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Ore image target detection based  
on improved YOLOv5 network

Introduction

The environment of collecting ores in mines is more complex; with a wide variety of 
collected ores and different ore location morphologies, coupled with the varying particle 
sizes of crushed ores, detecting ores with small targets is particularly challenging. The study 
of fast and accurate target recognition method of ore on the conveyor belt after crushing 
constitutes an important portion of the research domain of realizing intelligent mines,  
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and it is also a necessary part of the measurement of ore particle size. Therefore, it is of great 
significance to propose a target recognition algorithm with a low leakage detection rate and 
high precision for more images.

In recent years, deep learning algorithms have become more and more mature in 
artificial intelligence technology through the advantages of neural networks to learn and 
remember relevant features, and neural networks can choose different structures according 
to the data features such as text, sound, image, video, etc. (Zhang et al. 2021). In addition, 
it can also establish connections between data and achieve data integration by analyzing 
and processing input data information (Dawson et al. 2020; Liu et al. 2021), and nowadays, 
many researchers combine deep learning algorithms with artificial intelligence technology 
to efficiently complete target detection tasks. Target detection algorithms can be mainly 
divided into two types; one is the standard two-stage target detection algorithms that generate 
pre-selected box regions and then classify and predict the targets by classifiers, such as 
R-CNN (Xie et al. 2024), Fast R-CNN (Zhang et al. 2024), Faster R-CNN (Li et al. 2024), 
Mask R-CNN (He et al. 2020) and so on. These detection algorithms are characterized by 
relatively high detection precision. However, they have a large number of parameters in the 
detection process, and the slow processing speed limits their use in practical engineering 
environments. (Fu et al. 2018) enhanced the Faster R-CNN model, attaining a target detection 
precision of approximately 90% and a target detection time of 5 milliseconds. (Yang et al. 
2023) proposed a target detection performance optimization algorithm taking Mask R-CNN 
as the basis.

First of all, the network structure of FPN is improved and optimized by adding feature 
fusion paths to improve the network’s full utilization. Secondly, an attention mechanism 
is incorporated to enhance the efficiency of model feature extraction. The other category 
consists of one-stage target detection algorithms that do not generate candidate frames and 
predict the target result directly through forward reasoning, such as YOLO (Redmon et al. 
2015), FCOS (Wu et al. 2023), SSD (Yan et al. 2022) and other series of algorithms. These 
algorithms are more applicable to real engineering situations due to their smaller number 
of parameters, faster processing speed, and simplified processing flow. Among them is the 
YOLO algorithm, an end-to-end deep learning model that acquires and extracts feature 
information from the input image through learning, which not only simplifies the process 
of detection but also makes the model more intuitive and easy to understand. (Shen et al. 
2024) introduced the spatial pyramid pooling module into the YOLOv5 model to increase 
the precision of target detection by improving the loss function, and the convergence speed 
of the model is enhanced. Moreover, the average precision of its detection reaches 97.3%. 
As (Zhang et al. 2023), addressing the issues of complex image backgrounds and high 
resolution, and a large number of small targets, proposed a lightweight network based on 
the YOLOv7 architecture, the hybrid attention mechanism is incorporated into the feature 
extraction network, fuses the feature information between the shallow and deep layers. 
Moreover, it enhances the learning capability of the model and its ability to recognize 
small targets. The YOLOv8 algorithm is characterized by high precision, but its detection  



179Cai et al. 2025 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 41(2), 177–196

of small targets still has some limitations in complex scenarios such as target adhesion and 
occlusion (Fan et al. 2025).

In response to the complex situations of ore stacking, edge adhesion, uneven particle size 
distribution, and minor feature differences on the conveyor belt after the crushing process, 
to further enhance the adaptability of the model and improve precision while keeping the 
operating speed unchanged, this paper proposes targeted improvements to the algorithm 
based on YOLOv5. The CA attention mechanism is added to the original network, which 
realizes the feature recognition visualization and boosts the network’s ability to extract 
features and recognize more images; the edge regression loss function SIoU (Scale-Invariant 
Intersection over Union) is introduced based on the IOU characteristics (Sun et al. 2023), 
which considers the vectors corresponding to the required regression angle, improve the 
model performance, improve the positioning precision of target recognition, enhance 
the detection speed and detection precision of ore recognition, and provide the basis for 
subsequent ore particle size calculation.

