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Abstract. This article presents the application of the funicular design method in an iterative process for reinforced concrete 
arches with variable cross-sections in urban environments. The study aimed to develop an optimal arch shape through multi- 
criteria  optimization  that minimizes  tensile  stresses,  structural  deflections,  and  material volume.  The  geometry  adapts  to  the 
internal  force  flow by aligning the spatial  configuration  and  ensuring  structural  efficiency. The  method  builds  on Hooke’s 
observation: “As hangs the flexible line, so but inverted will stand the rigid arch.” It is further supported by nonlinear numerical 
analysis conducted using the  Finite  Element  Method that  considers second-order  effects, creep,  concrete  shrinkage,  and 
geometric imperfections. The results show that the designed arch requires only structural reinforcement, confirming the method's 
effectiveness. Various  modes  of  arch  stability  loss  were  also  evaluated. Such structures  are  commonly used in  urban 
environments, serving both functional and aesthetic purposes. In the context of rapidly developing cities, this article emphasizes 
the  role  of  digital  transformation  in  structural  design.  It  presents  how  graphic  statics can  be  integrated  with  advanced

computational tools to streamline workflows and enhance the design process.
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1. INTRODUCTION 

The arch, a fundamental architectural and structural 

element, has played a pivotal role in shaping buildings across 

various epochs. Its use in Roman aqueducts and contemporary 

structures such as bridges, stadiums, and halls is a testament 

to its enduring engineering solutions. The arch's high 

efficiency, derived from its favorable static properties, 

reduces internal forces to a compressive force under eccentric 

loading, ensuring stresses of the same sign in each cross-

section of the structure. Historically, structural arches were 

primarily constructed from stone or brick, whereas modern 

designs increasingly utilize steel and reinforced concrete. In 

dense urban environments, rational structural design supports 

sustainable development by reducing energy consumption, 

material use, and construction costs [1]. Contemporary 

structural design trends focus on achieving lightweight 

solutions that use minimal materials to obtain large spans [2]. 

As noted by A. R. Kulkarni and V. Bhusare [3], conventional 

design approaches often rely on excessive material usage.  

Funicular shaping improves structural efficiency and enables 

material savings, which is especially beneficial in contexts 

with strict economic limitations. 

Static analyses can be carried out using both analytical 

and graphical methods. The foundations of graphic statics date 

back to early studies on the free fall of bodies under the 

influence of gravity forces conducted by Leonardo da Vinci 

and Galileo [4]. Simon Stevin (1548–1620) was the first to 

represent a force as a vector. He was the author of the 

parallelogram principle, in which he proved that the 

equilibrium of a system could be presented graphically 

utilizing a closed polygon of forces [5]. This trend initiated 

the development of graphical methods for analyzing the 

equilibrium of structural systems. The French scientist Pierre 

Varignon (1654–1722), in a publication released 

posthumously in 1725 titled Nouvelle mécanique ou Statique 

(translated as 'New Mechanics or Statics'), presented concepts 

that significantly contributed to the development of structures 

created in a funicular manner. The essence of this approach 

lies in the relationship between its two main pillars: force 

polygon and funicular polygon [6]. 

In 1675, the English scientist Robert Hooke introduced a 

completely different perspective on the use of the arch in 

building structures, which he summarized in a single 

statement: “As hangs the flexible line, so, but inverted, will 

stand the rigid arch.” Research inspired by Robert Hooke's 

observations provided a foundation for the development of 

graphic statics, which enhanced the understanding of the static 

behavior of arches and their deliberate use in historical and 

modern buildings [7].  

R. Rozendaal and A. Borgart, in [8], described a new 

method for calculating arches using graphic statics, which is 

based on minimizing the complementary energy resulting *e-mail: tomasz.steplowski@pwr.edu.pl 
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from bending moments. It was assumed that the 

complementary energy resulting from the normal force is 

negligible and the thickness of the arch remains constant along 

its entire length. However, for complex, non-prismatic arches, 

the proposed equation turns out to be difficult to apply. 

The work by G. Tempesta and S. Galassi [9], along with 

the developed MATLAB code [10], serves as an essential 

reference, as it introduces a numerical approach to evaluating 

the safety of masonry arches by computing the thrust line 

closest to the geometrical axis. This study translates the 

graphical thrust line method into a numerical procedure, 

allowing for an analytical interpretation. Although focused on 

masonry structures, it underscores the importance of graphical 

and numerical techniques in assessing the internal force flow 

within arch systems. Similarly, in the design of reinforced 

concrete arches, the funicular shaping method can be 

employed to achieve an optimized geometry that aligns with 

internal force trajectories.  

