the accuracy and loss curves for the
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Fig. 3. Accuracy curves for training and validation
on DeepShip dataset.
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Fig. 4. Loss curves for training and validation
on DeepShip dataset.

training and validation process on DeepShip dataset.
The network shows rapid accuracy improvement and
convergence with minimal overfitting. The loss steadily
decreases, indicating stable and effective training.

4.1. Classification performance

Tables 2 and 3 provide an overview of DeepShip
and ShipsEar datasets used for evaluating the classi-
fication performance, showing the number of samples
for each vessel class. Despite the variation in sample
sizes, the model demonstrated effective generalization
across all classes, maintaining high performance even
for classes with fewer samples, such as the tug class
in DeepShip or class B form ShipsEar, shown in the
confusion matrix in Figs. 5a and 5b.

Table 2. Class description of DeepShip dataset
(Irfan et al., 2021).

Class label Number of samples

Cargo 4242

Passenger ship 4641

Tanker 4454

Tug 4054

Table 3. Class description of ShipsEar dataset
(Santos-Doḿınguez et al., 2016).

Class label Vessel type Number
of samples

Class A
Mussel boats, dredgers,

fishing boats,
trawlers, and tugboats

389

Class B Sailboats, motorboats,
and pilot boats

313

Class C Passenger ferries 842

Class D Ro-ro vessels
and ocean liners

492

Class E Background noise recordings 229

In terms of classification performance on DeepShip
dataset in Fig. 5a, as presented in Table 4, the model
achieved excellent results across all vessel types. The
cargo class achieved the highest accuracy at 98.90%,
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Fig. 5. Confusion matrix for modified ViT network:
a) DeepShip dataset; b) ShipsEar dataset.

Table 4. Classification performance on DeepShip dataset.

Label Accuracy
[%]

Precision
[%]

Recall
[%]

F1-score
[%]

Cargo 98.90 98.36 98.90 98.63

Passenger ship 96.26 98.38 96.26 97.31

Tanker 98.05 97.20 98.05 97.62

Tug 98.68 97.98 98.68 98.33

Average 97.98 97.98 97.98 97.97

Std Dev 1.1971 0.5516 1.1971 0.6119

with the tug class following at 98.68%. The passenger
ship and tanker classes show slightly lower accuracies
of 96.26% and 98.05%, respectively. These small dif-
ferences indicate that the model is consistent in iden-
tifying all vessel types, regardless of their sample size.
The precision, recall, and F1-score metrics further

demonstrate the model robustness. The F1-scores,
which balance precision and recall, are consistently
high for all classes, ranging from 97.31% for the pas-
senger ship class to 98.63% for the cargo class, high-
lighting the model ability to maintain high classifica-
tion performance across diverse acoustic characteris-
tics. The model average F1-score of 97.97% across all
classes reflects its ability to generalize well to unseen
data, making it a reliable tool for underwater acoustic
target classification tasks. Although there are some mi-
nor performance variations, particularly for the passen-
ger ship class, the overall results confirm the model’s
effective classification capability, demonstrating robust
generalization across all vessel types.
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Similarly, the confusion matrix for the ShipsEar
dataset in Fig. 5b, shows high classification perfor-
mance across all vessel classes as shown in Table 5, with
an accuracy of (100%) achieved for classes A, B, and E,
indicating that the model can reliably distinguish mus-
sel boats, sailboats, and background noise recordings.
Class C (passenger ferries) and class D (Ro-ro ves-
sels and ocean liners) exhibit minor confusion, with
2.3% of class C misclassified as class D and 4.1% of
class D misclassified as class C. This overlap suggests
that these vessel types share similar acoustic charac-
teristics, likely due to comparable propulsion systems
or operational behaviours. However, the model main-
tains over 95% accuracy for all classes, demonstrating
strong generalization.

Table 5. Classification performance on ShipsEar dataset.

Label Accuracy
[%]

Precision
[%]

Recall
[%]

F1-score
[%]

Class A 100 100 100 100

Class B 100 100 100 100

Class C 100 96.10 100 98.01

Class D 95.95 100 95.95 97.93

Class E 100 100 100 100

Average 99.19 99.22 99.19 99.19

Std Dev 1.8130 1.7424 1.8130 1.1111

4.2. Features visualization

The t-SNE method is employed to visually an-
alyze the model feature extraction process. High-
dimensional features of vessel radiated noise data are
projected into a two-dimensional space to observe how
well the model separates different vessel classes. The
first visualization in Fig. 6 shows the t-SNE plot for
the input layer before the ViT model initialization,
where the samples are scattered with no clear patterns
or groupings. After the model processes the data, the
second visualization shown in Fig. 7 presents a clear
separation of classes, with most samples correctly clus-
tered into distinct groups according to their labels.
Very few instances remain misclassified, potentially
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Fig. 6. t-SNE high dimensional features visualization
of untrained network.
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Fig. 7. t-SNE high dimensional visualization after the net-
work is fully trained.

due to a weak or ambiguous target signature. By high-
lighting these outliers, the model limitations and ar-
eas for improvement become apparent. Overall, this
visualization confirms that the model effectively learns
discriminative features, resulting in well-formed class
clusters in the feature space.

