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Abstract.  A drone swarm is a large group of cooperating unmanned aerial vehicles,  which  exhibit some  form of  autonomy.
This  structure allows for an increase in the  complexity of performed tasks while  limiting the mental load put on  the operator.
One  field where drone swarms can prove especially  useful is search and rescue  -  they can reduce the mission time and improve
personnel safety. This  paper presents an offline mission planning module composed of a set of mission scenarios designed  to aid
rescuers in a disaster area: internet provision, area search, and patrol. The internet connection  is  provided by  a  hexagonal mesh
of  drones  spanning  over  the  area.  A  method  for  continuous  drone  replacement  and  charging  is  presented.  The  area  search
scenarios are  based on a cooperative subarea  search by groups of drones using a lawnmower pattern. The patrol scenarios feature
continuous  area  patrol  by  an  unstructured  flock  of  drones,  and  formation  boundary  patrol  (circle  formation  and  V-shape).
The  developed  solutions  are  an  easy-to-implement  base  for  multipurpose  search  and  rescue  drone  swarm  solutions.
Their  functionality can be expanded by the ground control station as desired.
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1. INTRODUCTION 
A robot swarm can be defined as "a group of three or more 
robots that perform tasks cooperatively while receiving limited 
or no control from human operators" [1]. This technology 
proved popular in the aerospace sector, namely - Unmanned 
Aerial Vehicles (UAVs). Applying swarm control to large 
numbers of easy-to-produce, small drones combine 
the advantages of both. Swarm operation allows them to take 
on complex tasks and enforces drone autonomy, thus lightening 
the mental load of pilots and broadening the range 
of applications. Using drones means that the units are small, 
able to operate in various environments, and are largely not 
constrained by terrain. This makes drone swarms an asset 
in many applications - mapping, farming, defense, search and 
rescue, and entertainment. Another important aspect of swarm 
mission planning is efficient and optimized routing and path 
planning. The use of evolutionary algorithms for this purpose 
is presented in [2]. Particle Swarm Optimization (PSO) 
was used in [3], [4]. A comparison between Genetic Algorithms 
and PSO was discussed in [5]. A convex optimization approach 
was discussed in [6]. Drone swarms are a well-researched 
subject in terms of formation flight [7] network architecture    
[8]-[10], collision avoidance [11], and sensor integration [12]. 
Dedicated simulation software has been created to facilitate 
platform development [13]. Direct and indirect control methods 
of swarm control have been analyzed [14]. As the principles 
of drone swarm operation have been established, the focus has 

shifted to more specific applications. From being a minimally 
researched subject in 2019 [1], the field of UAV applications 
in search and rescue has expanded significantly. Surveys have 
been published on the topic [15], [16]. The former breaks down 
the subject by SAR mission stages (analyzing the disaster area, 
localizing targets, swarm navigation, and collision avoidance), 
and the latter - categorizes research papers with regard to the 
environment, equipment, sensors, optimization methods, 
and uncertainty. The core of search and rescue operations is fast 
target localization. This is reflected by a wide variety 
of approaches to this task [17], [18]. For drone swarms 
specifically, bio-mimetic solutions based on stigmergy, and 
flocking have been popular [19-21]. A pigeon-inspired mission 
planning method for search-attack missions was developed 
[22]. A variety of online control algorithms were proposed, 
such as the mixed-integer linear programming [23], the moving 
peak drone search problem [24], and the continuous factored 
coordinated Monte Carlo tree search algorithm [25]. In terms 
of offline algorithms, the topic of coverage path planning 
is well-researched [26], [27]. However, the majority of existing 
solutions are either generic or developed for single-drone 
operations [28]-[33]. An offline path planning solution was 
developed, where the area is partitioned for a desired number 
of UAVs and each subarea is searched by a single drone [34]. 
It should be noted, however, that target localization is not the 
only task performed in search and rescue operations and, once 
the swarm has been deployed in the disaster area, it could prove 
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useful by performing other functions as well. One such 
assignment would be providing network coverage over an area. 
A method for deploying a mobile sensor network was presented 
in [35]. Another task could be surveillance/patrol. 
UAV applications in this field are more common, for example: 
drone systems were developed for wildfire detection [36], [37], 
a platform for autonomous patrol with a manual override option 
was created [38], and a border patrol solution for a group 
of drones was proposed. All the above, however, are isolated 
solutions. The multi-functionality of the drone swarm is only 
possible if the platform for managing SAR swarm operations 
includes a variety of missions. To the best of the authors' 
knowledge, no such platform has been developed so far. 
This paper aims to design a set of mission scenarios for a drone 
swarm, crafted to aid personnel during search and rescue 
operations over a disaster area. Three mission categories have 
been developed: internet provision, area search, and patrolling. 
Furthermore, the scope of this paper has been limited to offline 
mission planning. The main advantages of this approach 
are easy implementation, few onboard hardware requirements, 
and easy supervision. Since the mission planning stage takes 
place on the ground control station, onboard computational 
power can be fully allocated for swarm management - collision 
avoidance, network connectivity, sensor data analysis, etc. 
Furthermore, the operator can verify drone routes during 
the mission planning stage and, later, monitor the progress 
of the mission. The following research was a first phase of the 
project called “Starling”. The aim of the project was to develop 
an algorithm that would allow to fly a set of swarm drones and 
perform a predefined set of missions. This approach 
significantly different compared to the drone shows where 
actually there is no logic and cooperation in between the units, 
and they are just a set of individuals flying parallel. 
The presenting approach gives a first approach to develop and 
implement algorithms for drones’ swarm. 

