
BULLETIN  OF  THE  POLISH  ACADEMY  OF  SCIENCES 
TECHNICAL  SCIENCES,  Vol.  73(6),  2025,  Article  number:  e154733
DOI:  10.24425/bpasts.2025.154733

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

A convolutional neural network based on MSCAM
for intelligent diagnosis of ball screws

Qin WU1,2∗ , Jianxiong LI1 , and Xinglian WANG3

1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
2 CEPE, Centre for Mechanical Efficiency and Performance Engineering, University of Huddersfield, HD1 3DH, Huddersfield, UK

3 Mechanical and Electrical Operation and Maintenance Center, Lanzhou Petrochemical Company, Lanzhou 730060, China

Abstract. In response to the challenge of identifying fault types in ball screws of CNC machine tools, particularly under complex operating
conditions with often low classification accuracy, we propose a convolutional neural network fault diagnosis model that incorporates multi-scale
convolution and an attention mechanism (MSCAM). First, we collect fault data corresponding to various fault types of the ball screw and establish
a comprehensive fault dataset. Next, we apply the S transform to the original data to generate time-frequency diagrams, which serve as input
for the two-dimensional neural network. In this paper, we present a multi-scale convolutional layer integrated with an attention mechanism,
designed to highlight key features in fault information and extract more comprehensive characteristics. Ultimately, the superior recognition and
classification capabilities of the model are validated through experimental datasets, and its robustness is thoroughly analyzed.
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1. INTRODUCTION
With the advent of the Industry 4.0 era, the growth of sectors
such as aviation, automotive, and shipbuilding has led to an
increasing demand for high-speed and high-precision CNC ma-
chine tools [1]. As a critical transmission component of CNC
machine tools, the ball screw pair plays a vital role in maintaining
accuracy and ensuring performance reliability [2]. To enhance
accuracy retention, it is essential to implement intelligent detec-
tion and diagnosis of ball screw faults [3]. Currently, the rapid
advancement of machine learning algorithms has significantly
accelerated progress across various fields. Today, nearly all mod-
ern fault diagnosis technologies depend on machine learning
algorithms [4]. In the realm of fault diagnosis, the application
of machine learning models alleviates the maintenance burden
on researchers and enhances equipment reliability [5, 6].

The working environment of CNC machine tool ball screws
is complex, and the vibration signals they produce are often
contaminated by significant amounts of noise. These signals
exhibit nonlinear and nonstationary characteristics [7], compli-
cating the extraction of feature information and increasing the
difficulty of fault diagnosis. Therefore, to extract fault features
from the vibration signals more comprehensively, it is essen-
tial to analyze the time-frequency domain of the fault signals.
Time domain analysis is suitable for intuitive feature extrac-
tion. Frequency domain analysis captures frequency informa-
tion more comprehensively, but time-frequency analysis can
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distinguish dynamic characteristics and is more suitable for pro-
cessing complex signals. At present, the commonly used time-
frequency analysis methods include short-time Fourier trans-
form (STFT) [8], wavelet transform [9] and S transform [10].
Because the short-time Fourier transform [11] uses a fixed short-
time window function, it is essentially a single-resolution signal
analysis method, and it is difficult to maintain good resolution
in the time domain and frequency domain of nonstationary sig-
nals. Wavelet transform [12] has certain difficulty in selecting
wavelet bases, the data redundancy is serious, and the anal-
ysis results of different wavelet bases are also different. The
S transform [13] is a new time-frequency analysis tool with
adjustable time-frequency resolution, which can meet the time-
frequency analysis requirements of different frequency signals.
Because of its superior anti-noise ability, the S transform is par-
ticularly suitable for the analysis and processing of vibration
signals.