This paper presents an approach that combines graphic 

statics with a modern design procedure utilizing the Finite 

Element Method (FEM). The proposed integration establishes 

a clear relationship between the initial input data and the 

calculation results, offering an intuitive workflow for shaping 

reinforced concrete arches. The innovative aspect of this study 

lies in merging the funicular shaping method with nonlinear 

structural analysis, enabling the design of geometrically 

optimized and materially efficient arch forms tailored to 

complex loading conditions. In this context, sustainability 

refers to reducing the volume of concrete used, lowering 

energy consumption during construction, and minimizing the 

environmental impact, while ensuring long-term durability. 

The concept of optimality adopted in this study is formalized 

as a multi-objective optimization task that aims to minimize 

structural deflections, tensile stresses, and material volume, 

all while satisfying strength and stability constraints.  

The numerical analysis of the arch was carried out in 

software [11], using the general method described in [12], 

which consisted of performing a complete nonlinear analysis 

of the structure considering geometric and material 

nonlinearity. Eurocode 2 requires that in addition to initial 

imperfections, the influence of creep and cracking should also 

be taken into account. The impact of long-term effects was 

considered utilizing the σ-ε diagram, following the guidelines 

for nonlinear analysis of structures, multiplying the 

deformations by the effective creep coefficient. Due to the 

absence of specific guidelines in [12] for determining the 

initial deformation of the arch, standards for timber structures 

[13] and steel bridges [14] were applied, along with the newly 

introduced second-generation Eurocode 2 [15], which was 

utilized in the final stage of the work. Subsequently, a Linear 

Bifurcation Analysis (LBA) was performed, followed by 

rescaling the first and third modes of stability loss, according 

to the guidelines from the specified standards. In this way, the 

initial imperfection was taken into account. A high 

convergence of the modes of arch stability loss from two 

independent software tools SOFiSTiK and Dlubal RFEM     

[11, 16] was also found. Moreover, the calculations were 

designed to achieve a result where the stresses in each cross-

section had the same sign, enabling the effects of cracking and 

stress redistribution to be disregarded. Based on the funicular 

approach, the applied method resulted in a shape that 

optimally aligned with the flow of internal forces. 

The application of the hanging chain principle has had a 

profound impact on historical engineering and architectural  

works, offering a foundational approach to form optimization. 

One of the earliest and most remarkable applications of this 

method was by Antoni Gaudí. In the crypt of the Colònia 

Güell church, Gaudí developed two- and three-dimensional 

physical models to define the geometry of arches and vaults 

through the natural catenary shapes formed by suspended 

chains [17, 18]. His pursuit of structural efficiency through 

form continued in the Sagrada Familia (shown in Fig. 1), 

where the design reflects an understanding of force flow and 

the optimization of structural elements [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, an early application of reinforced concrete in 

urban public architecture in Wrocław can be observed in the 

Wrocław Market Hall (shown in Fig. 2), constructed between 

1907 and 1908, based on a design by Richard Plüddemann and 

Heinrich Küster. This structure was among the first in Europe 

to utilize parabolic reinforced concrete arches with a 

significant span of approximately 19 meters [20]. The 

parabolic arches of the Market Hall represent a pioneering 

step towards structural forms shaped by the natural flow of 

internal forces, anticipating the monumental reinforced 

concrete achievements later realized in Max Berg’s 

Centennial Hall. Furthermore, studies on early twentieth-

century concrete structures in Wrocław confirm that despite 

limited initial knowledge about reinforced concrete behavior 

under various environmental influences, many such elements, 

including that in the historic Market Hall, continue to 

demonstrate remarkable durability after more than a century 

of service [21]. 

 

 

Fig. 1. Exterior view of the Sagrada Familia in Barcelona. Photo by 
the author 
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The progression toward a fully optimized architectural 

form culminated in the Centennial Hall in Wrocław, 

completed in 1913 and inscribed on the UNESCO World 

Heritage List in 2006. This iconic structure stands as a 

landmark of 20th-century architecture. Max Berg led the 

architectural vision, with structural expertise provided by 

Günther Trauer and Willy Gehler [22]. The structural system 

of the Centennial Hall reflects a deliberate attempt to achieve 

an optimized form that efficiently distributes internal forces 

within the concrete structure. 

2. RESEARCH SIGNIFICANCE   

The objective of this study is to explore how integrating 

traditional graphic statics with advanced nonlinear numerical 

techniques can enhance the design and analysis of reinforced 

concrete arches. Rather than replacing classical tools, this 

approach extends their applicability in modern engineering 

practice by embedding them into a computational 

optimization framework. The significance of this research lies 

in its potential to bridge the gap between intuitive form-

finding and rigorous numerical validation.  