2. MATERIALS AND METHODS 
The mission scenarios were designed for a swarm of several 
dozen drones developed as a part of the same research project. 
The swarm is comprised of "leaders" and "starlings". The leader 
drones can carry payload and various sensors, whereas 
the starling drones are followers that act as relays for providing 
the internet connection. The mission scenarios are partially 
optimized in terms of swarm network architecture - they 
comply with the requirements of the internet provision module, 
but no constraints are placed on the drone - GCS connection 
(at the time when the scenarios were developed, no such 
requirements were known). It is assumed that the drones 
operate within the GCS connection range and a continuous data 
exchange between the units is possible. The main goal for 
the mission planning module is to be versatile and require 
minimal user input. The mission scenarios must be highly 
automated and parameterized with regard to the drones’ 
specifications. 

2.1. Internet providing 
The first mission scenario aims to provide an internet 
connection by spreading a hexagonal mesh of drones over 
a specified area. It is inspired by the distribution of relay 
towers [39] and the node placement for ad-hoc networks for 
optimal planar area coverage [40]. The main constraint 
imposed by the swarm internet provision module was that the 
distance between every two neighboring drones must be equal 
to d. The structure of the mesh is shown in Fig. 1. To comply 
with the constraint, the drones are placed in the vertices 
of a grid of equilateral triangles [40]. Each cell is comprised 
of one leader (in the center) and six starlings (spaced radially). 
It is assumed that the distortion of the mesh caused 
by differences in flight altitude of drones is negligible. 
As such, the mesh calculation can be simplified to two 
dimensions. The coordinates of the starlings with regard to the 
leader are defined in (1): 

 �𝑁𝑁𝑖𝑖
= 𝑁𝑁𝑙𝑙 + 𝑑𝑑 sin(60°𝑖𝑖 + 𝛼𝛼)

𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑙𝑙 + 𝑑𝑑 cos(60°𝑖𝑖 + 𝛼𝛼)
 (1) 

where El and Nl are the leader’s coordinates, i is the starling’s 
ordinal number, d is the distance between neighboring drones, 
and α is the orientation of the cell (measured from the flat-top 
position). All mesh cells have the same orientation. 
The coordinates of neighboring cells’ leaders (Nn, En) with 
regard to the specific leader are defined as presented in eq. (2): 

�
𝑁𝑁𝑛𝑛 = 𝑁𝑁𝑙𝑙 + 𝑑𝑑√7 sin �60°𝑖𝑖 + 𝛼𝛼 + tan−1 �√3

5� ��

𝐸𝐸𝑛𝑛 = 𝐸𝐸𝑙𝑙 + 𝑑𝑑√7 cos �60°𝑖𝑖 + 𝛼𝛼 + tan−1 �√3
5� ��

 (2) 

There is a set of functions that covers the subject of the 
simulation research part divided into 12 main sections. 
The structure of pseudocode and description of algorithms are 
presented in Appendixes (Algorithms 1-12). Where the basic 
logic of operation has been presented. The algorithms consist 
of: BSF mesh generation, Cell append condition set, 
generating the cells, connecting the ground control station to 

