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Highlights
« Industrial areas cause salinisation of river water.

« Point-source wastewater discharges are hot spots for water deterioration.
« Riparian vegetation is crucial in reducing N, P, and C compounds in rivers.

Abstract: With the ongoing expansion of urban areas globally, industrial zones are increasingly integrated into city
landscapes. These zones, characterised by a high density of industrial facilities from diverse sectors, can pose significant
threats to the natural environment, particularly to aquatic ecosystems. This study aims to assess the influence of an
urban area containing a designated industrial zone on spatio-temporal variations in river water chemistry and to
identify critical zones of water quality degradation. The research was conducted on the Drwinka River, located in
Niepolomice, southern Poland.

Findings revealed abrupt shifts in water chemistry along the river, primarily driven by point-source wastewater
discharges. Industrial activity led to a marked increase in water salinity, largely due to elevated concentrations of sodium
chloride (NaCl). Additionally, wastewater introduced organic and inorganic forms of nitrogen, phosphorus, and carbon
into the river, though the negative effects of these pollutants diminished downstream. This attenuation was attributed to
the buffering capacity of riparian vegetation, particularly aquatic plants (hydrophytes). Seasonal changes in catchment

biological activity also had a significant impact on the concentrations of biogenic elements in the river water.
Overall, the study underscores the importance of riparian zones in mitigating pollution and highlights the need
for careful monitoring and management of industrial discharges within urbanised catchments.
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INTRODUCTION

According to data from the United Nations (2019), approximately
56% of the world’s population currently resides in cities, and by
2050, this percentage is expected to increase to around 68%,
reaching approximately 7 billion people. In addition to the
growing urban population, cities are also expanding in terms of
area. New districts, residential developments, and infrastructure
are being established. As cities grow, the demand for spaces to

conduct industrial activities also increases. Consequently, many
cities worldwide are creating large industrial zones, often in the
form of so-called special economic zones, which offer favourable
conditions for business operations, such as tax incentives and
lower labour costs, supporting industrial development and
attracting investments.

Urbanisation is associated with the intensification of human
activities, which increase ecological risks and negatively impact
the environment (Zhai et al., 2020). Numerous studies indicate
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that urbanisation leads to a reduction in biodiversity (Piano et al.,
2020; Banaszak-Cibicka and Dylewski, 2021) due to the loss of
natural habitats and changes in ecosystem structures (Hu, Zhang
and Li, 2022), air pollution (Liang and Gong, 2020), increased
noise levels (Ulloa et al., 2021), landscape fragmentation (Xu et al.,
2018), and changes in aquatic environments (Strokal et al., 2021,
Krodkiewska, Spyra and Cieplok, 2022). Industrial zones, in
particular, have an intense and negative impact on the natural
environment as they often concentrate diverse branches of industry
within a confined area. The presence of industrial zones in cities
significantly alters the water chemistry of nearby water bodies.
Industrial zones contribute to the deterioration of water
quality by introducing various chemical pollutants. For example,
studies have shown elevated concentrations of nitrogen and
phosphorus compounds, such as ammonia-nitrogen, phosphates,
and total suspended solids, in downstream sections of rivers near
industrial zones (Glinska-Lewczuk et al., 2016; Jolejole, Cayetano
and Magbanua, 2021). Nevertheless, elevated concentrations of
biogenic compounds in river waters also originate from
agriculture. For example, studies by Brysiewicz et al. (2019)
indicate increased concentrations of N and P compounds in small
agricultural catchments in central and northwestern Poland, as
a result of the dumping of fertiliser compounds. Additionally,
high concentrations of heavy metals such as chromium (Cr) and
cadmium (Cd) have been detected in water and sediments,
significantly impacting aquatic environments (Li et al, 2023).
Research on the Kor River indicates that the presence of various
industrial facilities, such as petrochemical plants, tanneries and
coal mines, significantly increases the concentrations of heavy
metals (Cd, Cr, Cu, Mo, As, and Ni) in the water (Guéguen et al.,
2004; Mokarram, Saber and Sheykhi, 2020). Industrial activity
also leads to microbiological contamination, which poses a long-
term threat to water sources. For instance, the Zenne River in
Brussels exhibited high levels of faecal contamination in its
downstream sections below wastewater treatment plants, while
combined sewer overflows in the river’s catchment were
responsible for a significant increase in Escherichia coli and
enterococci in the water during rainfall events (Ouattara et al.,
2014). Studies by Lenart-Boron et al. (2016) also indicate that
wastewater treatment plant discharges negatively impact water
quality, especially in terms of microbiological contamination. In
the studied Bialka River, an increase in the number of E. coli
bacteria was observed as a result of wastewater treatment plant
discharges. Significant spatial differences in water quality can also
be observed in industrial areas, with downstream sites generally
exhibiting poorer water quality compared to upstream sites. This
is due to the accumulation of pollutants as water flows through
industrial zones (Liu, Shen and Chen, 2018). Nowadays,
environmental awareness is growing, along with efforts to
improve the state of the natural environment, including the
quality of surface waters. Water pollution poses a significant
challenge for both ecosystems and water management, which is
why increasing emphasis is placed on implementing solutions
that can positively impact water chemistry and mitigate its
deterioration. One of the key approaches is the development of
blue-green infrastructure, which helps reduce pollutants flowing
into rivers and lakes, improves water retention, and enhances
biodiversity (Dudziniska, Dawidowicz and Gross, 2023). Research
clearly confirms that riparian vegetation plays a crucial role in
bioremediation, i.e., the natural purification of water. Vegetation