Guo et al. [14] employed the orthogonal matching pursuit
(OMP) algorithm to eliminate harmonic signals while preserv-
ing impulse signals and noise. Wavelet analysis was utilized
to perform a time-frequency transformation on the signal, and
a deformable convolutional neural network was implemented
for feature extraction and classification. The experimental re-
sults indicate that the accuracy of this method can reach 99.9%
across various fault modes, enabling precise identification of
rolling bearing faults. To address the challenge of end-to-end
fault diagnosis, Wu et al. [15] developed a convolutional neural
network that learns features directly from the original vibration
signal before conducting fault diagnosis. The effectiveness of
this proposed method was validated using the PHM (Prediction
and Health Management) 2009 gearbox challenge data and a

Bull.  Pol.  Acad.  Sci.  Tech.  Sci.,  vol.  73,  no.  6,  p.  e154733,  2025 1

https://orcid.org/0009-0008-2411-9248
mailto:llgqz@lut.edu.cn


Q. Wu, J. Li, and X. Wang

planetary gearbox test bench. Liu et al. [16] identified the bear-
ing fault frequency band based on the physical parameters of
the bearing, constructed a sparse wavelet decomposition struc-
ture, and integrated it with a one-dimensional convolutional
neural network for fault diagnosis. In [17], an adaptive convolu-
tional neural network fault diagnosis model based on end-to-end
recognition was employed to diagnose faults in cylindrical roller
bearing cages, addressing the issues of instability and the lack
of impact characteristics in rolling bearing cage fault signals.
However, due to the limited receptive field of the 1D-CNN, in-
sufficient network depth, and the propensity for overfitting dur-
ing the training process, the diagnostic accuracy remains low.
Consequently, the performance of the 1D-CNN in processing
time-frequency signals is inferior to that of the 2D-CNN.

Wang et al. [18] proposed a fault classification method based
on multi-sensor information fusion. In this approach, time-
domain vibration signals from multiple sensors positioned at
different locations are organized into a two-dimensional rectan-
gular matrix. An improved two-dimensional convolutional neu-
ral network (CNN) is then employed to perform signal classifica-
tion. Zhang et al. [19] transformed the original one-dimensional
signal into a two-dimensional image, thereby eliminating the
influence of expert experience on the feature extraction process.
This method facilitates automatic feature extraction and fault
diagnosis through a two-dimensional CNN. Wang et al. [20]
introduced a general bearing fault diagnosis model that converts
the original acceleration signal into a time-frequency image
of the same dimensions. Furthermore, the standardized images
generated by eight different time-frequency analysis methods
are utilized to validate the effectiveness of the proposed method
in two distinct cases. Additionally, Xie et al. [21] combined con-
tinuous wavelet transforms with a two-dimensional CNN for the
fault diagnosis of ball screws. The diagnostic results for various
types of faults indicate that this method can reduce the uncer-
tainty associated with manual feature extraction. Although the
two-dimensional CNN possesses robust image processing capa-
bilities and offers significant advantages in extracting fault fea-
tures and enhancing diagnostic accuracy, it may not adequately
prioritize certain critical features.

Although the aforementioned research demonstrates strong
performance in fault identification under a single working con-
dition, challenges remain in accurately identifying fault types
and achieving high classification accuracy for ball screws op-
erating under complex conditions. To address these issues, this
paper introduces a two-dimensional convolutional neural net-
work (CNN) model integrated with an attention mechanism. The
model transforms the collected one-dimensional vibration sig-
nals into two-dimensional images using the S transform as input.
This time-frequency representation conveys more comprehen-
sive fault information. Additionally, the traditional convolutional
layer has been enhanced, and a multi-scale convolutional layer
has been designed to extract more subtle and significant fea-
tures in the horizontal direction. The integration of the attention
mechanism with the two-dimensional CNN facilitates improved
recognition of ball screw faults in CNC machine tools. The at-
tention mechanism enhances focus on critical features, thereby
increasing the accuracy of fault diagnosis.

2. RELATED THEORIES

2.1. S transform

The S transform is a reversible time-frequency analysis tech-
nique that integrates the features of both the short-time Fourier
transform and the wavelet transform. It overcomes the limitation
of the short-time Fourier transform, which cannot modify the
frequency of the analysis window, and incorporates the multi-
resolution analysis of the wavelet transform while preserving a
direct relationship with the Fourier spectrum [22]. The S trans-
form is defined as follows
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where 𝜏 is time, control the position of the window function
on the time axis, ℎ(𝑡) is the analysis signal, 𝑓 is the frequency,
and 𝑆(𝜏, 𝑓 ) is the time-frequency spectrum matrix obtained by
transformation.