1. Dataset introduction

As there is a shortage of publicly accessible ore image datasets, this experiment 
constructed the ore dataset required for model training. In order to obtain high-quality 

(a) (b) (c)

(d) (e) (f)

Fig. 1. Dataset section ore images

Rys. 1. Sekcja zbioru danych obrazów rudy
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datasets, the ore was randomly dispersed on the conveyor belt in the laboratory to simulate 
an on-site environment, and the ore images were collected. To enhance the universality of 
the trained network model and enable it to handle the detection tasks of ore stacking and 
adhesion better, 300 simulated on-site ore images were used in this experiment. The ore 
position and morphology of each image were different, and some ores had adhesion and 
overlap between them. The dataset was expanded by random rotation and mirror-image 
data augmentation methods to generate corresponding label files; the expanded dataset has 
a total of 1,000 samples. The dataset is partitioned into training, validation, and testing 
sets at a ratio of 4:3:3. Figure 1 shows the partial ore images of the dataset generated in this 
experiment.

2. YOLOv5 Network improvements

YOLOv5 is an object detection model, and its developers have developed four versions, 
namely YOLOv5s, YOLOv5m, YOLOv5x, and YOLOv5l, the key distinction among 
these four versions lies in the depth and width of the network. This section focuses on the 
architecture of YOLOv5s, which is the network in the YOLOv5 series that has the least 
depth and the narrowest feature map width. The subsequent versions of m, l, and x are all 
extended and deepened based on the YOLOv5s basic model (Dai et al. 2023).

The YOLOv5 network can be mainly segmented into four components: input section, 
Backbone, Neck, and Prediction. Figure 2 depicts the network structure of YOLOv5.
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Fig. 2. Network structure diagram of YOLOv5

Rys. 2. Schemat struktury sieci YOLOv5
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Due to the pooling layer of the C3 module in the network, the convolutional neural 
network experiences a certain loss of image information when increasing the receptive field 
of the upper convolutional kernel and the background of the aggregated image, resulting in 
incomplete extracted target features and inability to fully fuse features of different scales. 
This leads to false positives and missed detections, and the balance between precision and 
speed cannot be achieved well.

2.1. Improvement of attention mechanism

Although the YOLOv5 model has good detection speed, there are still shortcomings 
in target feature extraction, resulting in insufficient target detection precision. Coordinate 
attention mechanism (CA) (Guo et al. 2022) (Coordinate attention for effective mobile 
network design) can achieve more effective extraction of key features of detection targets. 
Its advantages are predominantly manifested in taking into account not only channel 
information but also directional position information. Moreover, it is lightweight to such 
an extent that it can be readily inserted into the core modules of lightweight networks. This 
article considers that the recognition target is ore. In order to meet the characteristics of 
stacking, adhesion, similarity, and irregularity between ores in target recognition, as well 
as the requirements for network speed, based on YOLOv5, an attention mechanism is 
incorporated. The attention mechanism module is used for feature screening to improve the 
precision of the detection network.

The CA attention mechanism can be regarded as a computational unit that augments  
the feature expression capability of mobile networks, accepting intermediate feature  
X = [x1, x2, … xC] ∈ RC×H×W as inputs and outputting enhanced features Y = [y1, y2, … yC] 
of the same size as X.

The algorithm flowchart and network structure diagram of CA attention mechanism are 
shown in Figures 3 and 4.