zones along rivers, lakes, and wetlands act as natural filters,
capturing and neutralising pollutants before they enter surface
waters (Tralka, Blachowicz and Jakubiak, 2023). Hydrophytic
plants play a particularly important role in this process, as they
effectively absorb excess nutrients such as N and P originating
from agricultural and industrial activities (Milke, Galczyniska and
Wrébel, 2020). Additionally, vegetation reduces the amount of
suspended solids in the water by trapping soil particles and
sediments from erosion. This leads to improved water clarity,
which is crucial for aquatic organisms, especially submerged
plants that require access to sunlight. Moreover, vegetation zones
serve a stabilising function - their roots strengthen riverbanks
and lake shores, reducing erosion and limiting the silting of

riverbeds (Camporeale et al., 2013).

Research on water quality and chemistry in industrial zones
is extremely important as it allows us to understand the impact of
industrial activity on aquatic environments in areas where many
facilities from various industrial sectors operate in relatively small
spaces. These specific areas, characterised by intense economic
activity, are found worldwide. Water pollution in industrial zones
is a problem observed in various parts of the globe. Moreover,
water quality issues caused by industrial activities can spread
beyond local industrial zones, affecting water resources on a larger
spatial scale. By analysing specific cases and developing effective
mitigation measures in one region, it is possible to create
universal strategies that can be applied in other areas to prevent
environmental degradation on a broader scale.

The aims of the study are:

1) to determine the impact of an urban area with a special in-
dustrial zone on the spatio-temporal changes in water chem-
istry along the river course,

2) to identify the factors and hotspots where water quality deteri-
orates or improves along the river course.

STUDY MATERIALS AND METHODS
RESEARCH AREA

The study was conducted in the upper section of the Drwinka
River, a right tributary of the Vistula River located in southern
Poland (Fig. 1). The investigated catchment area of the Drwinka
River covers 17 km?. Land use in the catchment is dominated by
industrial areas 51%, with grasslands covering 36%, forests
occupying 13%, and service-residential buildings making up
10% of the area. Administratively, the studied catchment is
located in Niepotomice. The Niepotomice municipality is one of
the fastest-growing municipalities in Poland. Due to its favour-
able location, good transportation accessibility, and developed
infrastructure, the city has become an investment destination for
more than 80 large companies within the Special Economic Zone-
Niepotomice Investment Zone (Pawlak, 2019). The zone covers
an area of 542 ha and hosts major enterprises primarily from the
automotive, logistics, food, and machinery industries. In addition
to large industrial plants, according to data from Statistics Poland
in 2023, approximately 4,500 other businesses, mainly in the
service sector, operate in the Niepotomice municipality (GUS, no
date). The study was conducted at 11 measurement points located
along the course of the Drwinka River and at 2 wastewater inflow
sites (sites 4 and 9) from the industrial zone.
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Fig. 1. Study area and localisation of study sites; source: own study