 
Fig.1. The structure of the hexagonal mesh for internet provision 
(orientation α = 00). 
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the mesh, automated replacement path, area patrol, circular 
formation 1, 2 and V-shaped formation 1 and 2 and finally 
boundary patrol. All of those algorithms are part 
of simulation. A Breadth-First Search-based (BSF) algorithm 
was developed for grid generation (Algorithm 1). Starting 
from a specified location (the base of operations), the cells are 
appended iteratively within the Area of Operations (AOO). 
This algorithm is presented in more detail in [41]. Three cells 
append condition options were implemented (Algorithm 2). 
Starlings that do not contribute to area coverage can be 
removed from the grid to further reduce the number 
of required drones. Redundancy occurs when the unit 
is further than d/2 from the AOO boundary. Algorithm 3 
presents the cell generation procedure with the redundant 
starling removal. Since the mission scenarios are to be used 
in disaster areas, it should be assumed that the base 
of operations is set up outside the AOO. This entails the 
necessity to connect the base of operations to the AOO via the 
mesh to maintain network connectivity. This is realized 
by appending a rectangular path to the AOO (Algorithm 4). 
This generates additional connection made of the drones, 
so the connection is leaded from ground control station to the 
AOO. It must connect the base of operations to the AOO via 
the shortest possible line segment. The width of the path 
is user-defined to accommodate various circumstances 
– a wider path offers a more stable connection, but a narrower 
path uses fewer drones. The orientation of cells is chosen 
exhaustively by iterating through 𝛼𝛼 ∈ (0°, 60°) with a fixed 
interval and choosing the best orientation by the following 
criteria: 

1. The best area coverage, 
2. The fewest leader drones, 
3. A mixed condition (a weighted mean of the two 

former conditions, where w1 is the area coverage 
weight and w2 is the leader number weight). 

The scenario handles a drone limit, which can be enforced 
either within the scenario (the BFS stops when there are either 
no leaders or no starlings available) or by the ground control 
station (a full mesh is generated, but the bottom-most entries 
are discarded to comply with the drone limit). Algorithm 5 
summarizes the full mesh generation procedure and sets the 
proper positions for the drones to generate the mesh. Since the 
anticipated duration of the internet provision mission exceeds 
the typical battery capacity of the drone, a method 
for continuous drone replacement was developed. 
A Hamiltonian path (or paths) is found for the leaders - the 
replacement path. For simplification purposes, it is assumed 
that the removal of redundant starlings does not occur. 
Full cells move along the leader replacement path. If the 
redundant starling removal were in place, a separate 
replacement path for starlings could be calculated 
to accommodate partial cells (with fewer than six starlings). 
The cells move synchronously by one position along the 
replacement path with a fixed time interval. The hover time 
over each position should be longer than the traverse time 
between positions. Simultaneously, the drones must complete 
the whole replacement path within a single battery charge. 
Therefore, an automatic mesh division and a generation 
of multiple paths were implemented. The maximum length 
of the replacement path is defined as in equation (3): 

 𝑛𝑛𝑑𝑑𝑑𝑑 = 𝜀𝜀 𝑡𝑡𝑥𝑥𝑣𝑣−𝑙𝑙𝑐𝑐2
𝑑𝑑

. (3) 

where ndp is the number of cells in the replacement path, 
tx is the single charge flight duration, v is the average flight 
velocity, lc2 is twice the distance between the base 
of operations and the mesh centroid (to account for a potential 
commute between the charging station and the path 
endpoints), and ε is a corrective coefficient. Based on this 
relation, the required number of replacement paths 
is calculated presented in eq. (4). 

 𝑛𝑛𝑟𝑟𝑟𝑟 = � 𝑁𝑁
𝑛𝑛𝑑𝑑𝑑𝑑

� (4) 

where N is the total number of cells in the mesh. The mesh 
is then divided into nrp sub meshes using the k-means 
algorithm. For each sub mesh, a Hamiltonian path is found 
with endpoints that are closest to the base of operations. 
The graph, for which the Hamiltonian path is found, is defined 
as follows: the leaders are nodes, and the neighboring leaders 
are connected by edges. If a leader only has one neighbor, 
additional edges are added connecting the leader to its 
neighbor's neighbors. Only the neighbors that are on the edge 
of the mesh (have fewer than six neighbors) are added. 
By limiting the number of edges added, the distortion of the 
replacement path shape is minimized, while increasing the 
probability of finding the Hamiltonian path. To maximize the 
mesh connectivity as it is rolled out and rolled in, these 
maneuvers should be performed along the replacement paths. 
The automatic generation of replacement paths is shown 
in Algorithm 6 which find the best path using Hamiltonian. 