2.2. Convolutional neural network

Convolutional neural networks (CNNs) are specialized neural
networks designed for processing image data. They possess the
capability to learn features and utilize a hierarchical structure
to classify input information in a translation-invariant manner.
The structure of a CNN is illustrated in Fig. 1.

Fig. 1. The structure of CNN

2.2.1. Convolution layer

The convolutional neural network (CNN) extracts local features
from the input data through convolution operations. Each con-
volutional kernel in the convolutional layer is designed to extract
a specific feature, and multiple kernels can operate in parallel to
capture various types of features. The mathematical model can
be expressed as follows
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where  𝑋  is  the  input  of  the  convolution  layer,  𝑀  𝑗  is  the  set  of
output  feature  maps  of  layer  𝑙  −  1,  𝜔  is  the  weight  matrix  of
the  corresponding  convolution  kernel,  𝑏  is  the  bias  term,  𝑙  is
the  number  of  convolution  layers,  𝑖and  𝑗  are  two  connected
neurons,  and  𝑓  is  the  activation  function,  which  can  improve  the
nonlinear  expression  ability  of  the  network.  The  commonly  used
activation  function  of  CNN  is  ReLU,  which  can  be  expressed  as

𝑓  (𝑥)  =  max  {0,  log  [1  +  exp(𝑥)]}  .  (3)
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2.2.2. Pooling layer

The pooling layer, also referred to as the downsampling layer, is
primarily utilized to downsample the output of the convolutional
layer, facilitating dimension reduction. Its main purpose is to
decrease the number of parameters and enhance computational
efficiency. The most common pooling methods are max pooling
and average pooling, which are defined as follows

𝑦 = 𝑝

[
𝑋down (𝑥𝑙−1

𝑖 ) + 𝑏𝑙𝑗
]
, (4)

where 𝑦 is the output of the pooling layer, 𝑋down is the down-
sampling function, 𝑥 is the input, and 𝑏𝑙

𝑗
is the bias term.

2.2.3. Full connected layer

Before the output layer of the network is the fully connected
layer. This layer operates as a fully connected neural network,
integrating the features extracted from the preceding layer for
classification or regression tasks. Each neuron in the fully con-
nected layer is connected to all neurons in the previous layer.
Additionally, each neuron in the network is interconnected with
other neurons at various levels, thereby maximizing the number
of parameters throughout the entire network. Its mathematical
model can be expressed as follows

𝑦 = 𝑓 (𝜔 · 𝑥 + 𝑏), (5)

where 𝑥 is the input matrix, 𝑦 is the output matrix, 𝑓 is the
activation function, and 𝑏 is the bias of the full connection layer.

2.2.4. Multi-scale convolutional layer

In this paper, we propose an enhanced version of the convo-
lutional neural network (CNN), referred to as the multi-scale
convolutional neural network, for the fault diagnosis of ball
screws in CNC machine tools. This method employs convolu-
tional kernels of three different sizes to extract features from im-
ages processed using the short-time Fourier transform, as shown
in Fig. 2. Unlike the traditional vertical deepening approach
(which involves convolution, pooling, and re-convolution), our
method comprehensively extracts subtle and significant features
in the horizontal direction.

from the original image, thereby achieving more accurate and
effective feature extraction and processing of the input data.

2.3. Attention mechanism

The ball screw of CNC machine tools typically operates in en-
vironments subject to significant external loads, resulting in
time-varying and nonlinear characteristics of its vibration sig-
nals. Consequently, under identical conditions, the signal char-
acteristics obtained at different times may vary. Some features
effectively convey fault information, while others may introduce
interference, thereby impacting the model generalization abil-
ity. The attention mechanism adaptively assigns weights to the
features of different signal segments, filters information, empha-
sizes critical fault features, and suppresses irrelevant features.
Its structure is illustrated in Fig. 3. When provided with an in-
termediate feature map, the CBAM module infers the attention
map along two independent dimensions: the channel attention
mechanism and the spatial attention mechanism. It then multi-
plies the attention map with the input feature map for adaptive
feature optimization.