This integration addresses the growing need for design 

methodologies that combine transparency with analytical 

robustness. Such methodological synergy is increasingly 

emphasized in contemporary approaches to sustainable urban 

development [23]. Furthermore, the study responds to the 

increasing demand for tools that support multi-criteria 

assessment of complex geometries. Such tools enable 

engineers to evaluate structural performance, resource 

efficiency, and long-term durability within a unified 

framework. While the funicular method itself is well-

established, its focused application to constrained urban 

contexts, combined with iterative refinement through 

nonlinear analysis, represents a novel and practically relevant 

design strategy. The motivation for this research stems from 

contemporary challenges related to reducing material 

consumption, minimizing environmental impact, and 

lowering construction costs, while simultaneously improving 

structural longevity and reliability.  

Such an approach reflects the ongoing digital 

transformation of structural design processes, wherein 

traditional methods are enhanced by computational tools to 

achieve optimized structural forms [17]. In parallel, the 

funicular approach contributes to sustainable construction by 

minimizing material use. This aligns with broader low-carbon 

design strategies that also address embodied carbon [24, 25].   

3. METHODOLOGY 

3.1.  Graphical shaping method  

The funicular method in graphic statics employs two 

interrelated diagrams. The first is the funicular polygon, 

which represents the geometry of the structure. The second is 

the force polygon, which reflects the state of force 

equilibrium. Loads are first defined and applied in order to 

construct the force polygon, from which the funicular polygon 

is derived. The precision of this method depends on the 

discretization of the arch, since smaller segments yield more 

accurate results. Each segment of the structure corresponds to 

a vector in the force polygon, whose direction and magnitude 

reflect internal forces. Radial lines from the pole “O” to the 

load points define the force flow, and their lengths represent 

the axial forces in the structure. When the resulting polygon 

closes, the structure is in equilibrium [4, 26], as shown in       

Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This method simulates how a structure adapts to 

gravitational or lateral loading. The location of the pole 

relative to the load line determines the resulting shape. 

Moving the pole closer to the load line increases the rise of 

the arch and simultaneously reduces internal force 

 

Fig. 3. Graphical construction of a funicular polygon derived from a 
force polygon 

 

 
   

 

 

Fig. 2. Interior views of the Wrocław Market Hall. Photos by the 
author   
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magnitudes. The method accommodates both symmetric and 

asymmetric loading conditions, with force magnitude visually 

represented by the spacing between load points. Gravitational 

loads appear as vertical lines, whereas wind or lateral loads 

form inclined segments in the force polygon [4, 26], as 

depicted in Fig. 4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Stevin’s principle, a convergent force 

system reaches static equilibrium when the polygon of forces 

is closed. Each node satisfies equilibrium when the vector sum 

of forces in both axes equals zero, forming triangular force 

chains [4, 26], as shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This graphical approach forms the basis for further 

numerical refinement, integrating traditional methods into a 

modern optimization workflow. 

3.2. Nonlinear structural analysis 

Building upon the results of the graphical method, the 

analysis is further extended using a nonlinear computational 

approach. In accordance with [12], which permits nonlinear 

methods of analysis for both the Ultimate Limit State (ULS) 

and the Serviceability Limit State (SLS), provided that 

equilibrium, compatibility, and realistic material behavior are 

ensured, this stage aims to refine and verify the structural 

response of the arch. This approach involves nonlinear 

physical laws, which exhibit particular complexity in the case 

of reinforced concrete. The primary source of this nonlinearity 

lies in the nonlinear relationships between stress and strain. 

Additionally, structural analysis may involve nonlinear 

geometric relationships, referred to as second-order analysis, 

which accounts for the influence of displacements on the 

distribution of internal forces and stresses, and consequently, 

on the final deformations and displacements [12, 27].  

Considering second-order effects is crucial due to the 

slenderness of the designed structure, which is primarily 

subjected to compressive forces. In the context of the main 

objective of this study, which is the design of a structure with 

optimized geometry, the application of nonlinear analysis is 

fully justified. Its fundamental advantage is the ability to 

obtain more realistic distributions of internal forces and 

displacements, leading to a more accurate assessment of the 

structure’s safety level.  

3.3. Mathematical background formulation of the 
optimization problem 

The optimization problem is formulated as a multi-

objective task involving the selection of design variables that 

define the geometry of the structure – both the shape of the 

arch axis and the variation of its cross-section – with the goal 

of minimizing the objective function f(x), subject to 

constraints that define the set of admissible solutions.  