2.2. Area Search 
The area search scenarios deal with the key part of search and 
rescue operations - target localization. The developed 
scenarios have been described in detail in a separate 
publication [26] however, they will be summarized here for 
clarity. The area search scenarios are based on the cooperative 
parallel track (lawnmower) search of subareas by groups 
of drones. In the first scenario, the AOO is divided into 
subareas of equal size using Voronoi tessellation. 
The subareas are searched simultaneously by groups 
of drones, whose size is proportional to subarea priority. 
The lawnmower pattern is oriented as per the rotating calipers 
algorithm. This method significantly reduces the search 
mission time. In the second scenario, a group of drones 
searches the subareas of equal size consecutively, while 
another group of drones patrols the boundary between 
the searched and unsearched areas. As before, the subareas 
are generated via the Voronoi tessellation, and the search 
pattern orientation is based on the rotating calipers algorithm. 
This solution improves the precision of search, by accounting 
for targets leaving the AOO. The third scenario 
is an application of the simultaneous subarea search 
to a mountainous terrain, inspired by the contour search 
pattern. The AOO is divided into subareas based on the shape 
of the mountain range. The size of search groups 
is proportional to the subarea priority and the subarea size. 
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The parallel track pattern is perpendicular to the mean subarea 
altitude gradient. 

2.3. Patrolling 
The patrolling scenarios provide basic surveillance 
functionalities - an area patrol and a boundary patrol. The area 
patrol scenario draws upon two major sources, both designed 
for forest fire detection. The first source [32] uses fixed-wing 
and rotary-wing UAVs to patrol the AOO from a high altitude. 
The fixed-wing drone patrols the AOO continuously 
and, if a fire is spotted, the rotary-wing drone is dispatched 
to the point of interest. Upon closer inspection, the fire alarm 
is either confirmed or canceled. This method decreases the 
number of false-positive alarms. The second source [36] 
detects and predicts forest fires using a fleet of drones. 
A digital map of the AOO is built using satellite data. Then, 
a fire risk distribution and a short-term prediction of the fire 
propagation are calculated for every cell of the AOO. 
Based on the results, a Voronoi tessellation of the AOO 
is performed, where a Voronoi centroids are waypoints. 
The fleet performs continuous patrol over the AOO using 
the waypoints. In the developed method, a fleet of drones 
patrols the AOO continuously via waypoints. 
Whenever  anomaly is detected, a single drone is dispatched 
from the main group to investigate - either confirm or cancel 
the alarm. The method for generating waypoints is analogous 
to [31] - based on an approximate cellular decomposition 
of the AOO. The cells are square-shaped, their edges have 
a length of parameter a defined in eq. (5). 

 𝑎𝑎 = 𝑑𝑑𝑠𝑠
√2�  (5) 

where a is the square's edge length and ds is the cumulative fleet 
sensor range. The cell size determines the waypoint density and 
is parametrized to provide full area coverage. The value 
of ds should be approximated based on the behavior and shape 
of the fleet resulting from the online control algorithms and the 
drone sensor range. For each cell, a center of priority 
(center of mass) is found based on the user-defined priority 
map. The calculated points are the fleet waypoints. They are 
located near high-priority areas while being constrained by cell 
boundaries. Unlike [36], to form a patrol path, the waypoints 
are ordered by finding a Hamiltonian cycle in a graph where the 
waypoints are nodes and edges connect the priority centers 
of neighboring cells. Additional edges are added for single-
neighbor nodes (as in the replacement path generation 
for internet provision). Algorithm 7 presents the course of area 
patrol mission planning. 
The boundary patrol scenario utilizes basic formation shapes to 
increase the combined field of view of drone sensors. 
The formations are defined in a local 2D coordinate system xy, 
whose center coincides with the formation's center of mass 
and the y axis is oriented along the formation's flight direction. 
The drone positions and sensor orientations in the global 
coordinate system (WGS-84 and NED) are obtained 
by translating and rotating the formation's frame of reference. 
The sensors used in the algorithms may be represented 
as cameras looking forward to covering the biggest area. 