FIELD STUDY AND LABORATORY ANALYSIS

The research was conducted monthly in 2023-2024, with a total
of 24 measurement series carried out. In the field, basic
physicochemical parameters of the water were measured using
a handheld WTW Multi 3630 IDS meter, including water
temperature (T), pH, electrical conductivity (EC), concentration
of dissolved oxygen (DO) and oxygen saturation (DO%). Water
samples were collected in sterile 0.5-liter polyethylene bottles for
laboratory analyses to determine their chemical composition.
Before analysis, the water samples were filtered through a 0.45 pm
pore-size membrane to remove suspended solids and particulates.
The chemical composition of the water was analysed using ion
chromatography. A DIONEX 2000 ion chromatograph with AS-4
autosampler was used for the chemical analysis. Fourteen ions
were identified in the water samples, including major ions (Ca**,
Mg**, Na*, K, HCO5", SO,*, CI), nitrogen and phosphorus
compounds (NH,*, NO*>~, NO, ", PO,*"), and trace elements (Li*,
Br™, F7). Water mineralisation (TDS) was calculated as the sum of
the determined ions. A Vario TOC CUBE analyser with
interchangeable carousels for automated liquid sample collection
was used to measure total organic carbon (TOC), inorganic
carbon (TIC), total carbon (TC), and total nitrogen (TN).
Additionally, the concentration of organic nitrogen was calcu-
lated as the difference between total nitrogen (TN) and inorganic
nitrogen (TIN). The dissolved oxygen deficit (DO deficit) was also
calculated. The method and accuracy of chemical analyses were
carried out in accordance with the standards: PN-EN ISO 14911
(Polski Komitet Normalizacyjny, 2002), PN-EN ISO 10304-1
(Polski Komitet Normalizacyjny, 2009), and PN-89 C-04638/02
(Polski Komitet Normalizacyjny, 1990).

STATISTICAL ANALYSIS

The study employed ANOVA analysis and Scheffé post-hoc test
(p = 0.05) to determine the occurrence of seasonal changes in
water chemistry. Pearson’s linear correlation coefficients
(p = 0.05) were calculated between physicochemical parameters
of the water. To identify the factors shaping water chemistry in
the Drwinka River catchment, Principal Component Analysis
(PCA) was used. The Kaiser criterion was applied to select the
principal factors. Statistical analyses were conducted using the
STATISTICA 13 software.

RESULTS AND DISCUSSION

CONTENT AND SEASONAL CHANGES
OF SELECTED PHYSICO-CHEMICAL PARAMETERS IN WATER

The values of river water quality parameters depend on various
factors and processes occurring on temporal and spatial scales.
The basic statistics of the physico-chemical parameters of the
studied waters in the Drwinka River catchment are presented in
Table 1. The average water temperature was 10.6°C, the pH was
slightly alkaline at 7.68, and the conductivity measured EC = 1251
uS-cm™'. Among the cations, the highest average concentration
was found for Na* ions, while among the anions, HCO;™ had the
highest average concentration. Among the analysed trace
elements, F~ ions had the highest average concentrations, while
Br™ ions had the lowest, with concentrations in all samples below
the detection limit; therefore, they were not included in Table 1.

