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Abstract—The paper is devoted to the signal- and frequency 

characteristics of 2-D causal systems.  Two different approaches to 

this problem are presented. First, the 2-D complex Fourier 

transformation of the 2-D causal impulse response 𝒉(𝒙𝟏, 𝒙𝟐) of a  

2-D system defines the 2-D complex frequency response 𝑯(𝒇𝟏, 𝒇𝟐). 

The modulus |𝑯(𝒇𝟏, 𝒇𝟐)| is the 2-D magnitude response and 

𝐚𝐫𝐠 𝑯(𝒇𝟏, 𝒇𝟐) is the 2-D phase response of a system. On the other 

hand, applying the Pei’s formula relating the 2-D complex Fourier 

transform with the 2-D right-sided quaternion Fourier transform 

we introduce a concept of the quaternion-valued frequency 

response 𝑯𝒒(𝒇𝟏, 𝒇𝟐) of a 2-D causal system. We define the 2-D 

magnitude system response |𝑯𝒒(𝒇𝟏, 𝒇𝟐)| and three 2-D phase 

responses. These concepts constitute an original contribution of 

this paper. The theoretical aspects are illustrated with examples of 

magnitude and phase responses of a causal 2-D analog low-pass 

filter. 
 

Keywords—causal/anti-causal signal; causal system; Gabor’s 

analytic signal; quaternion analytic signal; quaternion Fourier 

transform; dual symmetry; Pei’s formula; impulse response; 

frequency response 

I. INTRODUCTION 

HE theory of 1-D causal and anti-causal signals has been 

described in many books and papers (e.g. in [1-3]). It is 

known that in the 1-D analog and digital filter theory, causality 

of a system means its physical realizability and is equivalent to 

causality of its impulse response [4-9]. In 1-D analog and digital 

filter theory, the Fourier-, one-sided Laplace- and Z-

transformations are applied [10]. On the other hand, we notice 

scarcity of publications concerning the 2-D filter theory. The 

most significant is the monograph [11] from 1985 of Kaczorek 

in which the theory of 2-D analog and digital linear systems is 

presented and perspectives of their practical usage are 

discussed. In [12], a hardware realization of a 2-D analog filter 

has been proposed and in [13] applied for real time video signal 

processing. In the conference paper [14], the authors presented 

some implications of the 2-D analog filtering on circuit theory. 

In [15], the problem of 2-D causal system identification is 

discussed. To our knowledge, there are no publications treating 

the topic of 2-D causal systems from the point of view of 

complex- and quaternion-valued functions. This paper tries to 

“fill this gap” and is the result of the author’s long-term research 

on 2-D complex and hypercomplex analytic signals presented in 

detail in [2].  
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The organization of the paper is as follows. In Section II, we 

define causal and anti-causal signals in 1-D and 2-D. The 

Section III is devoted to the complex Fourier transform of 1-D 

and 2-D causal and anti-causal signals. Then in Section IV, we 

derive the spectrum of a 2-D causal signal in the quaternion 

form. To our knowledge, this result has not yet been published. 

Last Section VI is devoted to 2-D causal systems. We focus on 

their frequency representation and present formulas of 

magnitude- and phase responses. Our intention is to show an 

equivalence of both approaches (complex and quaternionic). 

The paper is illustrated with plots of impulse and frequency 

responses of a 2-D causal low-pass filter. 

II. CAUSALITY IN 1-D AND 2-D 

Let us start with formal definitions of causal and anti-causal 

signals in 1-D and 2-D domains. In Section IV these concepts 

will  be used in definitions of causal impulse responses of 1-D 

and 2-D systems. 

A. Causal and anti-causal signals in 1-D 

Let us consider a 1-D causal signal 𝑢(𝑡), 𝑡 ∈ ℝ defined as 

follows 

 𝑢(𝑡) = 𝑢𝑒(𝑡)[1 + sgn 𝑡] (1) 

where 𝑢𝑒(𝑡) is the even component of 𝑢(𝑡) defined as 

 𝑢𝑒(𝑡) = 0.5[𝑢(𝑡) + 𝑢(−𝑡)] (2) 

and sgn𝑡 is the 1-D signum distribution given by 

 sgn 𝑡 = {
1 for  𝑡 > 0
0 for  𝑡 = 0

−1 for  𝑡 < 0
 (3) 

It is easy to notice that the support of the signal (1) is limited 

to the right half-axis 𝑡 ≥ 0, that is 𝑢(𝑡) = 0 for 𝑡 < 0. 

Analogously, we can define a 1-D anti-causal signal with the 

left-sided support, i.e., 𝑢(𝑡) = 0 for 𝑡 > 0.  

B. Causal and anti-causal signals in 2-D 

Let us generalize notions of causality and anti-causality for 

two dimensions. The 2-D signal plane (𝑥1, 𝑥2) can be divided 

into four quadrants labelled with 1, 2, 3 and 4 respectively (see 

Figure 1). This numeration, originally proposed by Hahn in 

[16], differs from that commonly applied in analytic geometry 

and is compatible with the binary notation presented in Table I 
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where 0 corresponds respectively to the sign " + " and 1 to the 

sign " − " of 𝑥𝑖 , 𝑖 = 1,2 using the reversed order. The advantage 

of this labelling becomes evident in higher dimensions, i.e., for 

𝑛 ≥ 3. Similar notation of quadrants will be applied in this 

paper for all quadrants of the 2-D frequency plane.  

