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Abstract: Given the constantly changing market situation for electricity prices, driven by shifts in the 
energy mix, regulatory reforms, and broader socio-economic factors, it is necessary to reassess 
the understanding of price forecasting periodically. Traditional statistical methods may struggle 
when faced with heightened volatility, nonlinear dependencies, and rapidly changing input 
features. In contrast, machine learning models, particularly Artificial Neural Networks (ANNs), 
can adapt more effectively to complex, non-stationary patterns in price time series. In this study, 
six distinct artificial neural network (ANN) architectures were developed and trained using eight 
years of historical Polish Day-Ahead Market electricity price data (2016–2024). Four of these 
were plain deep learning models: a Multilayer Perceptron (MLP), a Convolutional Neural Network 
(CNN), a Long Short-Term Memory (LSTM) model, and a Gated Recurrent Unit (GRU) model. 
Two others were hybrid models combining convolutional layers with recurrent layers. The hybrid 
architectures, namely CNN+LSTM and CNN+GRU, were designed to leverage the capacity of 
CNN to automatically extract features from narrower sliding windows of past prices and the  
LSTM/GRU layers’ ability to capture long-term temporal dependencies. The models’ performances 
were evaluated using three metrics: Mean Absolute Error (MAE), Root Mean Squared Error 
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(RMSE), and the coefficient of determination (R2). The top-performing CNN+LSTM achieved an 
MAE of 75.21 PLN/MWh, an RMSE of 103.64 PLN/MWh, and an R2 of 0.59. Results were also 
compared against several models previously reported in the literature. These results may be used to 
improve price forecasting by indicating the optimal pathways for building forecasting models and, 
in extension, lead to more efficient power system planning.

Keywords: electricity, Day-Ahead Market, artificial neural networks, prices, forecasting

Introduction

The ongoing global decarbonization process is reshaping the structure of electricity 
generation in power systems (Obiora et al. 2024). In 2024, renewable energy sources (RES) 
accounted for 30% of global electricity production, representing a 23% increase in solar energy 
and a 10% increase in wind energy generation compared to the previous year (Ember 2024). 
As environmentally friendly, renewable sources of electricity increasingly replace solid fuels, 
electricity generation becomes more variable and less predictable due to the high dependency 
on weather conditions, which directly affect wind and solar output (Pepłowska 2025). These 
conditions vary across countries and regions, depending on their climatic zones. Moreover, the 
pace of changes in the energy mix is often regulated or supported by national legislation and 
policy frameworks (Liu and Feng 2023). Consequently, countries that began their RES transition 
earlier have gained more experience and are actively addressing the related challenges (Dong 
et al. 2019).

As the electricity market becomes increasingly volatile, conventional statistical models may 
become overly complex and less accurate (Tschora et al. 2022). Given that a wide range of 
public and private stakeholders rely on price forecasts, inaccuracies can lead to financial losses, 
coordination challenges, and complications in system planning (Alboom 2025). Instead of using 
conventional statistical models, these challenges may be addressed by implementing machine 
learning (ML) models, which do not require any predefined functional forms and can better 
capture non-linear patterns in the data (Ejdys et al. 2015; Miller and Bućko 2014). Although such 
models have been successfully applied in various contexts, their effectiveness depends on the 
relevance of the training data. As electricity markets evolve, older models trained on outdated 
datasets may lose predictive accuracy. 

In recent years, a growing number of studies have employed machine learning techniques 
to forecast electricity prices. These approaches vary in terms of model architecture, input data, 
and geographical focus. In 2010, Halicka developed and trained a Multilayer Perceptron (MLP) 
machine learning model with two hidden layers, consisting of 30 and 5 neurons, respectively, 
and seven input variables (price, volume, wind speed, cloud cover, temperature, hour of the day 
and day of the week) in 24 samples sliding windows (Halicka 2010). The model achieved a mean 
absolute error (MAE) of 2.93 PLN/MWh, using data from the 2008 Polish Day-Ahead Market 
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for training (once with backpropagation and once using the conjugate gradient method) and from 
January 2009 for testing. 