The decision variable x ∈ ℝn represents a vector in the n-

dimensional space of real-valued geometric parameters that 

describe the structure, and is defined as:  

x = [ 𝑥1, 𝑥2, … , 𝑥𝑛 ]T (1) 

  

Each component 𝑥𝑖  of the vector x represents a coefficient in 

the functions that describe the geometry of the arch axis (e.g., 

in polynomial form), and the variable height of the cross-

section along the arch length. The optimization task consists 

of minimizing the objective function over the admissible set 

D ⊂ ℝ𝑛, and is expressed as:  

 

min 𝑓(𝑥) =[ 𝑓1(𝑥), 𝑓2(𝑥),  𝑓3(𝑥) ]𝑇 , for 𝑥 ∈ 𝐷,  (2) 

subject to the constraints: 

𝑔𝑖(𝑥) ≤ 0, for i = 1, 2, …, m, 
 

 (3) 

Where the functions 𝑔𝑖(𝑥) represent structural constraints, 

including strength, geometric, and stability requirements. The 

set D denotes the design space, that is, the domain of 

admissible design solutions satisfying all imposed constraints.  

The considered objective criteria are as follows:  

▪ Minimization of the maximum deflection of the 

structure:  

 
𝑓1(𝑥) = max{ |𝑢(𝑠, 𝑥)|: 𝑠 ∈ (0, 𝐿), 𝑥 ∈ 𝐷 }, 

 

 

(4) 

 

Fig. 4. The influence of inclined forces on the shape of funicular 
polygons 

   

 

Fig. 5. Each node of a funicular structure forms a closed triangle 
on the force polygon 
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▪ Minimization of the maximum tensile stress:  

𝑓2(𝑥) = max{ σ𝑡(𝑠, 𝑥) : s ∈ (0, 𝐿), 𝑥 ∈ 𝐷 },  
 

(5) 

▪ Minimization of the structure’s total volume (with 

variable height and constant width b): 

 

𝑓3(𝑥)  =  𝑉(𝑥) = ∫ 𝐴(𝑠, 𝑥) ds,   for 𝑥 ∈  𝐷,            (6)
𝐿

0

 

 
Assumed notations:  

▪ s ∈ (0, L) – arc-length coordinate (length measured 

along the axis of the arch),  
▪ u(s, x) – deflection of the structure at point s,  

▪ σ𝑡(s, x) – tensile stress in the cross-section,  
▪ h(s, x) – variable height of the cross-section,  

▪ A(s, x) – cross-sectional area,  
▪ b – constant width of the cross-section.  

The described optimization problem is solved using a 

funicular-based design approach, in which the geometry of the 

structure is generated through graphic statics.  

4. GRAPHICAL DETERMINATION OF THE OPTIMAL 

SHAPE BASED ON FORCE FLOW ANALYSIS 

All loads used in the analysis are summarized in Table 1. The 

assumptions are based on relevant building standards, the 

specific characteristics of local climatic conditions, and 

current engineering practice. The design loads were 

established to determine the optimal shape of the arch. After 

defining the geometry, a spatial model will be developed to 

calculate the actual load distribution.  

TABLE 1. Adopted design assumptions. 

Type of 

load 

Description Load 

value 

Unit Notes 

Structure dead 

loads  

Self-weight of 

the roof 
support 

structure 

 

- 

 

- 

Reinforced 

concrete purlins, 
posts, and joists. 

 
Self-weight of 

the arch girder 

 
- 

 
- 

The first iteration 
assumed a 

prismatic arch 

cross-section of 
100x100 cm. 

 

Flat roof 

layers 

 

0.371 

 

kN/m2 

PVC roof 

membrane, 

welded, mineral 
wool, PE 

polyethylene foil, 

trapezoidal sheet 
metal. 

 

Floor layers 

 

8.338 

 

kN/m2 

Laminated panels, 

cement screed 
reinforced with 

mesh, separation 

layer - PE foil, 

sound-absorbing 

polystyrene, 

reinforced 

concrete slab, 
cement-lime 

plaster, suspended 

ceiling. 

Technological 

constants 

Installations 0.250 kN/m2 Pipes, cables, 

ducts 

Operational 

constants 

 

Roof live load 

 

0.400 

 

kN/m2 

According to the 

standard [28]: 
Category H 

Maintenance  

live load 

 

4.000 

 

kN/m2 

According to the 

standard [28]: 
Category C3 

 

Self-weight of 

movable 
partition walls 

 

 

1.200 

 

 

kN/m2 

According to the 

standard [28]: 

movable partition 
walls with self-

weight ≤ 3.0 kN/m 

wall length 

Climatic 

constants 

 

Snow 

 

0.560 

 

kN/m2 

Snow zone I, 

characteristic value 

[29] 

 
Wind 

 
0.553 

 

kN/m2 

Wind zone 1, 
characteristic value 

[30] 

Permanent actions, including the self-weight of structural 

elements and material layers, were determined using standard 

volumetric densities and representative layer thicknesses. 