Table 1. Basic statistics of the physico-chemical parameters of
water in the Drwinka catchment

Parameter Unit Mean | Min. Max. | CV (%)
T °C 10.6 1.0 26.2 49.3
pH - 7.68 6.57 8.6 53
EC pS-cm ™! 1,251 239 | 3,906 | 432
DO 8.5 1.7 158 30.1
TDS 1033 184 2836 39
Ca?* 1057 | 33.12 | 1764 | 203
Mg 17.0 4.84 32.7 27.6
Na* 1663 | 856 | 827.8 | 80.0
K* 10.4 2.89 20.8 26.7
Lit 0.04 0.00 0.2 57.5
HCO;” 533.9 | 11323 | 1,474.6 | 42.2
S04 70.1 | 1177 | 1685 | 39.2
cr 1246 | 952 | 8669 | 99.3
F mg-dm™> 0.2 0.08 0.7 34.5
NH,* 0.4 0.00 201 | 2799
NO;~ 3.8 0.00 14.1 70.2
NO,~ 0.1 0.00 0.9 124.2
PO,>" 0.1 0.00 3.8 453.6
TIN 12 0.01 15.6 84.9
N 2.1 0.44 16.9 63.3
TON 0.9 0.00 7.7 108.3
TIC 97.1 | 3399 | 4286 | 549
TC 1058 | 40.75 | 4752 | 55.0
TOC 9.0 0.00 474 88.9

Explanations: CV = coefficient of variation, T = temperature, EC = elec-
trical conductivity, DO = concentration of dissolved oxygen, TDS = water
mineralisation, TIN = total inorganic nitrogen, TN = total nitrogen,
TON = total organic nitrogen, TIC = total inorganic carbon, TC = total
carbon, TOC = total organic carbon.

Source: own study.
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Among nitrogen compounds, NO;~ reached the highest con-
centrations (3.8 mg-dm ™), and the average total nitrogen was
TN = 2.1 mg-dm™. Phosphate concentrations in the studied
waters were also at very low levels. The average total carbon (TC)
concentration was 105.8 mg-dm™>, with inorganic carbon (TIC)
forms clearly dominating (Tab. 1). The exceptionally low
concentrations of nitrogen, phosphorus, and organic carbon
compounds in the waters of the Drwinka River are particularly
surprising. Many studies identify urbanised areas as the primary
sources of these substances in river waters (Zan et al, 2012;
Gliniska-Lewczuk ef al., 2016; Choi et al, 2024). However, in many
of the analysed water samples, it was not possible to determine
the concentrations of nitrogen and phosphorus compounds
because their values were below the detection limit (e.g., in
approximately 80% of the samples, PO,>” concentrations were
below the detection limit, as well as NO,~ concentrations in 30%
of the samples).

Analysis of variance (ANOVA) and the Scheffé post-hoc test
for p = 0.05 revealed the presence of statistically significant
seasonal differences for most physicochemical parameters of
water. No significant seasonal differences were observed for the
following parameters: DO deficit, EC, TDS, Mg2+, Na*, CI', and
TON. The lack of seasonal variability in Na and Cl ion
concentrations results from the continuous year-round inflow
of these ions with industrial wastewater into the river. Moreover,
anthropogenic pollution is the primary source of these ions in the
water of the Drwinka River. For most parameters, it was found
that winter concentrations differed significantly from concentra-
tions in other seasons. In the case of DO, Ca**, SO,*", and TIN,
the highest values were observed in winter in the water of the
Drwinka River (Fig. 2). Conversely, T, pH, TIC, and TOC reached
their lowest values in the river water during winter (Fig. 2). In
temperate climates, water temperatures exhibit seasonal patterns
similar to air temperatures. During the summer months, water
temperatures in streams and rivers increase significantly, reflect-
ing the higher air temperatures (Punzet et al, 2012). In contrast,