Miller and Bućko built an MLP model with a single hidden layer, consisting of five neurons, 
using the backpropagation method on 2010 Polish electricity market data, that was able to predict 
the price with a 4.05% mean absolute percentage error (MAPE) (Miller and Bućko 2014). Ejdys 
et al. claim to have developed and trained an MLP model in 2015, which reached a MAPE of 
4.71% (or an MAE of 7.93 PLN/MWh), but did not specify the input data time range, nor the 
training method. As for architecture, the name “MLP 7-2-1” suggests seven input neurons, two 
neurons in a hidden layer, and one output neuron (Ejdys et al. 2015). As these studies relied on 
older data, the resulting models would probably prove unreliable in today’s day-ahead electricity 
market. Other, more recent studies have focused on foreign electricity markets and have not 
considered the specific characteristics of the Polish power system (Belenguer et al. 2025; Mao 
et al. 2025).

Although the abovementioned studies provide important early contributions to electricity 
price forecasting using MLP architectures, their current relevance is limited. All models were 
trained on datasets from over a decade ago and, therefore, do not accurately reflect the structural 
changes that have occurred in the Polish electricity market since then, such as increased generation 
from renewable energy sources, shifts in demand patterns, and regulatory developments. 
Consequently, there is a need for an updated, context-specific model that incorporates the latest 
market dynamics and leverages recent advances in machine learning techniques.

This study contributes to the existing body of research by developing a machine-learning 
model explicitly tailored to the Polish Day-Ahead electricity market. In contrast to earlier models, 
which were based on outdated data or failed to account for local market conditions, the proposed 
approach integrates recent datasets and accurately represents the current structure of the Polish 
power system. This study utilizes the most recent available meteorological and generation data 
from Poland, combined with various artificial neural network (ANN) architectures. To further 
enhance the accuracy of electricity price forecasting, various combinations of input variables, 
layer types, and training methods are compared. 

The remainder of this paper is organized as follows: Section 2 presents the data sets used and 
describes the applied methodology. Section 3 discusses the results, while Section 4 concludes 
the study.

1. Materials and methods

This section provides a description of the datasets used in the study, the methods applied for 
their processing and analysis, and the architectures of the machine learning implemented. The 
datasets include meteorological and electricity generation data relevant to the Polish Day-Ahead 
electricity market. The overall workflow of the study is presented in Figure 1, outlining the main 
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steps from data acquisition through preprocessing, feature extraction, and model design to model 
training, testing, and evaluation.

1.1. Data assumptions

Initially, the relevant datasets were acquired from open-access and publicly available 
sources. The Polish Transmission System Operator (TSO) shares hourly electricity generation 
data, including outputs from Centrally Dispatched Units (CDU), non-centrally Dispatched Units 
(nCDU), wind and solar generation, as well as electricity demand, up to June 14, 2024 (PSE 
SA 2025). Day-ahead market data, comprising prices and volumes for fixing I and II, were 
obtained from Energy Instrat, an open-access platform offering electricity and fuels market data 
(Energy Instrat 2025). The earliest available records date back to January 1, 2016. These two 
dates define the overall temporal scope of the datasets from January 1, 2016, to June 14, 2024. To 
provide a general overview of the dataset’s characteristics, Figure 2 presents the weekly averages 
of fixing I price and traded volume over the entire period. The sudden increase in electricity 
price growth is closely related to the COVID-19 pandemic, the ongoing Russo-Ukrainian armed 
conflict, and the resulting surge in global fuel prices (Adolfsen et al. 2025; Zhong et al. 2020). 

Temperature, solar radiation, and wind speed data were obtained from the ERA5 Climate 
Data Store (CDS) in the form of simulated reanalysis (ERA5 2025). All datasets were available at 
hourly resolution. A comparison of the simulated wind speed data with real-world measurements 
from the Polish Institute of Meteorology and Water Management (IMGW) revealed that the 
ERA5 wind data exhibited an average relative error of 12.99% (IMGW 2025). This discrepancy 

Fig. 1. Workflow of the study

Rys. 1. Przebieg pracy na rzecz badania
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is likely due to the spatial difference between the locations of the meteorology station and the 
nearest ERA5 datapoint, located approximately 8 km southeast of the station. Additionally, the 
station’s proximity to the shoreline may contribute to local wind patterns not fully captured by 
the ERA5 dataset. Nevertheless, this level of error is generally considered acceptable for large- 
-scale energy modeling and site screening purposes (Dubus et al. 2023; Tsai et al. 2022)

As shown in Figure 1, the gathered data were subject to preprocessing, which eliminated 
empty values by interpolating adjacent values. The datasets were then analyzed both visually 
and statistically to identify the most suitable features for training the machine learning model. 
At the same time, a variety of artificial neural network (ANN) models were being developed. 
This involved iterating on the number of layers, the number of neurons per layer, and the types 
of layers to achieve the highest possible accuracy.