The 2-D signal 𝑢(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ ℝ2 is said to be causal 

if and only if its support is limited to the quadrant 1 (see Figure 

1). The 2-D signals with supports in quadrants 2, 3 and 4 are 

anti-causal. To distinguish every case, we will respectively call 

them anti-causal(2), anti-causal(3) and anti-causal(4).  

 

 
Fig. 1. The 2-D signal plane (𝑥1, 𝑥2) divided into four quadrants labelled 

with 1,2,3 and 4. 

In analogy to the 1-D case presented in subsection IIA., the 

2-D causal signal can be represented as the product  

 𝑢(𝑥1, 𝑥2) = 𝑢𝑒𝑒(𝑥1, 𝑥2)[1 + sgn 𝑥1][1 + sgn 𝑥2] (4) 

where 𝑢𝑒𝑒(𝑥1, 𝑥2) is the even-even component of 𝑢(𝑥1, 𝑥2) 

defined as 

 𝑢𝑒𝑒(𝑥1, 𝑥2) 

= 0.25[𝑢(𝑥1, 𝑥2) + 𝑢(−𝑥1, 𝑥2) + 𝑢(𝑥1, −𝑥2) + 𝑢(−𝑥1, −𝑥2)] (5) 

and sgn 𝑥𝑖 , 𝑖 = 1,2, are defined similarly as in (3).  

III. COMPLEX FOURIER TRANSFORM OF CAUSAL SIGNALS 

This section concerns the Fourier transform (FT) of 1-D and  

2-D causal signals given by (1) and (4) respectively.  

A. Fourier spectrum of 1-D causal signals 

Using linearity and multiplication property of the 1-D 

complex FT, we get the spectrum 𝑈(𝑓), 𝑓 ∈ ℝ of the signal (1) 

in the following form 

𝑈(𝑓) = 𝑈𝑒(𝑓) + 𝑈𝑒(𝑓) ∗
1

𝑖𝜋𝑓
= 𝑈𝑒(𝑓) − 𝑈𝑒(𝑓) ∗

𝑖

𝜋𝑓
 (6) 

where 𝑈𝑒(𝑓) is the spectrum of the even component 𝑢𝑒(𝑡), “∗”  

 

denotes a convolution in the frequency domain and 
1

𝑖𝜋𝑓
 is the FT 

of sgn 𝑡. We can notice that 𝑈(𝑓) given by (6) is a conjugate 

analytic function (in the Gabor’s sense [17]) since its imaginary 

part 𝑈𝑒(𝑓) ∗
1

𝜋𝑓
 is the Hilbert transform ℋ{∙} of 𝑈𝑒(𝑓), i.e., 

 ℋ{𝑈𝑒(𝑓)} = 𝑈𝑒(𝑓) ∗
1

𝜋𝑓
 (7) 

Finally, we can express (6) as 

 𝑈(𝑓) = 𝑈𝑒(𝑓) − 𝑖 ∙ ℋ{𝑈𝑒(𝑓)} (8) 

In a very similar way as above, we can show that 1-D anti-

causal signals have analytic spectra of the form 𝑈e(𝑓) + 𝑖 ∙
ℋ{𝑈e(𝑓)}, which is the conjugate of (8). 

Let us remark that the formula (8) is in accordance with the 

dual symmetry property of the 1-D FT. It states that if the signal 

𝑢(𝑡) has the spectrum 𝑈(𝑓) then the signal 𝑈(𝑡) has the FT 

𝑢(−𝑓). In the considered case, we can write that the signal 

𝑈(𝑡) = 𝑈𝑒(𝑡) − 𝑖 ∙ ℋ{𝑈𝑒(𝑡)} (conjugate analytic in the 

Gabor’s sense) has the Fourier spectrum 𝑢(𝑓) = 𝑢𝑒(−𝑓)[1 +
sgn(−𝑓)] = 𝑢𝑒(𝑓)[1 − sgn 𝑓] (left-sided anti-causal). Then 

𝑈∗(𝑡) = 𝑈𝑒(𝑡) + 𝑖 ∙ ℋ{𝑈𝑒(𝑡)} (analytic) has the spectrum 

𝑢∗(−𝑓) = 𝑢𝑒(𝑓)[1 + sgn 𝑓] (right-sided causal).   