DO exhibits inverse seasonality. The relationship between DO in
water and T is well-documented, showing a clear negative
correlation: as T rises, the solubility of oxygen decreases, resulting
in lower DO concentrations (Bogdal et al, 2016). Seasonal
variations in biological activity, such as photosynthesis and
respiration, play a crucial role in shaping the concentrations of N,
P, and C compounds in water. Higher temperatures in summer
promote photosynthesis and microbial activity, leading to
increased TOC concentrations. In winter, reduced sunlight and
lower temperatures decrease these activities, resulting in lower
carbon concentrations (Berg et al, 2021). Storm events and
seasonal floods can also significantly impact carbon levels. During
storms, the influx of new water can raise TOC concentrations by
flushing terrestrial organic material into rivers (Gérniak, 2017).
This is precisely why the greatest variability in TC and TOC
concentrations in the Drwinka River water is observed during the
summer and autumn seasons. Multiple studies indicate that TIN
concentrations in river water are generally higher in winter. This
is attributed to reduced plant uptake during colder months,
leading to less nitrogen assimilation and more nitrogen remaining
in the water. In contrast, during summer, increased biological
activity and plant growth result in higher nitrogen uptake,
reducing the TN concentrations in river water (Wang et al,
2016). Nevertheless, the studies also identify additional factors,
such as agriculture and fertilisation, as well as hydrometeorolo-
gical conditions, which also play an important role in the seasonal
variability of nitrogen compounds (Exner-Kittridge et al., 2016;
Matej-Lukowicz et al., 2020).

SPATIAL DIVERSITY OF WATER CHEMISTRY

Figure 3 illustrates the changes in mineralisation and the
structure of the chemical composition along the course of the
Drwinka River. An increase in water mineralisation is observed,
from approximately 550 mg-dm™ to around 1500 mg-dm™>, with
noticeable spikes in TDS following the discharge of wastewater
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Fig. 2. Seasonal changes in selected physicochemical parameters of the Drwinka River water; F = F-statistic, p = significance level, DO, T, TIN, TIC, TOC

as in Tab. 1; source: own study
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Fig. 3. Changes in the structure of the chemical composition of water
along the course of the Drwinka River; TDS = water mineralisation;
source: own study

(sites 4 and 9) from industrial facilities located in the economic
zone. These wastewater inflows lead to changes in the structure of
the chemical composition of Drwinka River waters. In the upper
course of the river (sites 1-3), HCO;~ (~37%) and Ca®" (~31%)

were dominant in the water. After the wastewater discharge at site
4, the share of Na" in the water structure significantly increased
(3 times), from 8 to 25%, while the share of Ca%t nearly halved.
Following the second wastewater discharge (site 9), the share of
ClI" in the water doubled. These changes in the chemical
composition structure result in a transition of the hydrochemical
type of water from a simple HCO;-Ca type to a more complex
HCO;-Cl-Na-Ca type. The total contribution of nitrogen and
phosphorus compounds in the waters does not exceed 0.5%. The
increase in surface water salinity, especially due to the input of
NaCl, caused by wastewater discharges, surface runoff, or
pollution outflows from various industrial sectors in urbanised
areas, is a common problem observed worldwide (Halabowski
et al., 2020; Kaushal et al., 2021; Singh et al., 2025).

Figure 4 illustrates the changes in the physicochemical
parameters of the Drwinka River water along its course through
the industrial and residential-service zones. It is evident that the
most significant changes, primarily increases in values, occur in
the river water directly after the inflow of wastewater from the
industrial zone, as these wastewater inflows are characterised by
higher values of most physicochemical parameters than the
Drwinka River water. Numerous studies indicate that cities and
industrial zones significantly influence the chemistry and quality
of river water (Schliemann, Grevstad and Brazeau, 2021).
Pollution hotspots in these regions are areas where pollutants,
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Fig. 4. Changes in the values of selected physicochemical parameters of water along the course of the Drwinka River; DO, EC, TN, TOC, T as in Tab. 1;