Fig. 3. CBAM diagram

The attention mechanism [23] was originally developed for
machine translation, typically employing self-encoding to fa-
cilitate sequence conversion. This mechanism is inspired by
the study of human vision and has been extensively applied
in natural language processing and various other fields. The
convolutional block attention module (CBAM) comprises two
sub-modules: the channel attention module and the spatial at-
tention module, which focus on channel and spatial information,
respectively. The input image 𝐹 (with high channel dimensions)
is processed through both a maximum pooling layer and a global
average pooling layer to generate a feature map with a height
and width of 1. Subsequently, these feature maps are fed into
two shared perceptron networks, which output results by sum-
ming them sequentially. The channel attention features are then
produced after applying the activation function

𝐹′ = 𝑀𝐶 (𝐹) ⊗ 𝐹, (6)

𝐹′′ = 𝑀𝑆 (𝐹) ⊗ 𝐹′, (7)

where 𝐹 ∈ 𝑅𝐶×𝑊×𝐻 , 𝑀𝐶 ∈ 𝑅𝐶×1×1, 𝑀𝑆 ∈ 𝑅1×𝐻×𝑊 , 𝐹 is the
output image after fusion, ⊗ is the multiplication of correspond-
ing elements,𝐶,𝑊 , 𝐻 represents the number of channels, width
and height, respectively; 𝐹′ is the channel ′ attention ′ mod-
ule picture, 𝐹′′ is the spatial ′ attention ′ module picture, 𝑀𝑆

is a one-dimensional channel attention map, and 𝑀𝐶 is a two-
dimensional spatial attention map.

Fig.  2.  Multi-scale  convolution  layer  diagram

  Through  multi-layer  convolution,  the  network  progressively
learns  and  extracts  more  abstract  and  semantically  rich  features
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2.4. Fault extraction based on MSCAM-CNN
The single-scale convolution kernel often faces challenges in
fully extracting fault features. To address this issue, we pro-
pose the MSCAM-CNN model, which facilitates the extraction
and classification of multi-scale feature information (Fig. 4).
The feature extraction block consists of a convolutional layer,
an activation layer, a batch normalization layer, and a pooling
layer. The classification block includes a fully connected layer
followed by a Softmax layer. Unlike single-scale convolution
kernels, convolution kernels of varying scales can capture fre-
quency features at different resolutions. Consequently, utilizing
multi-scale convolution kernels for fault feature extraction pro-
vides richer feature information, thereby enhancing the accuracy
and robustness of fault recognition.

In the process of collecting the original fault signal, noise
interference is inevitable. Compared to smaller convolution ker-
nels, larger convolution kernels are more effective at suppress-
ing high-frequency noise. Therefore, larger convolution kernels,

specifically (3×3) and (5×5) are employed in the feature extrac-
tion block to mitigate high-frequency noise across multi-scale
information. By utilizing multiple parallel convolution kernels
of varying sizes within the feature extraction block, fault in-
formation features of different scales are extracted and further
abstracted. Ultimately, the fault features are identified and classi-
fied by classification blocks, where the fully connected layer con-
sists of 200 neurons, and the softmax layer contains 10 neurons.

The details of the MSCAM-CNN model presented in this
paper are shown in Table 1. After extracting the features, it is
essential to apply an activation function to enhance the model’s
nonlinear representation. The rectified linear unit (ReLU) func-
tion was chosen as the activation function. The expression is as
follows

Re𝐿𝑈 (𝑥) =
{
𝑥, 𝑥 ≥ 0,
0, 𝑥 < 0,

(8)

where 𝑥 is the output value of the convolution operation.

Fig. 4. The structure of MSCAM-CNN

Table 1
The structure of MSCAM-CNN

Type of layer Parameters

Input [batch, −1,32×32,1] [batch, 1@32*32]

Convolution layer filter = [3×3, 1, 8] strides = [1, 1, 1, 1] padding = “SAME” [batch, 8@32*32]

Pooling layer ksize = [1, 2×2, 1] strides = [1, 2, 2, 1] padding = “SAME” [batch, 8@16*16]

Convolution layer filter = [3×3, 8, 16] strides = [1, 1, 1, 1] padding = “SAME” [batch, 16@16*16]