However, in typical use they are not necessarily directed 
towards ground, but they are pivoted with some angle respected 
to the ground [42, 43]. Thus, the cover area may vary depending 
on the formation. Four formation shapes were defined, each 
with an automated generation method presented as a separate 
algorithm: 

1. circular, drones facing outward (Algorithm 8), 
2. circular, drones facing outward and inward 

(Algorithm 9), 
3. V-shape (Algorithm 10), 
4. V-shape with a rear guard (Algorithm 11). 

Examples of formations are presented in Fig 2. Drone positions 
are marked with circles and sensor orientations with arrows. 
The patrol takes place along a user-defined route (a polyline) 
in a loop. The formation flies in straight lines and turns 
in waypoints. The boundary patrol mission scenario 
is described in Algorithm 12. 

 
Fig.2. The four formation shapes: (a) The circular formation with 
drones facing outward. (b). The circular formation with drones facing 
outward and inward. (c) The V-shape formation. (d) The V-formation 
with a rear guard 
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3. SIMULATIONS 

3.1. Mission planning 
The missions were divided into two types: Internet providing 
and patrolling. Fig 3 shows an example result of mesh 
generation for the three cell append conditions. The conditions 
are ordered from providing the smallest to the greatest area 
coverage, and simultaneously from the least to the most cells 
in the mesh. The second cell append condition 
is recommended, as it offers exceptionally good area coverage 
while allowing a reduction in the number of drones in the 
mesh. An example of a mesh after the redundant starling 
removal is presented in Fig. 4. In Figure 5 it is presented a 
mesh generated for a base of operations outside the area of 
operations. The rectangular path connects the base to the 
AOO. The location of the first leader in the mesh coincidences 
with the base of operations. The orientation interval for 
iteration was set at 50, the mixed condition weights at w1 = 0.7 
and w2 = 0.3. Figure 6 shows an example of drone limit 
enforcement. There were not enough starlings, which resulted 
in an incomplete mesh which could a case when the area 
is to be covered is significantly large. The rightmost cell has a 
reduced number of drones. Additionally, the full cycle of the 
movement of cells along the replacement path have been 
simulated. During the operational phase (f), the leading drone 
moves from the last path position to the charging station, 
while a new drone moves from the charging station to the first 
path position. 
3.1.1. Patrolling 
Figure 7 shows the result of the automatic replacement path 
generation for three paths. This functionality is crucial, 
especially for events where drones must be operated longer than 
the battery allows to. Then the replacement algorithm is useful. 
In Figure 8 it is presented an example of V-shaped formation 
boundary patrol. Drone positions are marked with circles, 
sensor orientations with solid lines, and the AOO with dashed 
lines. The positions and orientation colors alternate for 
consecutive waypoints. The formation flies in straight lines, 
only turning in the patrol route polyline vertices. 

 
Fig.4. A mesh after the redundant starling removal (α = 100) 

 
Fig.6. An example of drone limit enforcement 

 

 
Fig.3. The cell appends conditions for an example mesh (α = 00): (a) 
Leader in the AOO. (b) Any starling in the AOO. (c) Any boundary 
vertex in the AOO. 

 
Fig.5. A mesh with the operation’s start outside the AOO (α = 300) 
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4. FLIGHT TESTS 
To assess if the system and algorithms developed during the 
research the set of flight tests have been conducted on Warsaw 
University of Technology Aviation Center test airfield 
presented in Fig 9. This is the unique infrastructure that allows 
us to evaluate and verify the algorithm in a safe way. 
The Leader drone was launched using an application operated 
on a mobile phone and flew according to commands issued 
by the operator. The Followers conducted an autonomous 
mission of following the Leader. After takeoff, the formation 
took the form of a hexagon as it was defined in the beginning 
of the research paper. The drones followed the Leader to its 
position and after the Leader took off the resto of the six drones 
took off and followed the Leader as well, presented in Fig. 10. 
The series of drones performing the flights in groups to verify 
the implemented algorithms and communication have been 
done. The scenario with four sets of drones (24 drones) were 
performed to cover the area for internet delivery. The positions 
of the platforms are presented in the Figure 11 – a screenshot 
from the Ground Control Station, from the drones were 

controlled. The tests proved that the algorithms work and are 
dependable, as well as the communication between drones and 
Ground Control Station.  