source: own study
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such as heavy metals, organic compounds, and excess nutrients
(including nitrogen compounds), are introduced at high con-
centrations (Singh et al., 2025). These hotspots often coincide
with industrial discharges, urban runoff, and combined sewer
overflows, creating localised areas of severe contamination.
Particular attention should be given to the changes in the
DO deficit. In the river’s upper course, the DO deficit decreases.
However, despite the fact that the incoming wastewater is well-
oxygenated (DO deficit below 10%), an increase in the DO deficit
is observed as the river flows through the urban area (Fig. 4).
Additionally, the Niepolomice city raises the river water
temperature by approximately 2°C and affects the water’s pH
(Fig. 4). The increase in river water temperature after passing
through the city is due both to the inflow of warmer wastewater
and the urban heat island effect. Similar causes of the city’s
impact on water temperature were identified for the Suceava
River by Briciu et al. (2020); however, the water temperature
increase there was smaller, amounting to 3.7%. In the case of the
Drwinka River, the temperature increase is approximately 4.7%.
The wastewater inflows nearly double the concentrations of
TN compared to the river water. However, after the initial
increase in nitrogen concentrations caused by the wastewater
inflows, a gradual decrease is observed. By the time the river
reaches study site 13, the TN concentrations are nearly equivalent
to those observed in the river’s upper course.
The decrease in nitrogen concentrations in the water is
caused by the presence of well-developed hydrophilic vegetation
in many sections along the river’s course and within its channel

(particularly between sites 6-8 and sites 11-13). The most
commonly found plants in the river include: Phragmites australis,
Glyceria maxima, Typhaceae, Lemna minor, and Ceratophyllum
demersum. These plants have a high capacity to absorb nutrients,
particularly nitrogen and phosphorus, from polluted water. They
are also effective in accumulating heavy metals such as cadmium,
lead, and zinc, making them a valuable species for phytoremedia-
tion in contaminated environments. The roots of hydrophyte
plants help absorb and stabilise sediments and serve as habitats
for microbial communities responsible for processes such as the
transformation of N, P, and C compounds (Kalu, Rauwane and
Ntushelo, 2021).

Additionally, the increase in water temperature and pH
may have contributed to the reduction in TN concentrations,
particularly NO;™. Studies show that higher temperatures increase
the nitrate reduction rate (Chen, Yang and Wang, 2016).
Simultaneously, raising the water’s pH to approximately 7.5-7.8
enhances the denitrification rate. Research indicates that water
alkalinisation, as long as it remains below pH 9.0, can improve
nitrate removal efficiency by up to 98% (Miao et al., 2024).

FACTORS SHAPING WATER CHEMISTRY

Pearson correlation matrix illustrates the relationships between
various physicochemical parameters of Drwinka River water
(Tab. 2). The major ions (Na*, CI, SO,*, HCO;") cluster
together and show a positive correlation with EC and TDS,
reflecting their shared contribution to the river’s mineralisation.

Table 2. Pearson’s correlation matrix of selected physicochemical parameters in Drwinka River water