Further, expressing the component 𝑈𝑒(𝑓) in (6) as a 

convolution with the Dirac delta distribution., i.e., 𝑈𝑒(𝑓) =
𝑈𝑒(𝑓) ∗ 𝛿(𝑓), and using distributivity of convolution over 

addition, we can rewrite (6) in the form 

 𝑈(𝑓) = 𝑈𝑒(𝑓) ∗ [𝛿(𝑓) −
𝑖

𝜋𝑓
] (9) 

or equivalently as 

 𝑈(𝑓) = 𝑈𝑒 ∗ 𝛹𝛿
∗(𝑓) (10) 

where 𝛹𝛿
∗(𝑓) is the conjugate of the 1-D complex delta 

distribution 𝛹𝛿(𝑓) = 𝛿(𝑓) +
𝑖

𝜋𝑓
 defined by Hahn in [18] and 

presented in detail in [1]. 𝛹𝛿(𝑓) is also an analytic function of 

frequency (in the Gabor’s sense).  

Let us point out some facts concerning causality in 1-D: 

• a 1-D causal signal has a conjugate analytic spectrum; 

• a 1-D anti-causal signal has an analytic spectrum. 

• a 1-D analytic signal has a causal spectrum; 

• a 1-D conjugate analytic signal has an anti-causal 

spectrum. 

B. Fourier spectrum of 2-D causal signals 

Let us now consider the 2-D causal signal given by (4). In 

order to derive its 2-D FT, we apply multiplication-to-

convolution property of the 2-D Fourier transformation. The  

2-D Fourier spectrum 𝑈(𝑓1, 𝑓2) of the signal (4) has the form of 

a double convolution of the spectrum 𝑈𝑒𝑒(𝑓1, 𝑓2) of the even-

even component (5) with the 2-D Fourier transform of 
(1 + sgn 𝑥1 + sgn 𝑥2 + sgn 𝑥1 ∙ sgn 𝑥2), that is 

𝑈(𝑓1, 𝑓2) 

= 𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗ ℱ{1 + sgn𝑥1 + sgn𝑥2 + sgn𝑥1 ∙ sgn𝑥2} (11) 

where ℱ{1 + sgn 𝑥1 + sgn 𝑥2 + sgn 𝑥1 ∙ sgn 𝑥2} = 𝛿(𝑓1, 𝑓2) +
𝛿(𝑓2)

𝑖𝜋𝑓1
+

𝛿(𝑓1)

𝑖𝜋𝑓2
−

1

𝜋2𝑓1𝑓2
. Then, 

 

TABLE I  

LABELLING OF QUADRANTS IN THE 2-D SIGNAL DOMAIN 

Quadrant label 

Signs of 
Binary 

notation a 

Reversed 

order 

     

𝑥1 𝑥2 
     

1 + + 00 00      

2 − + 01 10      

3 + − 10 01      

4 − − 11 11      
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𝑈(𝑓1, 𝑓2) 

 = 𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗ [𝛿(𝑓1, 𝑓2) − 𝑖
𝛿(𝑓2)

𝜋𝑓1
− 𝑖

𝛿(𝑓1)

𝜋𝑓2
−

1

𝜋2𝑓1𝑓2
] (12) 

We can notice that 

 𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗ 𝛿(𝑓1, 𝑓2) = 𝑈𝑒𝑒(𝑓1, 𝑓2) (13) 

  𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗ 𝑖
𝛿(𝑓2)

𝜋𝑓1
= ℋ1{𝑈𝑒𝑒(𝑓1, 𝑓2)} = ℋ1{𝑈𝑒𝑒} (14) 

 𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗ 𝑖
𝛿(𝑓1)

𝜋𝑓2
= ℋ2{𝑈𝑒𝑒(𝑓1, 𝑓2)} = ℋ2{𝑈𝑒𝑒} (15) 

 𝑈𝑒𝑒(𝑓1, 𝑓2) ∗∗
1

𝜋2𝑓1𝑓2
= ℋ{𝑈𝑒𝑒(𝑓1, 𝑓2)} = ℋ{𝑈𝑒𝑒} (16) 

where ℋ𝑖{𝑈𝑒𝑒} are 2-D partial Hilbert transforms w.r.t. to 𝑓𝑖 of 

𝑈𝑒𝑒(𝑓1, 𝑓2) and ℋ{𝑈𝑒𝑒} is the 2-D total Hilbert transform of 

𝑈𝑒𝑒(𝑓1, 𝑓2). The complete theory concerning partial and total 

Hilbert transforms is presented in [1], [2], [18]. Finally, (12) gets 

the form 

 𝑈(𝑓1, 𝑓2) = 𝑈𝑒𝑒 − ℋ{𝑈𝑒𝑒} − 𝑖[ℋ1{𝑈𝑒𝑒} + ℋ2{𝑈𝑒𝑒}] (17) 

where we applied the simplified notation {𝑈𝑒𝑒} for {𝑈𝑒𝑒(𝑓1, 𝑓2)}. 

In Table II we collected causal (the first row) and anti-causal 

2-D signals and their spectra (𝑖 denotes the corresponding 

quadrant of the signal support). We can notice that the spectrum 

of the 2-D causal signal defined in (4) is the conjugate of the 

spectrum of an anti-causal(4) signal (the 4th row of Table II) and 

the spectra of other anti-causal 2-D signals (with supports in 

quadrants 2. and 3.) also form a conjugate pair.  