The CA attention mechanism enables networks to have the ability to distinguish key 
area information, invest greater weight in specific areas, highlight and strengthen useful 
features, suppress and ignore irrelevant features, and reduce feature data loss caused by 
two-dimensional pooling operations (Shi et al. 2023). Firstly, this mechanism transforms the 
feature vector into a non-one-dimensional global pooling single vector while decomposing 
it into two independent spatial structures to achieve more effective data transmission and 
capture long-distance dependencies in a spatial direction while maintaining positional 
information. Secondly, The generated feature maps are transformed into direction-aware 
and position-sensitive ones and then applied to the input feature maps to strengthen the 
representation of the object of interest (Wen et al. 2023). Specifically, for the input dimension  
C × H × W of the feature map X, first pooled using pooling kernels of sizes (H, 1) and (1, W) 
to average the coordinates in the X and Y directions in each channel, and acquire the output 
value of channel c having a height of h. as shown in Equation (1).
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The output in channel c with width W is shown in Equation (2).
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Through the CA attention mechanism, coordinate data from the global receptive field 
can be implanted into the code to obtain accurate localization data. To achieve coordinate 
attention, it is necessary to cascade the feature maps obtained from two pooling operations 
and utilize a 1 × 1 communal convolutional transformation function F1 is used to transform 
it, as shown in Equation (3).

	 ( )( )11
h wk F Z Z = δ  

� (3)

In the Equation, Zh1Zw represents cascading the feature maps obtained from two pooling 
operations, δ denotes the nonlinear activation function, and k is an intermediate feature 
map encoded in the horizontal and vertical directions. k is divided into two separate tensors 
kh and kw along the horizontal and vertical directions, and then two 1 × 1 convolutional 
transformation functions are utilized, which transforms into the same number of channels 
as the output X, as shown in Equations (4) and (5).

	 ( )( )h h
ng F k= σ � (4)

	 ( )( )w w
wg F k= σ � (5)

gh and gw respectively denote the weights in terms of dimensions for the feature maps in 
the horizontal and vertical directions. Finally, as shown in Equation (6), the final output after 
adding CA attention mechanism is obtained.

	 ( ) ( ) ( ) ( ), , h w
c c c cy m n x m n g m g n= ⋅ ⋅ � (6)

xc(m,n) and yc(m,n) denote the results for channel c at coordinate (m,n) in the input 
and output feature maps, respectively.

The improvement and optimization was carried out by adding CA modules to the initial 
network structure, and Table 1 shows the comparison of the test results before and after the 
model improvement.

Table 1.	 Added CA attention mechanism network test results

Tabela 1.	 Dodane wyniki testu sieci mechanizmu uwagi CA

Network structure AP (precision) F1 FPS (speed)

YOLOv5 0.968 0.94 120 f/s

CA+YOLOv5 0.975 0.95 100 s/s
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By comparing the evaluation indicators before and after the model improvement, it can 
be concluded that the performance of the improved model has better results

2.2. Improvement of loss function

GIoU, as a loss function and insensitive to scale, is a good distance metric; compared 
with IOU, GIoU can reflect more accurately the overlap between the predicted and real 
frames. However, when the two boxes are not aligned accurately, the area of the smallest 
bounding box will increase, which will reduce the value of GIoU. When the two boxes 
belong to the inclusion relationship, GIoU will degenerate into IOU, and its relative position 
relationship cannot be distinguished (Song et al. 2022).

To solve this problem, by improving the inadequacy of the loss function of the target 
detection network, SIoU is adopted as the improved loss function. Because IoU and GIoU 
do not consider the direction between the real box and the prediction box, the convergence 
speed is slow, and the relative position relationship cannot be distinguished. Therefore, SIoU 
takes into account the vector angle between the actual box and the predicted box to redefine 
the loss function, which includes three-parts.

2.2.1. Angle loss
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Where, Ch epresents the height disparity between the center points of the real bounding 
box and the predicted bounding box. Additionally, σ indicates the separation between the 
center points of the real frame and the prediction frame.
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Fig. 5. Schematic diagram of angular loss

Rys. 5. Schematyczny schemat strat kątowych
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2.2.2. Distance loss
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2.2.3. Shape loss
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denote the width and height of the predicted and actual frames, the value is an empirical one 
that indicates the degree of attention paid to shape loss.

In conclusion, the SIoU loss function’s definition is presented in Equation (13).