5. DISCCUSION 
The mission planning example results show that the mission 
scenarios perform as expected. The developed solutions can 
form the basis of mission planning for the platform. However, 
at the time the algorithms were developed, no data concerning 
the performance of online algorithms, network architecture, 
or GCS functionality were available. This is both a convenience 
and a hindrance. To accommodate for the unknown 
functionality of the swarm components, the mission planning 

 
Fig.8. An example of a boundary patrol path 

 
Fig.9. Set of drones before the flight at Aviation Center Laboratory 

 
Fig.11. Set of four groups of drones performing area coverage 
scenario 

 
Fig.7. An example of the automatic replacement path generation (3 
paths) 

 
Fig.10. Set of drones in-flight 
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was prepared to be as flexible as possible. Since the algorithms 
are offline and only generate basic output, the GCS can 
introduce additional functionalities to build upon the mission 
planning base. For example, mission reconfiguration is possible 
whenever a drone is lost, and no replacement is available - the 
GCS only must run the mission scenario for modified 
parameters and send new data to the available drones. On the 
other hand, the limitations put on mission planning make 
it impossible to incorporate any functionality besides path 
planning directly into the scenarios. For the developed 
solutions, the following improvements can be made. In the 
internet provision mission, the replacement path generation 
could be expanded by new methods. Currently, there 
is no guarantee of the Hamiltonian path existence for the mesh 
(or its fragment). A functionality could be added in the GCS, 
where a user could manually modify graph edges to ensure the 
proper generation of the replacement path. Otherwise, a greater 
selection of sub mesh division methods could increase 
the chance of finding all Hamiltonian paths. The new methods 
could be developed to better account for path endpoint locations 
- the endpoints should be as close to the charging station 
as possible. Furthermore, the downside of the current k-means-
based mesh division method is that the number of cells assigned 
to each centroid is not limited. Even though the number 
of centroids is chosen to fit the maximum replacement path 
length, the calculated paths could be longer. Currently, this can 
only be controlled by the corrective coefficient. A modification 
could be introduced to the k-means algorithm to equalize the 
number of sub mesh cells, or to limit the maximum number 
of cells assigned to the centroid. Furthermore, a replacement 
path for starlings should be generated and executed following 
the network and online control algorithm specifications. In the 
patrol missions, the route-finding method for area patrol could 
be improved. Since the current solution is based on finding 
the Hamiltonian cycle in the graph, which is not guaranteed, 
the method should be either modified or expanded, as in 
the replacement path generation. A new method for ordering 
waypoints into a route could be proposed, where the frequency 
of waypoint appearance in the route is dependent on e.g., 
the mean cell priority. Furthermore, the formation shape for 
area patrol should be defined more precisely whenever more 
data is available. The formation boundary patrol functionality 
could be extended to allow multi-formation patrol and 
formation reconfiguration. This would be provided by the GCS 
based on the repeated mission scenario calculation for different 
parameters. 

6. CONCLUSIONS 
Within the scope of this paper, a multi-function mission 
planning module was developed for a swarm of drones. 
The module consists of a set of mission scenarios from three 
categories: internet provision, area search, and patrolling. The 
internet provision scenario spans a hexagonal mesh over 
a specified area to provide an internet connection. Within this 
scenario, a method for the continuous replacement of drones for 
charging was developed. The area search scenarios are based 
on the cooperative subarea search by groups of drones and 

feature simultaneous search, consecutive search with patrolling, 
and mountain search. The patrol scenarios are made up of area 
patrol by an unstructured flock of drones and boundary search 
by rigid formations. 

The developed solutions form a firm base 
for the development of search and rescue drone swarm 
solutions that can aid personnel in more than target localization. 
The methods can be built upon and their functionality 
expanded. They are easy to implement, as they are ground-
station-based. While they require tweaking to match 
the requirements of the specific swarm structure, they show 
potential in disaster area management. 

 
APPENDIX 
 The detailed algorithms explanation in the following tables. 
There is a logic behind every algorithm presented in the paper. 
The detailed information is also in the text. The appendix 
consists of 12 various algorithms used for research. 
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