 

Here once again, we can refer to the dual symmetry property 

of the 2-D Fourier transformation. According to it, if a signal 

𝑢(𝑥1, 𝑥2) has the 2-D FT 𝑈(𝑓1, 𝑓2), then the signal 𝑈(𝑥1, 𝑥2) has 

the spectrum 𝑢(−𝑓1, −𝑓2). Let us consider the Fourier pair from 

the first row of Table II. We can state that the signal 

𝑈𝑒𝑒(𝑥1, 𝑥2) − ℋ{𝑈𝑒𝑒(𝑥1, 𝑥2)} − 𝑖[ℋ1{𝑈𝑒𝑒(𝑥1, 𝑥2)} +
ℋ2{𝑈𝑒𝑒(𝑥1, 𝑥2)}] has an anti-causal(4) spectrum 

𝑢𝑒𝑒(−𝑓1, −𝑓2)(1 − sgn𝑓1)(1 − sgn𝑓2) = 𝑢𝑒𝑒(𝑓1, 𝑓2)(1 −
sgn𝑓1)(1 − sgn𝑓2). In an analogous way, we can derive next 

Fourier pairs.  

The spectrum given by (17) is analytic in the sense of the 

Hahn’s theory of single-quadrant analytic functions presented in 

[16]. According to this theory, a 2-D function is analytic if its 

2-D FT has a single-quadrant support. Hahn defined four 

different analytic signals denoted with 𝜓𝑖(𝑥1, 𝑥2) (𝑖 denotes the 

corresponding quadrant of the spectrum support). All these four 

signals collected in Table III form two conjugate pairs, namely 

𝜓1 = 𝜓4
∗ and 𝜓2 = 𝜓3

∗. 

Let us summarize all results concerning spectrum properties 

of causal/anti-causal signals in 2-D: 

• the 2-D causal signal (4) has an analytic spectrum of the 

form corresponding to 𝜓4 (that is a conjugate of the 

spectrum of the anti-causal(4) signal) 

• the 2-D anti-causal(3) signal has an analytic spectrum of 

the form corresponding to 𝜓3 (that is a conjugate of the 

spectrum of the anti-causal(2) signal). 

 
TABLE III 

HAHN’S ANALYTIC SIGNALS IN 2-D 

𝑖 𝜓𝑖(𝑥1, 𝑥2) 

1 𝑢 − ℋ{𝑢} + 𝑖[ℋ1{𝑢} + ℋ2{𝑢}] 

2 𝑢 + ℋ{𝑢} − 𝑖[ℋ1{𝑢} − ℋ2{𝑢}] 

3 𝑢 + ℋ{𝑢} + 𝑖[ℋ1{𝑢} − ℋ2{𝑢}] 

4 𝑢 − ℋ{𝑢} − 𝑖[ℋ1{𝑢} + ℋ2{𝑢}] 

IV. QUATERNION APPROACH TO THE FREQUENCY 

REPRESENTATION OF 2-D CAUSAL SIGNALS 

In this section, we develop the formula of the quaternion 

Fourier spectrum of the 2-D causal signal (4). Let us recall the 

definition of the 2-D Fourier transform 𝑈(𝑓1, 𝑓2) of a 2-D real-

valued signal 𝑢(𝑥1, 𝑥2): 

 𝑈(𝑓1, 𝑓2) = ∬ 𝑢(𝑥1, 𝑥2)𝑒−2𝜋𝑖(𝑓1𝑥1+𝑓2𝑥2)𝑑𝑥1𝑑𝑥2 (18) 

Then, the right-sided quaternion Fourier transform 𝑈𝑞(𝑓1, 𝑓2) 

of 𝑢(𝑥1, 𝑥2), defined by Ell in [19], has the form 

 𝑈𝑞(𝑓1, 𝑓2) = ∬ 𝑢(𝑥1, 𝑥2)𝑒−2𝜋𝑖𝑓1𝑥1𝑒−2𝜋𝑗𝑓2𝑥2𝑑𝑥1𝑑𝑥2 (19) 

where 𝑗 is the second (beside 𝑖 and 𝑘) quaternion imaginary unit. 

The details concerning quaternions, multidimensional 

quaternion-valued signals and their spectra are to be found in 

[2], [20].  

The formula relating (18) and (19), proposed by Pei in [21], 

is 

 𝑈𝑞(𝑓1, 𝑓2) = 𝑈(𝑓1, 𝑓2)
1−𝑘

2
+ 𝑈(𝑓1, −𝑓2)

1+𝑘

2
  

 (20) 

Let us now come back to the formula (17) of the 2-D FT of  

a 2-D causal signal. We can notice that 

 𝑈𝑒𝑒(𝑓1, −𝑓2) = 𝑈𝑒𝑒(𝑓1, 𝑓2) (21) 

ℋ{𝑈𝑒𝑒(𝑓1, −𝑓2)} = 𝑈ee(𝑓1, −𝑓2) ∗∗
1

𝜋2𝑓1(−𝑓2)
= −ℋ{𝑈ee(𝑓1, 𝑓2)}  

  (22) 