Reinforced concrete was assumed with a density of 25.0 

kN/m3, cement screed with 24.0 kN/m3, and mineral wool 

with 1.6 kN/m3. The roof covering consists of a PVC 

membrane, mineral wool insulation, polyethylene foil, and 

trapezoidal sheet metal. The floor build-up includes laminated 

panels, cement screed, separation and insulation layers, a 

reinforced concrete slab, plaster, and suspended ceiling. 

Technological loads related to installations (pipes, cables, 

ducts) were estimated at 0.25 kN/m2 based on catalog data. 

The load from movable partition walls (≤ 3.0 kN/m of wall 

length) was included according to [28] and incorporated as 

uniformly distributed permanent load of 1.20 kN/m2. Roof 

live load and floor operational loads were taken from EN 

1991-1-1, corresponding to load categories H and C3 

respectively. Snow and wind actions were adopted according 

to [29] and [30], with the building located in Wrocław 

(Poland), in snow zone 1 and wind zone 1. The characteristic 

ground snow load was assumed as 0.70 kN/m2 and the basic 

wind velocity was 22.0 m/s. The inclination angle of the roof 

was taken as 30°, with exposure and shape coefficients 

applied as per Eurocode provisions. The initial cross-sections 

of the roof structure in the central bay were determined based 

on the condition of limiting compressive stress in concrete, 

assuming class C30/37, in order to control cracking and creep 

under long-term loading. 

4.1. Funicularly shaped form of a reinforced concrete 
hall  

Two structural variants of the reinforced concrete hall are 

analyzed in this study. Variant I features a single-nave layout 

with a central funicular arch serving as the main load-bearing 

element. Variant II introduces a three-nave configuration with 

three parallel arches supporting the roof structure. Figures 6 

and 7 illustrate the assumed loads, internal force diagrams, 

and resulting arch geometries for both structural variants.  

where:   𝐴(𝑠, 𝑥) =  𝑏 ·  ℎ(𝑠, 𝑥). (7) 
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Fig. 6. Funicular model of the main load-bearing structure – variant I  

 
 
Fig. 7. Funicular model of the main load-bearing structure – variant II 
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Variant I was selected for further analysis due to its 

benefits in constructability, cost efficiency, and avoidance of 

additional measures, such as snow and rain load protection in 

the side bays.  

Graphically estimating the coordinates that characterize 

the arch shape made it possible to identify the function that 

best fits the corresponding points, as illustrated in Fig. 8. 

Wolfram Mathematica [31] was used for this purpose. The 

obtained results are presented below. Function approximating 

the final arch shape: 

 
𝑓(𝑥) = 4.52722 𝑥 −  0.420464 𝑥2 +
 0.0195632 𝑥3 − 0.000443753 𝑥4. 

 

(8) 

The error resulting from the approximation, which describes 

the deviation of the approximation function from the 

coordinates defined graphically, is: ∆ = −1.42109 · 10−14. 

This error was considered acceptable, therefore, the indicated 

mathematical function accurately reproduces the shape 

obtained using a funicular polygon, suggesting that it will 

faithfully correspond to the design assumptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Arch girder model. Comparison of results using the 
Finite Element Method   

The static diagram of the arch in the program [11] is shown in 

Fig. 9(a) and the results of FEM calculations are shown in Fig. 

9(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values of forces in individual girder segments obtained 

from two independent methods are similar. The difference of 

approximately 0.2 kN results from the error  

∆ = −1.42109 · 10−14 of the function, which approximates 

points obtained through the funicular method by iterating the 

optimal shape of the girder. The relative error of the two 

methods is: δ = ± 0.01. 

Finally, the cross-section of the arch was designed as non-

prismatic: 

- cross-section height:  

 ℎ(𝑥) =  1.0 –  0.0904977𝑥 +  0.00409492 𝑥2, (9) 

 

- cross-section width: b = constant = 0.50 m. 

The final shape of the reinforced concrete arch is shown in 

Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

4.3. Nonlinear analysis as the general calculation 
method 

 

The general method is based on the second-order nonlinear 

analysis. Stress-strain relationship for concrete given in       

Fig. 11 was used. The general principles of nonlinear analysis 

of structures are given in [12]: 

▪ stress-strain diagrams are based on the calculated 

values, 

 
              (a) 

   

 

Fig. 8. Graph of the arch geometry defined by the function f(x), 
based on selected geometric coordinates [m]  

 
(b) 

Fig. 9. Static diagram of the arch structure and distribution of 
axial forces: (a) load diagram and geometric dimensions, (b) 
axial force diagram 𝑁𝑥 [kN] 

 