	
SIoU 1 IoU

2
Loss ∆ + τ

= − +
� (13)

The results of adding CA attention mechanism and improving the loss function in 
YOLOv5 network structure compared with other target detection algorithms are shown 
in Table 2.

Table. 2.	 Parameter change table before and after improvement

Tabela 2. 	 Tabela zmian parametrów przed i po ulepszeniu

Network Structure AP (precision) FPS (speed)

YOLOv5
YOLOv7
YOLOv8

0.968
0.970
0.983

120 f/s
     76.9 f/s
     39.8 f/s

CA+YOLOv5 0.975 100 f/s

SIoU+CA+YOLOv5 0.980 100 f/s

3. Network evaluation index

3.1. Network training parameters

To address complex computing issues during network training and boost the speed of 
network training and operation, this paper selects the dynamic Pytorch framework as the 
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network framework of deep learning neural networks. Due to its high flexibility and easy 
debugging, data parameters can be easily transferred between CPU and GPU. By using 
parallel computing architecture CUDA and GPU acceleration, fast network training can be 
realized. Therefore, the system shown in Table 3 was built.

In this paper, Recall and Precision are regarded as the evaluation metrics of the YOLOv5 
network model target detection algorithm. The recall indicates the ratio of all ore targets 
that are correctly predicted as ore, thus, it is possible to assess the comprehensiveness of the 
detection model performance tests. The precision reflects the actual percentage of ore in the 
target that is predicted to be ore. By contrasting the disparity between the model’s predicted 
outcomes and the actual results, two evaluation indices, namely recall rate and precision, 
were computed.

Table. 3.	 Software and hardware system parameter table

Tabela 3. 	 Tabela parametrów systemu oprogramowania i sprzętu

Hardware name Parameter setting

GPU Nvidia GeForce RTX 20

CPU Intel Core i7-10700@2.90ghz Octanuclear

Graphics card NVIDIA GeForce RTX 3060

Video memory 12G

Computer system Win 10

Anaconda 2020.07

Keras 2.1.5

Python 3.8

Opencv-python 4.4.0.46

Pytorch 1.8

CUDA 10.0

CUDNN 7.6.1

Table. 4.	 Confusion matrix table

Tabela 4. 	 Tabela macierzy pomyłek

Real situation
Forecast result

positive example counterexample

Positive example TP FN

Counterexample FP TN
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As shown in Table 4, TN (True Negatives) represents the quantity of correctly identified 
nonores; FP (False Positions) are the nonore quantities that have been incorrectly identified 
as ores; FN (False Negatives) stands for the count of ores that have been wrongly classified 
as nonores. Equations (14) and (15) are the expressions for the calculation of precision and 
recall rates.

	
precision TP

TP FN
=

+
� (14)

	 recall TP
TP FP

=
+

� (15)

In order to comprehensively evaluate the precision and recall values, the F1 score is 
employed to assess the superiority of the model. The evaluation scale of F1 is between 
[0,1], and a single value can be used to evaluate the given model to make its results more 
intuitive. The nearer it is to 1, the more excellent the model’s performance, and vice versa. 
The calculation formula is shown in Equation (16).

	 precision × recallF 2
precision + recall

= ⋅
� (16)

3.2. Analysis of Network Evaluation Indicators

The changes in various evaluation indicators of the improved YOLOV5 model trained 
on a self-made ore dataset are shown in Figures 7, 8, 9, and 10. The overall loss value of 
the improved YOLOV5 loss function curve is lower than that before the improvement, 
and the oscillation amplitude of the loss function curve is significantly reduced, indicating 
that the improved training process is smoother and the training effect is also improved to 
a certain extent; The area encompassed by the PR curves and the axes signifies the model’s 
checking completeness and precision, and additionally reflects the variation in precision 
before and after improvement; The F1 value change curve shows that the improved model’s 
F1 value is generally greater than the original F1 value during the confidence change 
process, indicating a significant improvement in the detection precision of the improved 
model; The vibration amplitude of the precision curve is significantly reduced compared 
to before improvement, and it can converge quickly to stabilize. Through the analysis of 
evaluation indicators, the AP value increased from 96.8% to 98%, an increase of 1.2%.  
The F1 value increased from 0.94 to 0.95, an increase of 0.01. The precision has increased 
from 96% to 98%, an increase of 2%, indicating that the enhanced model has  superior 
detection performance.
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3.3. Analysis of ore image recognition results