ℋ1{𝑈𝑒𝑒(𝑓1, −𝑓2)} = 𝑈𝑒𝑒(𝑓1, −𝑓2) ∗∗
𝛿(−𝑓2)

𝜋𝑓1
= ℋ1{𝑈𝑒𝑒(𝑓1, 𝑓2)} 

  (23) 

ℋ2{𝑈𝑒𝑒(𝑓1, −𝑓2)} = 𝑈𝑒𝑒(𝑓1 , −𝑓2) ∗∗
𝛿(𝑓1)

𝜋(−𝑓2)
= −ℋ2{𝑈𝑒𝑒(𝑓1, 𝑓2)} 

  (24) 

TABLE II 

CAUSAL/ANTI-CAUSAL SIGNALS AND THEIR SPECTRA IN 2-D 

𝑖 Signal 𝑢(𝑥1, 𝑥2) Spectrum 𝑈(𝑓1, 𝑓2) 

1 
𝑢𝑒𝑒(1 + sgn𝑥1)(1 + sgn𝑥2) 

causal 
𝑈𝑒𝑒 − ℋ{∙} − 𝑖[ℋ1{∙} + ℋ2{∙}] 

2 
𝑢𝑒𝑒(1 − sgn𝑥1)(1 + sgn𝑥2) 

anti-causal(2) 
𝑈ee + ℋ{∙} + 𝑖[ℋ1{∙} − ℋ2{∙}] 

3 
𝑢𝑒𝑒(1 + sgn𝑥1)(1 − sgn𝑥2) 

anti-causal(3) 
𝑈ee + ℋ{∙} − 𝑖[ℋ1{∙} − ℋ2{∙}] 

4 
𝑢𝑒𝑒(1 − sgn𝑥1)(1 − sgn𝑥2) 

anti-causal(4) 
𝑈ee − ℋ{∙} + 𝑖[ℋ1{∙} + ℋ2{∙}] 
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Introducing (21)-(24) into (17), the spectrum 𝑈(𝑓1, −𝑓2) gets 

the following form 

𝑈(𝑓1, −𝑓2) = 𝑈𝑒𝑒 + ℋ{𝑈𝑒𝑒} − 𝑖[ℋ1{𝑈𝑒𝑒} − ℋ2{𝑈𝑒𝑒}] (25) 

where, similarly as in (17), we used the simplified notation 
{𝑈𝑒𝑒} instead of {𝑈𝑒𝑒(𝑓1, 𝑓2)}. 

Let us now introduce the expressions (14) and (25) into the 

Pei’s formula (20). Then, we get the 2-D quaternion Fourier 

spectrum of a 2-D causal signal 𝑢(𝑥1, 𝑥2) as follows 

𝑈𝑞(𝑓1, 𝑓2) 

= [𝑈𝑒𝑒 − ℋ{𝑈𝑒𝑒} − 𝑖(ℋ1{𝑈𝑒𝑒} + ℋ2{𝑈𝑒𝑒})]
1 − 𝑘

2
 

 

+[𝑈𝑒𝑒 + ℋ{𝑈𝑒𝑒} − 𝑖(ℋ1{𝑈𝑒𝑒} − ℋ2{𝑈𝑒𝑒})]
1 + 𝑘

2
 

After simple calculations involving multiplication rules 

working in the algebra of quaternions: 𝑖 ∙ 𝑘 = −𝑗 (see[2]) we 

obtain the 2-D quaternion Fourier spectrum of the 2-D causal 

signal (4) in the following form 

𝑈𝑞(𝑓1 , 𝑓2) = 𝑈𝑒𝑒 − 𝑖 ∙ ℋ1{𝑈𝑒𝑒} − 𝑗 ∙ ℋ2{𝑈𝑒𝑒} + 𝑘 ∙ ℋ{𝑈𝑒𝑒}  (27) 

We can notice that the quaternion Fourier spectrum (27) is a 

2-D quaternion-valued function in which we recognize the same 

components as in (17). In Table IV, we collected quaternion 

spectra of causal and anti-causal 2-D signals from Table II with 

supports in successive quadrants of the signal plane (for 

simplicity {∙} denotes {𝑈ee}). We observe that they do not form 

conjugate pairs and it is not surprising having in mind the 

properties of the algebra of quaternions (see e.g. [2]). However, 

all quaternion Fourier spectra from Table IV are expressed by 

formulas corresponding to quaternion analytic functions 

introduced by Bülow and Sommer in [22], [23] and, for 

comparison, displayed in Table V. The theory of these functions 

is also presented in detail in [2] and [20].  