Fig.10. The final design of the reinforced concrete arch 
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▪ mean value of concrete cylinder compressive strength 

𝑓𝑐𝑚 = 38 MPa, replaced by the value of the design 

compressive strength:  

𝑓𝑐𝑑 = 
30 MPa 

1.40
,       (10)          

▪ modulus of concrete elasticity 𝐸𝑐𝑚 = 33 GPa was 

replaced by the value: 𝐸𝑐𝑑  = 
𝐸𝑐𝑚 

γ𝐶𝐸
 = 

32837 MPa 

1.20
,    (11) 

▪ the effect of creep is accounted for by multiplying all 

strain values in the stress-strain diagram by the 

appropriate factor (1+φ𝑒𝑓), as illustrated in Fig. 11. 

At the time of the initial loading, corresponding to the 

concrete age 𝑡0, the compressive stress in the concrete does 

not exceed 0.45𝑓𝑐𝑘(𝑡0). Therefore, the final value of the creep 

coefficient was taken from Fig. 3.1 of the standard [12] as 

ϕ(∞, 𝑡0) = 2.400, 

According to [12], the effective creep ratio is calculated as: 

φ𝑒𝑓 = ϕ(∞, 𝑡0) 
𝑀0𝐸𝑞𝑝

𝑀0𝐸𝑑
 = 1.520,        (12) 

where: 

- 𝑀0𝐸𝑞𝑝 is the first-order bending moment in quasi-

permanent load combination (SLS),  

- 𝑀0𝐸𝑑 is the first-order bending moment in design load 

combination (ULS). 

This leads to the final form of the coefficient:  

(1+φ𝑒𝑓) = (1+1.52) = 2.520,        (13) 

The total shrinkage strain was calculated according to [12]: 

ε𝑐𝑠 = ε𝑐𝑎(𝑡) + ε𝑐𝑑(𝑡) = 4.715 · 10−5 + 1.052 · 10−4 =  

1.524 · 10−4 = 0.152‰,        (14) 

where:  

- ε𝑐𝑎(𝑡) is the autogenous shrinkage strain,  

- ε𝑐𝑑(𝑡) is the drying shrinkage strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the lack of guidelines in the standard [12] regarding 

the determination of the initial deformation of a reinforced 

concrete arch, the standards [13] and [14], as well as the newly 

introduced standard [15], were used for this purpose, as 

summarized in Table 2.  

 

TABLE 2. Determination of the initial imperfection value of the 
reinforced concrete arch 

Buckling 

type 

Source Shape of imperfection Amplitude 𝑒0 

Out-of-the 
plane 

of the arch 

 
 

[14] 

 

 
 

𝑒0 = 59.60 mm 

 

 

[15] 

  

 

𝑒0 = 19.48 mm 

 

In the plane 

of the arch 

 

 

 

[14] 
 

 

 

 

𝑒0 = 44.20 mm 

 
 

[13] 

 

 

 

𝑒0 = 52.50 mm 

 
 

 

[15] 

  

 

 

𝑒0 = 16.07 mm 

 

In the end, out-of-plane imperfections with an amplitude of  

𝑒0 = 59.60 mm and in-plane imperfections with an amplitude 

of 𝑒0 = 52.50 mm were adopted. The implementation of the 

general method conditions for nonlinear analysis was 

performed in SOFiSTiK [11]. Below is an excerpt from the 

script that defines the key parameters and relationships 

necessary for the design and analysis of the reinforced 

concrete arch, as shown in Fig. 12(a). It also includes the 

scaling of the appropriate buckling mode so that initial 

imperfections are taken into account, as illustrated in             

Fig. 12(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 

Fig. 11. Stress-strain curve (green color) in the ultimate limit state for 
C30/37 concrete, scaled by the requirements of the general method 
for nonlinear structural analysis. The axes represent stress [MPa] 
and strain [‰] 
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Figures 12(a) and 12(b) present selected excerpts from the 

computational script, illustrating the definition of geometry, 

material parameters, and analysis settings. For improved 

clarity, the corresponding algorithmic logic is also presented 

in the form of textual pseudocode listings, which provide a 

simplified and structured representation of the implemented 

procedures.  