Pooling layer ksize = [1, 2×2, 1] strides = [1, 2, 2, 1] padding = “SAME” [batch, 16@8*8]

Fully connected layer [batch, 1*6]

Classification layer [batch, 1*6]
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3. BALL SCREW FAULT DIAGNOSIS PROCESS BASED ON
MULTI-SCALE CONVOLUTION AND ATTENTION
MECHANISM

The structure of the MSCAM-CNN fault diagnosis model pro-
posed in this paper is illustrated in Fig. 5. As shown in Fig. 5,
the method presented here consists of three main stages: dataset
construction, feature extraction, and fault identification and clas-
sification. Vibration signals from six different fault types are
collected. Following sliding sampling, the time-frequency di-
agrams are generated, and the dataset is divided accordingly.
In the feature extraction phase, fault information is obtained
through a multi-scale convolution layer and an attention mech-
anism, ultimately leading to the identification and classification
of fault types. A multi-scale convolution kernel is utilized to
integrate features from the data across various time scales, fa-
cilitating the extraction of deep features. The attention mech-
anism effectively highlights significant information within the

horizontal features, thereby amplifying the influential factors
associated with this subset of features. This approach enhances
the model accuracy while reducing the risk of overfitting. The
detailed steps are outlined below.
1. Data preprocessing and division of the fault dataset. The S

transform is employed to convert one-dimensional vibration
signals into two-dimensional images. Concurrently, classi-
fication labels are assigned, and the data is divided into a
training set and a test set.

2. Fault feature extraction. Convolutional kernels of various
sizes (1×1, 3×3, and 5×5) are employed to design a multi-
scale convolutional layer, enabling the extraction of features
from images processed using the S transform.

3. Initialize the network architecture and configure the hyper-
parameters.

4. The training dataset for the model is input into the proposed
MSCAM-CNN, after which the model is trained.

Fig.  5.  Fault  diagnosis  model  based  on  multi-scale  convolution  and  attention  mechanism
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5. The trained MSCAM-CNN model is employed for the fault
diagnosis of mechanical equipment to evaluate its effective-
ness and robustness in identifying faults.

4. EXPERIMENTAL VERIFICATION ANALYSIS
4.1. Experimental data acquisition

The ball screw of the CNC machine tool is used to collect fault
data. The GD4010 screw is employed in the experiment, and its
specific parameters are presented in Table 2.

The experimental device primarily consists of a
YMC121A100 unidirectional IEPE acceleration sensor, a
YMC9216 signal collector, and YMC9800 signal analysis soft-
ware, along with a measured screw, motor, coupling, and power
amplifier (Fig. 6).

Fig. 6. Fault information acquisition test bench

The speed is 1772 revolutions per minute (r/min), and vibra-
tion signals from various fault types are collected. Additionally,
a 16-channel data recorder is employed to gather these vibration
signals. The sample length is 1024, and the sampling interval is
128. The specific method for dividing the training set and test
set is presented in Table 3.

Table 2
Process parameters of GD4010 ball screw

Name Screw
diameter

Ball
diameter

Contact
angle

Screw lead
angle

Unit 𝑑0 [mm] 𝑑𝑏 [mm] 𝛼 [◦] 𝜆 [◦]
Value 40 5.953 45 4.55

Table 3
Fault types and labels

Label Ball screw state Number
of trainings

Number
of tests

1 Normal 700 300
2 Screw raceway wear fault 700 300
3 Rolling element wear fault 700 300
4 Misalignment fault of screw 700 300
5 Screw bending fault 700 300
6 Screw pitting fault 700 300

A sliding window technique was employed to perform non-
overlapping slicing operations on the original vibration signal,
resulting in a time series sample for every 1200 sample points.
Each fault category contains 1000 samples, leading to a total
dataset of 6000 samples. The training set and test set were
divided in a ratio of 7:3.