 

TABLE IV 

CAUSAL/ANTI-CAUSAL SIGNALS AND THEIR QUATERNION SPECTRA IN 2-D 

𝑖 Signal 𝑢(𝑥1, 𝑥2) Spectrum 𝑈𝑞(𝑓1, 𝑓2) 

1 𝑢𝑒𝑒(1 + sgn𝑥1)(1 + sgn𝑥2) 

causal 

𝑈𝑒𝑒 − 𝑖 ∙ ℋ1{∙} − 𝑗 ∙ ℋ2{∙} + 𝑘 ∙ ℋ{∙} 

2 𝑢𝑒𝑒(1 − sgn𝑥1)(1 + sgn𝑥2) 

anti-causal(2) 

𝑈𝑒𝑒 + 𝑖 ∙ ℋ1{∙} − 𝑗 ∙ ℋ2{∙} − 𝑘 ∙ ℋ{∙} 

3 𝑢𝑒𝑒(1 + sgn𝑥1)(1 − sgn𝑥2) 

anti-causal(3) 

𝑈𝑒𝑒 − 𝑖 ∙ ℋ1{∙} + 𝑗 ∙ ℋ2{∙} − 𝑘 ∙ ℋ{∙} 

4 𝑢𝑒𝑒(1 − sgn𝑥1)(1 − sgn𝑥2) 

anti-causal(4) 

𝑈𝑒𝑒 + 𝑖 ∙ ℋ1{∙} + 𝑗 ∙ ℋ2{∙} + 𝑘 ∙ ℋ{∙} 

 

TABLE V 

QUATERNION ANALYTIC SIGNALS IN 2-D 

𝑖 𝜓𝑞(𝑥1, 𝑥2) 

1 𝑢 + 𝑖 ∙ ℋ1{𝑢} + 𝑗 ∙ ℋ2{𝑢} + 𝑘 ∙ ℋ{𝑢} 

2 𝑢 − 𝑖 ∙ ℋ1{𝑢} + 𝑗 ∙ ℋ2{𝑢} − 𝑘 ∙ ℋ{𝑢} 

3 𝑢 + 𝑖 ∙ ℋ1{𝑢} − 𝑗 ∙ ℋ2{𝑢} − 𝑘 ∙ ℋ{𝑢} 

4 𝑢 − 𝑖 ∙ ℋ1{𝑢} − 𝑗 ∙ ℋ2{𝑢} + 𝑘 ∙ ℋ{𝑢} 

Basing on all formulas presented in Tables IV and V, we can 

conclude that: 

• the 2-D causal signal (4) has the quaternion spectrum 

described by the formula corresponding to the quaternion 

analytic function with the spectrum support in the 

quadrant 4. of the frequency plane 

• the spectrum of the 2-D anti-causal(2) signal has the 

form corresponding to the quaternion analytic signal 

with the spectrum support in the quadrant 3 

• the spectrum of the 2-D anti-causal(3) signal has the 

form corresponding to the quaternion analytic signal 

with the spectrum support in the quadrant 2 

• the spectrum of the 2-D anti-causal(4) signal has the 

from corresponding to the quaternion analytic signal 

with the spectrum support in the quadrant 1. 

V. CAUSALITY OF 2-D LINEAR TIME-INVARIANT SYSTEMS 

The 1-D causal systems are subject of many publications, e.g. 

[4]-[9], and we do not intend to recall this theory here. We focus 

on 2-D causal (linear time-invariant) analog systems. Basing on 

theory presented in previous sections, it will be easy to 

“translate” all notions into the “language” of the system theory. 

We say that a 2-D analog system is causal if and only if its  

2-D impulse response ℎ(𝑥1, 𝑥2) is a causal function of the form 

given by (4), i.e., 

 ℎ(𝑥1, 𝑥2) = ℎ𝑒𝑒(𝑥1, 𝑥2)[1 + sgn 𝑥1][1 + sgn 𝑥2] (28) 

where ℎ𝑒𝑒(𝑥1, 𝑥2) is the even-even component of ℎ(𝑥1, 𝑥2) 

defined by (5).  

A. 2-D complex frequency response of a 2-D causal system 

The 2-D complex Fourier transform of the 2-D causal impulse 

response defines the 2-D complex frequency response 𝐻(𝑓1, 𝑓2) 

of a 2-D system (compare with (17)), i.e., 

 𝐻(𝑓1, 𝑓2) = 𝐻𝑒𝑒 − ℋ{𝐻𝑒𝑒} − 𝑖[ℋ1{𝐻𝑒𝑒} + ℋ2{𝐻𝑒𝑒}]  

  (29) 

The 2-D magnitude response 𝐴(𝑓1, 𝑓2) of a 2-D causal system 

is the absolute value of (29) and has the following form 

𝐴(𝑓1, 𝑓2) = |𝐻(𝑓1, 𝑓2)|

= √(𝐻𝑒𝑒 − ℋ{𝐻𝑒𝑒})2 + (ℋ1{𝐻𝑒𝑒} + ℋ2{𝐻𝑒𝑒})2

= √𝐻𝑒𝑒
2 + ℋ2{∙} + ℋ1

2{∙} + ℋ2
2{∙} + 2[ℋ1{∙}ℋ2{∙} − 𝐻𝑒𝑒ℋ{∙}] 

(30) 

where, for simplicity, {∙} denotes {𝐻𝑒𝑒}. Notice that in case of a 

separable 2-D impulse response, i.e., ℎ(𝑥1, 𝑥2) =

ℎ1(𝑥1)ℎ2(𝑥2), we have 2[ℋ1{∙}ℋ2{∙} − 𝐻𝑒𝑒ℋ{∙}] = 0 (see e.g. 