Algorithm 1: Definition of the general method conditions for 

nonlinear arch analysis (based on Fig. 12(a)):   

1. Start the SOFiSTiK module for material and section 

definition, 

2. Set the design code: Eurocode 2 (EN 1992), 

3. Define the unit system: system 0,  

4. Enable full output display,  

5. Define concrete class C30: 

- compressive strength for nonlinear analysis:  

𝑓𝑐𝑟 = 30.0/1.4 MPa,  

- elastic modulus for serviceability:  

𝐸𝑐𝑟  = 32837/1.2 MPa,  

- scaling factor for σ-ε diagram: 2.520,  

6. Do not define an explicit time-shrinkage curve. 

Shrinkage is modeled analytically as a predefined axial 

strain:  

ε𝑐𝑠 = 0.152‰ (sum of autogenous and drying 

shrinkage),  

7. Define reinforcement: steel class B500B, 

8. Set discretization parameters: 

- number of elements: n = 51, 

- element length: div = 0.221 m, 

9. Initialize counters:  

- section number: no = 1 and arch position: x = 0.0,  

10. Loop over all elements:  

- calculate cross-section height:  

ℎ(𝑥) = 1 − 0.0904977𝑥 +  0.00409492 𝑥2  

- assign constant section width: b = 0.5 m  

- increment section number and advance to the next 

point along the arch,  

11. End loop and finalize definition.  

Algorithm 2: Definition of a complete nonlinear structural 

analysis with the scaling of the appropriate buckling mode 

(based on Fig. 12(b)): 

1. Perform linear static analysis: 

- define line-type system and apply load case LC1,  

2. Perform Linear Bifurcation Analysis (LBA): 

- define line system for buckling evaluation,  

- use load case LC101 and calculate the first 10 

buckling mode shapes, 

3. Define geometric imperfection based on buckling 

mode: 

- apply imperfection using mode shape from LC101,  

- scale the amplitude of the out-of-plane buckling 

mode to 59.60 mm,  

- store as imperfection case LC202, 

- set numerical tolerance for convergence: dlz = 1E-4,  

4.  Execute full nonlinear analysis with both 

imperfections:  

- use TH3 solver for iterative computation ( max 200 

iterations),  

- enable nonlinear behavior for material and stiffness, 

- apply in-plane imperfection scaled to 52.50 mm 

using LC103, 

- define total load case LC202, 

- combine with the load case LC1, 

5. End program. 

4.4. Comparison of the forms of arch stability loss 

Figure 13 presents a spatial model of the designed object, 

which was developed in program [16]. This model accurately 

reflects the actual structural system by incorporating the 

material properties and stiffness of the elements, which 

enables a precise analysis of the structure's behavior under the 

influence of loads. The model was created to dimension the 

remaining structural elements and verify the validity of the 

assumptions adopted for the model in program [11]. The 

spatial model, in particular, accounted for the influence of the 

structure's stiffness distribution and the interactions between 

its elements. This made it possible to verify the adopted 

boundary conditions and assess their compliance with the 

structure's actual operating conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) 

Fig. 12. Implementation of nonlinear analysis in arch design: (a) 
definition of general method conditions, (b) execution of 
complete nonlinear structural analysis with the scaling of the 
appropriate buckling mode  

 

Fig. 13. Computational spatial model of the structure  

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10 

The following load cases were considered in the model: 

▪ self-weight, 

▪ dead load, 

▪ suspended load, 

▪ live load of the ceiling – load on the entire surface, 

▪ live load of the ceiling – band load scheme (inner 

span), 

▪ live load of the ceiling – band load scheme (extreme 

span), 

▪ live load – mixed band scheme (inner span), 

▪ live load – mixed band scheme (extreme span), 

▪ snow load – load of the side aisles, including 

snowdrifts, 

▪ snow load – load on the entire surface of the side 

aisles, 

▪ snow load – uniform load of the main nave, 

▪ snow load – uneven load of the main nave, one slope 

more heavily loaded, 

▪ snow load – uneven load of the main nave, second 

slope more heavily loaded, 

▪ wind load in the positive direction of the X-axis, 

▪ wind load in the negative direction of the X-axis, 

▪ wind load in the positive direction of the Y-axis, 

wind load in the negative direction of the Y-axis. 

 

The results of the computational analysis conducted in 

program [16] were the internal force values obtained by 

considering the selected load combinations. These results 

were used to dimension the main load-bearing structure in 

program [11]. A high consistency in the predicted modes of 

arch stability loss was observed between two independent 

numerical programs [11, 16], supporting the validity of the 

adopted boundary conditions and the modeling of support 

flexibility as implanted in software [11]. This agreement is 

illustrated in Figs. 14-18, which present a side-by-side 

comparison of the critical buckling modes obtained from both 

computational approaches. The qualitative similarity of the 

critical modes further validates the robustness of the structural 

idealization and justifies the assumptions adopted in the 

nonlinear analysis.  