One-dimensional vibration signals were collected, and the
time-domain waveforms of each fault signal are presented in
Fig. 7. As illustrated in Fig. 7, the time-domain waveform can
only capture the fault characteristics within the time-domain,
and the extracted features do not fully represent the fault char-
acteristics of the screw. Consequently, we employ the S trans-
form to process the time-domain signal, resulting in the time-
frequency diagram shown in Fig. 8. The horizontal axis rep-

(a) Normal state (b) Screw raceway wear (c) Rolling element wear

(d) Screw misalignment (e) Screw bending (f) Screw pitting

Fig. 7. Time-domain waveform of fault signal
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(a) Normal state (b) Raceway pitting fault (c) Rolling element fault (d) Misalignment fault (e) Bending fault (f) Pitting fault

Fig. 8. S transform diagram of fault signal

Fig. 9. STFT diagram of fault signal

resents time, while the vertical axis denotes frequency. It is
evident that the two-dimensional feature matrix generated by
the vibration signal processed through the S transform contains
a richer array of fault information, providing a solid foundation
for subsequent fault classification.

In order to compare the time-frequency conversion effects
of the S transform, the short-time Fourier transform (STFT)
is employed to perform time-frequency conversion on one-
dimensional time series signals. The results are illustrated in
Fig. 9.

4.2. Model performance verification
The hyperparameters of the model cannot be adjusted during
training. They are typically established prior to the training pro-
cess. The optimization and adjustment of hyperparameters play
a crucial role in fault diagnosis research. The batch size for input
samples is set to 32, and the learning rate is 0.01. The widely
used Adam optimizer was selected, and both training and valida-
tion samples were fed into the model for parameter initialization
and training. As training progresses, the model performance
gradually improves. The accuracy of the model during training
is illustrated in Fig. 10.

It can be observed from Fig. 9 that the network achieves
an accuracy of 90% on the training set after approximately 75
iterations, which improves to 99% after 125 iterations. Concur-
rently, as the number of iterations increases, the network loss
value continues to decrease, as illustrated in Fig. 11, indicating
that the network was not overfitted.

Fig. 11. Loss variation curve

To demonstrate the effectiveness of fault diagnosis, a con-
fusion matrix is employed to visualize the model results. The
recognition outcomes for each fault sample are presented in the
form of a confusion matrix, as shown in Fig. 12. The horizontal
axis of the confusion matrix represents the predicted labels of
the screws, while the vertical axis represents the actual labels of
the screws.

From Fig. 12, it is evident that the recognition of screw pitting
is frequently misclassified as other conditions, while the recog-
nition rates for the other five states are exceptionally high. The
fault recognition rate reaches 100%, and the overall accuracy
rate is 99.44%. This demonstrates that utilizing multi-feature
extraction in conjunction with a fusion convolutional neural
network is highly effective for fault recognition.Fig.  10.  Change  curve  of  model  training  accuracy
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Fig. 12. Confusion matrix

t-SNE (t-distributed stochastic neighbor embedding) [24] is a
nonlinear manifold learning algorithm that represents the simi-
larity between high-dimensional spatial data points in the form
of probabilities. This technique utilizes t-SNE diagrams to eval-
uate the fault identification and classification capabilities of the
model. As illustrated in Fig. 13, panel 13a depicts the degree of
aggregation of the input layer feature vectors, while panel 13b
illustrates the degree of aggregation of the classification layer
feature vectors. Prior to identification, the fault features are dis-
persed, exhibiting a high degree of confusion, which compli-
cates the effective differentiation between various faults. How-
ever, following identification, the aggregation of fault features is

(a) Input layer feature vector t-SNE diagram

(b) Classification layer feature vector t-SNE diagram

Fig. 13. t-SNE diagram before and after recognition

enhanced, and the degree of confusion is significantly reduced.
This improvement indicates that the identification and classifi-
cation performance of the model presented in this paper was
enhanced.

In order to verify the effectiveness of the proposed model,
the S transform-CNN model is compared with the S transform-
CNN-SVM model and the S transform-CNN-BiGRU model.
The original one-dimensional data is utilized, and the S trans-
form is applied to generate a time-frequency diagram. The total
number of data iterations is set to 1000.

It can be observed from Fig. 14 that the accuracy of network
fault recognition using multi-scale feature extraction and a spa-
tial attention mechanism is 3.33% higher than that of traditional
convolutional neural networks. Compared to the CNN-SVM and
CNN-BiGRU models, the recognition accuracy of the model
presented in this paper is significantly greater. This indicates
that the proposed model effectively extracts fault features and
demonstrates superior fault diagnosis capabilities.