[1], [16]).  

Then, the 2-D phase response 𝜑(𝑓1, 𝑓2) of a 2-D causal 

system is given by 

 𝜑(𝑓1, 𝑓2) = −atan2 (
ℋ1{𝐻𝑒𝑒}+ℋ2{𝐻𝑒𝑒}

𝐻𝑒𝑒−ℋ{𝐻𝑒𝑒}
) (31) 

B. 2-D quaternion frequency response of a 2-D causal system 

Applying the quaternion approach presented in Section IV, we 

can define the 2-D quaternion frequency response 𝐻𝑞(𝑓1, 𝑓2) of 

a 2-D analog causal system in the form 
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𝐻𝑞(𝑓1, 𝑓2) = 𝐻𝑒𝑒 − 𝑖 ∙ ℋ1{𝐻𝑒𝑒} − 𝑗 ∙ ℋ2{𝐻𝑒𝑒} + 𝑘 ∙ ℋ{𝐻𝑒𝑒} 

(32) 

Let us now define the magnitude response 𝐴𝑞(𝑓1, 𝑓2) as the 

absolute value of the 2-D quaternion frequency response (32), 

i.e., 

𝐴𝑞(𝑓1, 𝑓2) = |𝐻𝑞(𝑓1, 𝑓2)|

= √𝐻𝑒𝑒
2 + ℋ1

2{𝐻𝑒𝑒} + ℋ2
2{𝐻𝑒𝑒} + ℋ2{𝐻𝑒𝑒} 

(33) 

In this case, it is possible to define three phase responses 

𝜑𝑖(𝑓1, 𝑓2), 𝑖 = 1,2,3 as generalizations of three phase (Euler) 

angles of a quaternion [22] as follows 

𝜑1(𝑓1, 𝑓2) =
1

2
atan2 (

2(𝐻𝑒𝑒ℋ1{∙} + ℋ{∙}ℋ2{∙})

𝐻𝑒𝑒
2 − ℋ1

2{∙} + ℋ2
2{∙} − ℋ2{∙}

) 

(34) 

𝜑2(𝑓1, 𝑓2) =
1

2
atan2 (

2(𝐻𝑒𝑒ℋ2{∙} + ℋ{∙}ℋ1{∙})

𝐻𝑒𝑒
2 + ℋ1

2{∙} − ℋ2
2{∙} − ℋ2{∙}

) 

(35) 

𝜑3(𝑓1, 𝑓2) =
1

2
asin (

2(𝐻𝑒𝑒{∙}ℋ{∙} − ℋ1{∙}ℋ2{∙})

𝐻𝑒𝑒
2 + ℋ1

2{∙} + ℋ2
2{∙} + ℋ2{∙}

) 

(36) 

Let us illustrate the above notions with the example of a 2-D 

low-pass causal filter with the 2-D separable causal impulse 

response given by 

ℎ(𝑥1, 𝑥2) = 𝑒−(𝛼𝑥1+𝛽𝑥2) ∙ 𝟏(𝑥1, 𝑥2), 𝛼, 𝛽 > 0 (37) 

where 𝟏(𝑥1, 𝑥2) = 𝟏(𝑥1) ∙ 𝟏(𝑥2) is the 2-D step function and 

𝟏(𝑥𝑖) =
1

2
(1 + sgn 𝑥𝑖) with sgn𝑥𝑖 defined in (3). The Figure 2 

displays ℎ(𝑥1, 𝑥2) for 𝛼 = 𝛽 = 104 and we can observe that it 

is evidently causal with the support in the first quadrant of the 

signal plane (𝑥1, 𝑥2). Next Figure 3 shows the even-even 

component of (37). Then, Figures 4-7 respectively show the 

following components of the frequency response of the 

considered system: 𝐻𝑒𝑒 – 2-D Fourier transform of the even-

even component of ℎ(𝑥1, 𝑥2) and its full and partial Hilbert 

transforms ℋ{𝐻𝑒𝑒}, ℋ1{𝐻𝑒𝑒},∙ ℋ2{𝐻𝑒𝑒} . All components are 

given by the following formulas 

 𝐻𝑒𝑒(𝑓1, 𝑓2) =
𝛼𝛽

(4𝜋2𝑓1
2+𝛼2)(4𝜋2𝑓2

2+𝛽2)
 (38) 

 ℋ{𝐻𝑒𝑒(𝑓1, 𝑓2)} =
4𝜋2𝑓1𝑓2

(4𝜋2𝑓1
2+𝛼2)(4𝜋2𝑓2

2+𝛽2)
 (39) 

 ℋ1{𝐻𝑒𝑒(𝑓1, 𝑓2)} =
2𝜋𝛽𝑓1

(4𝜋2𝑓1
2+𝛼2)(4𝜋2𝑓2

2+𝛽2)
 (40) 