4.3. Performance under varying SNR

In real-world maritime scenarios, the underwater
acoustic environment is subject to varying levels of
environmental noise originating from natural sources
such as wind, wave activity, and marine life. Such noise
can complicate the accurate classification and inter-
pretation of acoustic signals, highlighting the need to
evaluate the performance of classification models un-
der adverse conditions. To systematically examine the
robustness and generalization abilities of the classifiers,
this study simulated diverse noise environments by
injecting Gaussian white noise at multiple SNR lev-
els into the original acoustic signals. Using DeepShip
dataset, the power of the signal was computed for each
case, and zero-mean noise with a specified power level
was generated and added to achieve a targeted SNR
value. The objective was to mimic real-world situa-
tions where the clarity of received signals is degraded
by external noise sources.
The performance of the model was assessed, as de-

picted in Fig. 8. As the SNR decreases from 20 dB
to 0 dB, the overall accuracy declines, demonstrating
the negative impact of increasing noise on the model’s
performance. Notably, the average classification accu-
racy remains above 50% at 5 dB, indicating a mod-
erate level of robustness in noisy conditions. Among
the vessel classes, the cargo class consistently achieves
higher accuracy, which can be attributed to its stronger
and more distinguishable acoustic signature. In con-
trast, the model exhibits reduced performance for cer-
tain classes such as tankers and passenger ships, whose
acoustic characteristics are more susceptible to noise
interference. To address this limitation, future work
will focus on exploring alternative classifier configura-
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Fig. 8. Performance of classifier under varying SNR condi-
tions.

tions to further enhance robustness and improve class-
specific accuracy under challenging acoustic environ-
ments.

4.4. Comparison with earlier research

Most of the prior vessel classification research us-
ing deep learning techniques commonly employs CNN
models, with a majority of these studies relying on non-
standard datasets to evaluate the classification per-
formance of their proposed methods. This reliance on
diverse datasets makes it challenging to consistently
compare the performance of different models.
Table 6 compares the classification accuracy of our

model with earlier deep learning-based studies that uti-
lize both the DeepShip and ShipsEar datasets. The
comparative analysis demonstrates that our proposed
model achieves an accuracy of 97.98% on the DeepShip
dataset, which is competitive with the state-of-the-
art. It surpasses models such as UATR-transformer,
which achieved 95.30%, and significantly outperforms
DRA-CNN, which lagged at 89.20%. On the ShipsEar
dataset, our model achieves an impressive accuracy
of 99.19%, further solidifying its competitiveness.
Although the HAUT Fusion model slightly outper-
forms our method with an accuracy of 99.01% on
the DeepShip dataset and 98.62% on the ShipsEar
dataset, it does so at a considerable computational
cost. The HAUT Fusion model utilizes 30.33 million

Table 6. Classification performance on ShipsEar dataset.

Models Accuracy [%]
DeepShip

Accuracy [%]
ShipsEar

Parameters
(million)

ResNet18 (Hong et al., 2021) 96.37 94.30 11.70

DRA-CNN (Chen et al., 2021) 89.20 97.10 0.26

UATR-transformer (Feng, Zhu, 2022) 95.30 96.90 2.60

HAUT Fusion (Chen et al., 2024) 99.01 98.62 30.33

Proposed method 97.98 99.19 1.90

parameters, compared to the 1.90 million parameters
used by our classifier model. This highlights that our
model had a better balance between accuracy and com-
putational efficiency, making it a favorable choice for
practical applications.
Moreover, the ResNet18 model, despite achieving

commendable accuracies of 96.37% on the DeepShip
dataset and 94.30% on the ShipsEar dataset, oper-
ates with a significantly larger parameter count of
11.70 million. In contrast, our model maintains high
performance while using only 1.90 million parameters,
underscoring its efficiency in terms of model complex-
ity and memory requirements. Similarly, DRA-CNN,
while achieving better accuracies of 97.10% on the
ShipsEar dataset, uses only 0.26 million parameters,
but its performance on the DeepShip dataset is con-
siderably lower (89.20%).
These findings suggest that the proposed model

provides an effective solution with lower computational
demand, making it suitable for deployment in environ-
ments with limited resources without sacrificing ac-
curacy. The consistent high performance across both
datasets (DeepShip and ShipsEar) further validates
the generalizability of our approach.

5. Conclusions and future work

A new framework leveraging deep learning, based
on CAPSE as preprocessing and ViT as classifier is de-
signed to enhance the performance of classification of
marine vessel based on their radiated noise. The model
demonstrates a robust performance, achieving an accu-
racy of 97.98% while maintaining a significantly lower
parameter of 1.9 million compared to other state-of-
the-art models. The results highlight the model’s effi-
ciency in extracting discriminative features with min-
imal computational complexity, making it suitable for
real-time or resource-constrained environments. De-
spite marginally lower accuracy compared to HAUT
Fusion, our model’s efficiency in terms of parameter us-
age offers a compelling advantage. These findings em-
phasize the effectiveness of the proposed approach in
balancing accuracy and computational cost for passive
underwater acoustic target classification tasks.
Future work may explore further optimization

of the feature extraction process and the potential
integration of additional domain-specific knowledge
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to enhance performance. Furthermore, due to the lim-
ited availability of publicly available datasets and the
inadequate class of vessel types that are recorded, it is
difficult to fully assess the robustness of the model un-
der various environmental scenarios. To address this
issue, we plan to further investigate vessel radiated
noise and synthetically generate signals for different
scenarios using mathematical modelling.
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