Fig. 14. Comparison of accuracy of different models

To compare the diagnostic accuracy of various time-freq-
uency images using the model proposed in this paper, we em-
ployed the short-time Fourier transform (STFT) and the S trans-
form for time-frequency image conversion. The results of the
diagnostic accuracy are presented in Table 4. It is evident that
the average diagnostic accuracy of the method proposed in this
paper reaches 98.48%, while the average diagnostic accuracy of
the STFT method is 96.79%. This demonstrates that the method
outlined in this paper exhibits superior performance in terms of
model accuracy.

Table 4
Diagnostic accuracy results

Type of time-frequency diagram Average diagnostic accuracy

S transform 98.48%

STFT 96.79%
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4.3. Robustness analysis

Due to the potential disturbances caused by noise during the
operation of machine tools under real working conditions, it
is essential to consider the impact of noise on fault diagnosis,
particularly concerning the ball screw of CNC machine tools.
Various noises with differing signal-to-noise ratios were added
to the original signal, and the diagnostic results are illustrated
in Fig. 15. The data indicates that when the signal-to-noise ratio
ranges from 40 to 60 dB, the addition of noise to the original
signal results in a slight decrease in accuracy. However, the
accuracy consistently remains above 95%. The model presented
in this paper demonstrates high diagnostic accuracy, indicating
that its structure possesses significant robustness.

Fig. 15. Robustness comparison

This robustness is attributed to the S transform, which con-
verts the vibration signal from the time domain to the time-
frequency domain. This transformation allows for flexible se-
lection of the noise suppression region across various frequency
ranges, effectively mitigating the influence of noise while pre-
serving the essential information of the signal. Additionally, the
convolutional and pooling layers enhance the filtering effects.

4.4. Analysis of generalization ability

Precision, Recall, and 𝐹1_score are introduced as the primary
evaluation metrics for assessing the generalization ability of the
model. These values characterize the adaptability of diagnos-
tic algorithms to various fault modes and evaluate the overall
performance of the model. The specific definitions are as follows

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃 ,

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁 ,

𝐹1_score =
2×𝑃×𝑅

𝑃+𝑅 .

(9)

Among these terms,𝑇𝑃 stands for true positive (normal samples
correctly identified as normal), 𝐹𝑁 denotes false negative (nor-

mal samples incorrectly identified as faulty), and 𝐹𝑃 signifies
false positive (faulty samples incorrectly identified as normal).

By comparing the evaluation metrics of CNN-BiGRU, CNN-
SVM, CNN, and the model presented in this paper, the results
are illustrated in Fig. 16. It is evident that the accuracy, recall
rate, and 𝐹1_score of the model proposed in this paper surpass
those of the other models by approximately 2% or more. This
indicates that the model also demonstrates strong performance
in terms of generalization ability.

Fig. 16. Precision, recall, and 𝐹1_score of different models

5. CONCLUSIONS

In this paper, the S transform is employed to convert a one-
dimensional vibration signal into a two-dimensional time-
frequency image. Multi-scale feature extraction and an attention
mechanism are utilized to extract fault information. Ultimately,
fault recognition and classification are achieved using a two-
dimensional convolutional neural network. The main conclu-
sions are as follows:
1. The time-frequency analysis of nonlinear and unstable vi-

bration signals is performed using the S transform. This
method capitalizes on the advantages of the S transform in
both the time and frequency domains, thereby offering more
comprehensive information for input into two-dimensional
neural networks.

2. The designed multi-scale feature extraction module effec-
tively captures fault information across an extended time
scale while achieving a larger receptive field, thereby en-
hancing the model feature extraction capabilities. The at-
tention mechanism prioritizes the critical features present in
the fault information, which improves the accuracy of fault
diagnosis.

3. The experimental results demonstrate that the proposed
method outperforms traditional machine learning fault di-
agnosis techniques in terms of accuracy and robustness in
fault identification. While the model exhibits exceptional
diagnostic capabilities in the presence of significant noise,
it does not sufficiently evaluate the effectiveness of fault
identification under varying operational conditions. Future
research will focus on fault diagnosis across diverse working
environments.
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