 ℋ2{𝐻𝑒𝑒(𝑓1, 𝑓2)} =
2𝜋𝛼𝑓2

(4𝜋2𝑓1
2+𝛼2)(4𝜋2𝑓2

2+𝛽2)
 (41) 

In Fig. 4, we can notice the even symmetry of 𝐻𝑒𝑒(𝑓1, 𝑓2) 

w.r.t. 𝑓1 and 𝑓2. Then, the full Hilbert transform from Fig.5 is an 

odd function w.r.t. 𝑓1 and 𝑓2. The partial Hilbert transform 

ℋ1{𝐻𝑒𝑒(𝑓1, 𝑓2)} from Fig. 6 is an odd function w.r.t. 𝑓1 and an 

even function w.r.t. 𝑓2 opposite to ℋ2{𝐻𝑒𝑒(𝑓1, 𝑓2)} from Fig. 7. 

In Figures 8 and 9, we respectively show the real part 𝐻𝑒𝑒 −
ℋ{𝐻𝑒𝑒} and the imaginary part −[ℋ1{𝐻𝑒𝑒} + ℋ2{𝐻𝑒𝑒}] of the 

complex frequency response given by (29). 

Since the 2-D impulse response (37) of the considered filter 

is a separable function, i.e., ℎ(𝑥1, 𝑥2) = 𝑒−𝛼𝑥1𝟏(𝑥1) ∙
𝑒−𝛽𝑥2𝟏(𝑥2), the 2-D magnitude response (30) is exactly the 

same as (33). It is shown in Fig. 10. 

Using the formula (31), we have calculated the phase 

response of the system and visualized the obtained result in 

Figure 11.  

 

Fig. 2. The 2-D causal impulse response (37); 𝛼 = 𝛽 = 104. 

 

Fig. 3. The even-even component ℎ𝑒𝑒(𝑥1, 𝑥2) of ℎ(𝑥1, 𝑥2) from Fig. 2. 

 

Fig. 4. The 2-D Fourier transform 𝐻𝑒𝑒(𝑓1, 𝑓2) of ℎ𝑒𝑒(𝑥1, 𝑥2) from Fig. 3. 

 

Fig. 5. The full Hilbert transform ℋ{𝐻𝑒𝑒(𝑓1, 𝑓2)} of 𝐻𝑒𝑒 from Fig. 4. 
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Fig. 6. The partial Hilbert transform ℋ1{𝐻𝑒𝑒(𝑓1, 𝑓2)} of 𝐻𝑒𝑒 from Fig.4. 

 

Fig. 7. The partial Hilbert transform ℋ2{𝐻𝑒𝑒(𝑓1, 𝑓2)} of 𝐻𝑒𝑒 from Fig.4. 

 

Fig. 8. The real part 𝐻𝑒𝑒 − ℋ{𝐻𝑒𝑒} of (29) (complex approach) 

 

Fig. 9. The imaginary part −[ℋ1{𝐻𝑒𝑒} + ℋ2{𝐻𝑒𝑒}] of (29) (complex 

approach) 

 

Fig. 10. The 2-D magnitude response 𝐴(𝑓1, 𝑓2) ≡ 𝐴𝑞(𝑓1, 𝑓2) of the 2-D low-

pass filter 

 
Fig. 11. The 2-D phase response 𝜑(𝑓1, 𝑓2) given by (31) (complex approach) 

In next two Figures 12 and 13 we show two non-zero phase 

responses of the system given by (34)–(35). The phase response 

𝜑3(𝑓1, 𝑓2) given by (36) is zero because the impulse response 

ℎ(𝑥1, 𝑥2) is a separable function. 

 

Fig. 12. The 2-D phase response 𝜑1(𝑓1, 𝑓2) given by (34) (quaternion 

approach) 

 

Fig. 13. The 2-D phase response 𝜑2(𝑓1, 𝑓2) given by (35) (quaternion 

approach) 
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In this computer experiment, we have shown that it is possible 

to study the properties of 2-D causal systems simultaneously in 

signal and frequency domains using a classical approach 

involving the 2-D Fourier transformation or a quaternion 

approach. Our intention was to show the equivalence of both 

approaches. Evidently, all presented formulas can be easily 

implemented for other causal 2-D systems. 

 

CONCLUSION 

In this paper, we described two different approaches to the 

theory of 2-D causal systems. The whole theory was presented 

as a generalization of the theory of 1-D causal/anti-causal 

signals. We defined 2-D causal/anti-causal signals and 

presented formulas describing their complex and quaternion 

Fourier spectra. In the complex case, we referred to the Hahn’s 

theory of 2-D analytic signals and to the symmetry property of 

the 2-D Fourier transformation. In the quaternion approach, the 

symmetry relations between signal- and frequency domains are 

more complicated but here also we noticed some interesting 

relations. The most significant is the definition of the 2-D 

quaternion frequency system response accompanied with the 

magnitude- and three phase responses of a 2-D causal system.  

The paper concerns the 2-D analog signals and systems but 

implementation of the described theory for a digital case is 

possible and can be a subject of future research. 
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