Randomly select four different ore images from the test set and use the improved model 
to  recognize the ore particles in each image. The recognition images of the ore before 
and after improvement, as well as the corresponding local enlarged images, are shown in 
Figures 11, 12, 13, and 14.

From the results of ore identification on the conveyor belt by YOLOv5 before 
improvement in Figure 11 to Figure 14, it can be observed that most of the different kinds 

Fig. 7. Curve of loss function before and after improvement

Rys. 7. Krzywa funkcji strat przed i po poprawie

Fig. 8. PR curve before and after improvement

Rys. 8. Krzywa PR przed i po poprawie
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of ore particles can be accurately identified, but due to overlap and adhesion among ore 
particles, there will be cases of missing identification and misidentification of individual 
ores in the identification results of YOLOV5 model. On the basis of the YOLOv5 
model, the CA attention mechanism is added, and the GIoU function is replaced by the 
SIoU function in the improved CA-YOLOV5 network model. Based on the model, the 
sensitivity of ore characteristics identification is improved, and the precision is improved 
to reduce the identification error. The visualization of feature extraction was incorporated 
to study the ore feature extraction process so as to enhance the recognition precision,  

Fig. 10. Precision rate curve before and after improvement

Rys. 10. Krzywa współczynnika precyzji przed i po poprawie

Fig. 9. F1 value curve before and after improvement

Rys. 9. Krzywa wartości F1 przed i po poprawie
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(a) Pre-improved ore identification map (b) Improved ore identification map

(c) Partial magnification of ore before improvement (d) Partial magnification of ore after improvement

Fig. 11. Comparison of the first group of ore image recognition

Rys. 11. Porównanie pierwszej grupy rozpoznawania obrazu rudy

(a) Pre-improved ore identification map (b) Improved ore identification map

(c) Partial magnification of ore before improvement (d) Partial magnification of ore after improvement

Fig. 12. Comparison of the second group of ore image recognition

Rys. 12. Porównanie drugiej grupy rozpoznawania obrazu rudy
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(a) Pre-improved ore identification map (b) Improved ore identification map

(c) Partial magnification of ore before improvement (d) Partial magnification of ore after improvement

Fig. 13. Comparison of the third group of ore image recognition

Rys. 13. Porównanie trzeciej grupy rozpoznawania obrazu rudy

(a) Pre-improved ore identification map (b) Improved ore identification map

(c) Partial magnification of ore before improvement (d) Partial magnification of ore after improvement

Fig. 14. Comparison of the fourth group of ore image recognition

Rys. 14. Porównanie czwartej grupy rozpoznawania obrazu rudy
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and the GIoU function made up for the failure to consider the angular difference and 
the disparity between the predicted bounding box and the actual bounding box, further 
improving the recognition precision. Compared with the recognition effect before the 
improvement, the problems of missing recognition and misidentification in the ore image 
have been basically solved, which indicates that the enhanced approach adopted in this 
paper has a remarkable result on the recognition of stacked ore and cohesive ore particle 
images on the conveyor belt.

Conclusions

1.	 To detect and identify the ore on the conveyor belt more accurately, this paper improved 
the YOLOv5 model by adding a CA module to extract the multi-scale characteristic 
information of the ore and enhance the network feature extraction capability. The 
improved SIoU loss function accelerates the model’s convergence rate and enhances the 
detection precision.