▪ Mode no. 1 – out-of-plane buckling  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

▪ Mode no. 2 – out-of-plane buckling 

 

 

 

 

 

 

 

 

 

▪ Mode no. 3 – in-plane buckling 

 

 

 

 

•  

•  

•  

•  

•  

•  

•  

 

• Mode no. 4 – out-of-plane buckling  

 

 

 

 

 

 

 

 

 

 

 

 

• Mode no. 5 – out-of-plane buckling  

 

 

 

 

 

 

 

 

 

 

 

 

  
 (a)      (b) 

Fig. 14. The first buckling mode of the arch: (a) spatial model, 
(b) planar model 
  
  

(a)      (b) 

Fig. 18. The fifth buckling mode of the arch: (a) spatial model, 
(b) planar model 

 
(a)      (b) 

Fig. 17. The fourth buckling mode of the arch: (a) spatial model, 
(b) planar model 

 
 

 
(a)      (b) 

Fig. 15. The second buckling mode of the arch: (a) spatial 
model, (b) planar model  
 

 
(a)      (b) 

Fig. 16. The third buckling mode of the arch: (a) spatial model, 
(b) planar model 
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The calculation results in the form of extreme internal forces 

and nodal displacements are derived from a full nonlinear 

geometric and material analysis taking into account the 

influence of external loads, self-weight, second-order effects, 

geometric imperfections in and off the plane of the arch, the 

influence of long-term creep and shrinkage of concrete, as 

shown in Figs. 19-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21(a) shows the location of characteristic cross-

sections along the arch where stress concentrations were 

observed. The corresponding axial strains in these sections are 

illustrated in Fig. 21(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Fig. 21. Axial deformation analysis in the arch structure: (a) 
location of characteristic cross-sections, (b) axial deformations in 
corresponding cross-sections [‰] 

 

 

 

 

Fig. 20. Nodal displacements [mm] 

 
(a)                  (b) 

 
(c)                  (d) 

 

(e) 

Fig. 19. Distribution of internal forces in the arch structure: (a) shear 
forces 𝑉𝑧 [kN], (b) shear forces 𝑉𝑦 [kN], (c) bending moments 𝑀𝑦 [kNm],  

(d) bending moments 𝑀𝑧 [kNm], (e) axial forces 𝑁𝑥 [kN] 
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The associated stress values were determined based on the 

adopted nonlinear material model in the σ-ε domain. The 

maximum axial strain in the cross-section under combined 

loading is ε = 0.263‰, which corresponds to a compressive 

stress of σ𝑐 = 2.81 MPa. The maximum tensile stress reaches 

σ𝑡 = 1.10 MPa ≤  𝑓𝑐𝑡,𝑒𝑓𝑓 = 1.45 MPa, remaining below the 

effective tensile strength of concrete C30/37. Consequently, 

the section remains uncracked.  

5. CONCLUSIONS  

The applied method, which combines the funicular design 

approach with nonlinear numerical analysis, enabled the 

determination of an arch shape optimally aligned with internal 

force distributions. As a result, significantly lower values of 

bending moments and shear forces were obtained, which 

considerably simplified the dimensioning process. 

Consequently, load-bearing reinforcement was found to be 

unnecessary, and only the minimal structural reinforcement 

required by Eurocode 2 was provided. The analysis revealed 

that the main load-bearing structure primarily experiences 

compressive forces, confirming the assumptions of the 

adopted method. This allows for more efficient use of 

construction materials, making the designed object both cost-

effective and durable, which is particularly relevant for 

sustainable urban infrastructure.  

The obtained displacements of the structure are small, 

amounting to 2 mm, which indicates the high stiffness and 

stability of the system. This is crucial for the long-term 

operation of the structures in urban areas, where durability and 

minimal maintenance requirements are key factors in public 

infrastructure and historic preservation. By minimizing 

displacements, the risk of secondary damage, such as cracks 

or scratches is significantly reduced, ensuring long-term 

resilience in urban environments.  

A comparison of the results obtained using graphic statics 

and the Finite Element Method confirms the effectiveness of 

the adopted design approach. The agreement between the 

numerical analysis results and the theoretical assumptions of 

the funicular method confirms the accuracy of both the 

calculation model and the design assumptions. 

The presented methodology illustrates how the 

integration of traditional structural principles with advanced 

numerical techniques supports the digital transformation of 

the architectural and structural design process. The proposed 

approach facilitates the development of reinforced concrete 

structures optimized in terms of load-bearing performance, 

stiffness, and material efficiency. In doing so, it addresses key 

priorities in sustainable construction, including the reduction 

of embodied carbon and the implementation of low-carbon 

design strategies.  

In a broader context, this method contributes to the 

creation of resource-efficient, climate-resilient structures that 

meet the evolving needs of urban environments. It 

demonstrates the potential of digitally supported structural 

shaping to advance sustainable development goals and to 

support the transformation of cities into more environmentally 

responsible, durable, and adaptive systems.  
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