DO T Ca K | NO; | TOC | pH EC | TDS [ Mg | Na | HCO; | SO, Cl [ POy | TIN | TN | TON | TIC
T -0.49
Ca 0.24 | -0.29
K -0.08 | 0.24 | 0.01
NO; 0.43 | -0.11 | -0.16 | 0.30
TOC | -0.05 [ -0.02 | -0.07 | 0.17 | -0.02
pH 0.30 | 0.14 | 0.15 | 0.44 | 0.41 | 0.24
EC 0.07 { 0.33 | 0.05 [ 0.38 | 0.33 | -0.10 | 0.47
TDS 0.08  0.36 | 0.14 | 0.50 | 0.38 | -0.09 [ 0.59 | 0.95
Mg 0.22 | 0.07 | 0.70 | 0.42 | 0.15 | 0.02 | 0.46 | 0.23 | 0.44
Na 0.03 | 0.35 [ -0.26 | 0.38 | 0.48 | -0.01 [ 0.53 | 0.89 | 0.87 | 0.04
HCO5 | 0.06 | 0.40 | 0.22 | 0.58 | 0.35 | -0.04 | 0.60 | 0.63 | 0.82 | 0.74 | 0.58
SOy 0.15 | -0.25| 0.17 | 0.00 | 0.25 | -0,14 | 0.06 | 0.53 | 0.42 | 0.11 | 0.45 | -0.02
Cl 0.06 | 0.14 | -0.08 | 0.13 | 0.27 | 0.10 | 0.29 | 0.85 | 0.72 | -0.14 | 0.83 | 0.22 | 0.67
PO, -0.08 | 0.28 | -0.16 | 0.22 | -0.05 | 0.04 | 0.20 | 0.20 | 0.22 | 0.03 | 0.24 | 0.23 [ -0.05| 0.11
TIN 0.29 | -0.29 | 0.19 | 0.20 | 0.43 | -0.01 | 0.12 | 0.24 | 0.24 | 0.16 | 0.18 | 0.15 | 0.31 | 0.22 | -0.05
TN 0.25 | -0.08 | -0.18 | 0.22 | 0.51 | 0.46 | 0.27 | 0.24 | 0.23 | -0.06 [ 0.35 | 0.13 | 0.14 | 0.25 | 0.09 | 0.51
TON | 0.01 | -0.01 -0.29|-0.17 | 0.11 | 0.17 | 0.00 [ 0.07 | 0.00 |-0.30 | 0.21 | -0.12 | 0.13 | 0.19 | 0.05 | -0.27 | 0.29
TIC 0.05 | 0.32 [ 0.06 | 0.46 | 0.27 | 0.49 | 0.57 | 0.39 | 0.53 | 0.49 | 0.43 | 0.68 |-0,16 ( 0.09 | 0.11 | 0.08 | 0.49 | 0.07
TC 0.04 ( 0.30 | 0.03 | 0.46 | 0.25 | 0.60 | 0.58 | 0.35 | 0.49 | 0.45 | 0.41 [ 0.64 |-0.18 | 0.07 | 0.13 [ 0.07 | 0.52 | 0.08 | 0.99

Explanations: statistically significant correlation coefficients (p = 0.05) are highlighted in bold; T, TOC, EC, TDS, TIN, TN, TON, TIC, TC as in Tab. 1.

Source: own study.
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This also indicates that they are influenced by similar processes,
such as the input of pollutants from the industrial zone. A similar
impact of urban areas (in Zakopane), resulting in a sudden
increase in the concentrations of Na* and Cl ions in the Bialy
Dunajec River, was demonstrated by Lenart-Boron et al. (2017).
Organic carbon, nitrogen, and phosphorus compounds show
weak or no correlation with other physicochemical parameters.
Therefore, their concentrations in the water may additionally be
shaped by other natural or anthropogenic factors occurring
within the catchment area. This occurs due to the complex
interactions between biological, chemical, and physical processes
that influence nutrient cycling in rivers (Xia et al., 2018).
Principal Component Analysis (PCA) identified four factors
shaping the physicochemical parameters of the water. These
factors explain the variability as follows: factor 1 - 30%, factor 2 —
15.6%, factor 3 - 13.8%, and factor 4 — 11.5% (Fig. 5B, C). Factor
1 is associated with EC, pH, most major ions (except Ca** and
80427), TC, TIC, and TN. It reflects the spatial variability in water
chemistry along the course of the Drwinka River and highlights
changes influenced by urbanisation. Figure 5A shows three
distinct groups of points: those located in the upper course of the
river before the industrial zone, points within the industrial and
urban zone, and the wastewater inflow (site 9). Factor 2 highlights
the chemistry of wastewater, as evidenced by high factor loadings
for EC, Na*, CI°, and SO427. Factor 3 reveals a relationship
between parameters such as DO, T, Ca?t, Mg2+, TIN, and TON,
which may indicate natural seasonal changes related to vegeta-
tion. Meanwhile, factor 4 is associated with T, TOC, and TN.
Thus, the first two factors shaping water chemistry are
related to anthropogenic pressure, manifested through land use
changes and point sources of pollution. Similar results were
obtained by Yang et al. (2022), who found that the main sources
of water quality deterioration were land use changes and industry
(accounting for 42.1% of the variability). However, the contribu-