2.	 This study produced an image data set for the training, verification, and testing of the 
model. The experimental contrast between the improved SIoU+CA+YOLOv5 model 
and the YOLOv5, YOLOv7, YOLOv8, and CA+YOLOv5 models demonstrated that 
the enhanced model presented in this paper can all boost the precision, F1 value and 
detection precision of ore image recognition, which are 1.2, 1 and 2 percentage points 
higher than the base model, respectively. With the improvement of the complexity of the 
upgraded model, the detection speed also drops to 100 f/s. Nevertheless, it is still capable 
of meeting the demands of real-time recognition. The model has good performance for 
ore identification and detection in the case of stacking and adhesion and can be well 
applied to the ore detection task on the conveyor belt.
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Ore image target detection based on improved YOLOv5 network

K e y w o r d s

YOLOv5, object detection, coordinate attention for efficient mobile network design,  
feature extraction

A b s t r a c t

The existing target detection algorithms detect the ore on the conveyor belt after the crushing 
process with low precision and slow detection speed. This leads to challenges in achieving a balance 
between precision and speed, to enhance the detection precision and speed of ore, and in view of 
the problems of leakage, misdetection, and insufficient feature extraction of YOLOv5 in the task 
of ore image detection; this study presents a target detection approach relying on the CA attention 
mechanism (Coordinate attention for efficient mobile network design), the SIoU loss function and 
the target detection algorithm YOLOv5 combination of ore image particle target detection method. 
Integrating the CA attention mechanism into the YOLOv5 backbone feature network enhances the 
feature learning and extraction of ore images, thereby improving the precision of the detection model; 
the SIoU loss function is refined to boost the recognition precision of the network on ore images and 
address the shortcomings of the original loss function that fails to take angular loss, distance loss, and 
shape loss into account, thereby further improving the precision and speed of ore image detection. 
The experimental findings demonstrate that the AP value, value, and precision rate are improved 
compared with the pre-improved algorithm. The CA-YOLOv5 method is verified to be fast, effective, 
and advanced and provides a foundation for real-time target detection of ores on conveyor belts in 
subsequent intelligent mine production.

Wykrywanie celu obrazu rudy w oparciu o ulepszoną sieć YOLOv5

S ł o w a  k l u c z o w e

YOLOv5, wykrywanie obiektów,  
koordynacja uwagi dla wydajnego projektowania sieci mobilnych, ekstrakcja cech

S t r e s z c z e n i e

Istniejące algorytmy wykrywania celu wykrywają rudę na taśmie przenośnika po procesie 
kruszenia z niską precyzją i niską szybkością wykrywania. Prowadzi to do wyzwań związanych 
z osiągnięciem równowagi między precyzją i szybkością, w celu zwiększenia precyzji i szybkości 
wykrywania rudy, a także ze względu na problemy z wyciekami, błędnym wykrywaniem 
i niewystarczającą ekstrakcją cech YOLOv5 w zadaniu wykrywania obrazu rudy; niniejsze badanie 
przedstawia podejście do wykrywania celu polegające na mechanizmie uwagi CA (Coordinate 
attention for efficient mobile network design), funkcji straty SIoU i kombinacji algorytmu wykrywania 
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celu YOLOv5 w połączeniu z metodą wykrywania celu cząstek obrazu rudy. Zintegrowanie 
mechanizmu uwagi CA z  siecią funkcji szkieletowych YOLOv5 usprawnia uczenie się funkcji 
i ekstrakcję obrazów rudy, tym samym zwiększając precyzję modelu wykrywania; funkcja straty 
SIoU została udoskonalona w celu zwiększenia precyzji rozpoznawania sieci na obrazach rudy 
i usunięcia niedociągnięć oryginalnej funkcji straty, która nie uwzględnia strat kątowych, strat 
odległości i strat kształtu, co jeszcze bardziej poprawia precyzję i szybkość wykrywania obrazów 
rudy. Wyniki eksperymentów pokazują, że wartość AP, wartość i wskaźnik precyzji są lepsze 
w porównaniu z wcześniej ulepszonym algorytmem. Metoda CA-YOLOv5 została zweryfikowana 
jako szybka, skuteczna i zaawansowana oraz stanowi podstawę do wykrywania celów rud na taśmach 
przenośnikowych w czasie rzeczywistym w późniejszej inteligentnej produkcji kopalnianej. 
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