tion of these sources to shaping water quality varied depending
on hydro-meteorological conditions (drought-rainfall). The
increase in dissolved salts, especially Na* and Cl, in urban
rivers is associated with the delivery of pollutants from various
sources, such as effluent discharges from wastewater treatment
plants, stormwater drainage, industrial pollution, and a higher
proportion of impervious surfaces. Freshwater salinisation can
mobilise base cations (Ca®*, Mg**, K*) and metals (for example:
Cu, Cd, Zn) to streams through accelerated ion exchange,
stimulate different biogeochemical processes by altering pH and
ionic strength, and exacerbate eutrophication (Duan and Kaushal,
2015; Haq, Kaushal and Duan, 2018). In contrast, the third and
fourth factors are driven by natural processes resulting from
seasonal changes occurring in a temperate climate and the
seasonal variability of vegetation growth. The seasonality of
vegetation in a temperate climate influences the processes shaping
the chemistry of river water. During the period of intense plant
growth (spring and summer), plants absorb significant amounts
of nutrients, such as nitrogen (N) and phosphorus (P), which may
be present in the water. As a result of this process, the
concentration of these nutrients in the water is reduced, which
can lead to a decrease in the risk of eutrophication (Puczko and
Jekatierynczuk-Rudczyk, 2020). After the growing season ends (in
autumn and winter) and leaves fall, various nutrients and organic
matter from plants may enter the water, which can lead to an
increase in nutrient concentrations. This phenomenon is
particularly evident during the period when plants begin to die
and decompose. Wider and well-maintained riparian zones are
crucial for mitigating urban impacts on water quality, particularly
in regions with high impervious surface cover (Singh et al., 2021).
Riparian vegetation directly affects water quality through several
mechanisms: filtration of runoff, temperature regulation, nutrient
uptake and cycling, faecal contaminant trapping (Kumwimba
et al., 2024). Vegetation provides shade, reducing solar heating of
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Fig. 5. Principal Component Analysis of water chemistry: scatter plots for the coordinates of cases for PC1 and PC2, including study
sites (A), and the projection of factor loadings for PC 1x2 (B) and PC 3x4 (C); T, TOC, EC, TDS, TIN, TN, TON, TIC, TC, DO as in

Tab. 1; source: own study
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river water. This is way riparian zones enhance thermal
regulation, which is essential for maintaining dissolved oxygen
levels and aquatic ecosystem health (Zhang et al., 2021).

CONCLUSIONS

Urban areas with industrial zones pose a significant threat to the
water quality of nearby rivers. Studies have shown that the high
concentration of industrial facilities within a confined area leads
to the introduction of various pollutants into the water. It has
been found that the most pressing issue in industrial zones is the
sudden increase in water salinity (Na* and Cl~ ions), caused by
point sources of pollution discharging into the rivers. Urban areas
contribute to a decrease in dissolved oxygen, water pH, and are
a source of biogenic compound inputs. Point sources of pollution
represent “hotspots” of water quality deterioration within the city.

The results showed that anthropogenic pressure, related to
land use changes and the discharge of sewage, shapes the water
chemistry of the Drwinka River by almost 50%. Meanwhile, 25%
of the impact is attributed to natural processes related to
vegetation interaction and seasonal climate variability.

The presence of hydrophytic vegetation along riverbanks
and within the riverbed helps mitigate this issue. The introduced
pollutants, primarily organic and inorganic biogenic compounds
such as nitrogen, phosphorus, and carbon, undergo transforma-
tion and are taken up by plants, leading to a gradual decrease in
their concentrations along the river course. Studies have shown
that during the growing season, total nitrogen concentrations are
significantly lower than in the winter period, which confirms the
important role of riparian vegetation. Therefore, preserving and/
or introducing hydrophytic vegetation into the riparian zone is
essential for improving water quality and mitigating the negative
impacts of industrial areas.
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