Most of the steps were performed using the open-source programming language Python and 
a set of specialized libraries. The pandas library was employed for data analysis and manipulation, 
while NumPy supported matrix operations and other mathematical functions. SciPy provided 
algorithms for scientific computing and was primarily used for scaling the data. TensorFlow 
provided API interfaces for building ML models, including the open-source deep learning library 
Keras, which was primarily used in this study. Every custom model was trained using the  Adam 
(Adaptive Moment Estimation) optimizer provided by Keras.

All collected data were subjected to statistical analysis to identify the most relevant features 
for training the machine learning models. The analysis included, among other things, visual 
assessment of the dependency plots, calculation of correlation coefficients between input 
variables, and the construction of linear regression models to evaluate the coefficients of 

 

 
Fig. 2. Average weekly electricity price and traded volume (fixing I) in the Polish market in 2016–2024 

(Energy Instrat)

Rys. 2. Średnie tygodniowe ceny i wolumenu energii elektrycznej (fixing I) na Rynku Dnia Następnego 
między 2016–2024 (Energy Instrat)
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determination. The analysis was conducted in Python, using the statsmodels library alongside 
NumPy, which provided the necessary tools and functions.

1.2. Methods – Artificial Neural Network models

To capture the complex dependencies influencing electricity prices, data-driven forecasting 
techniques were employed in this study. Among them, Artificial Neural Networks (ANNs) were 
selected due to their proven effectiveness in modeling nonlinear time series data. Artificial 
Neural Networks discern complex, nonlinear patterns and relationships from historical training 
data, which can then be applied to forecast future values. ANN is a type of machine learning 
model that mimics the inner workings of a biological nervous system (Benalcazar et al. 2017).

For this study, four different ANN architectures were employed:
)) Multilayer Perceptron (MLP), 
)) Long-Short Term Memory (LSTM), 
)) Gated Recurrent Unit (GRU), 
)) Convolutional Neural Network (CNN), 

and some combinations of the aforementioned.
An ANN works by activating nodes, called neurons, which are grouped in layers. Each 

node is connected to others, and each connection is assigned a weight. This leads to a simple 
neuron model function as shown in Equation 1, where h is the output, σ is the activation function 
(sigmoid in this example), w is the weight, x is the input, and b is the bias (Haykin 1999).

	 ( ) ( ) h x w x b= σ ⋅ + � (1)

1.2.1. Feedforward Neural Network

The most basic type of artificial neural network (ANN) is a Feedforward Neural Network 
(FFN), in which the flow of information is strictly unidirectional: from the input layer through 
the hidden layers to the output layer. This structure can be represented as a sequence of neurons 
feeding into subsequent layers. By extending Equation 1, the output of a neuron can be 
represented as Equation 2, where σ is the nonlinear activation function of the nth node, w is the 
weight matrix, x is the input matrix, and b is the bias (Haykin 1999). A graphical representation 
of an FFN is shown in Figure 3. Due to the simplicity of the model, it requires significantly 
less computational power for training, but it may be less effective for more complex or highly 
temporal data (Jain and Medsker 1999). An MLP is a name given to modern FFN with fully 
connected neurons activated nonlinearly.

	 ( ) ( )( )( )1 1 1 1 1 1 1n n n n n nh x w w w x b b b− − −= σ ⋅σ σ ⋅ + + + 
� (2)
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1.2.2. Recurrent Neural Network

A Recurrent Neural Network (RNN) derives from the FFN. The main difference between 
these two is that an RNN allows a connection between a neuron and another from a previous 
layer. This creates a feedback loop. As a result, an RNN is expected to perform better with 
sequential data than an FFN (Jain and Medsker 1999). Figure 4 shows the visual representation 
of an exemplary RNN. Equation 3 is a mathematical representation of an RNN neuron, where σ 
is the nonlinear activation function of a neuron in the moment t, wa and wx are the recurrent and 
input weight vectors, a stands for the recurrent information, x is the input, and b represents the 
bias (Jain and Medsker 1999).

	 ( ) ( )1, a t x th a x w a w x b−= σ ⋅ + ⋅ + � (3)

1.2.3. Long-Short Term Memory

However, the feedback loop introduces a challenge: the recurrent information tends to 
either vanish or explode during training, hence the vanishing/exploding gradient problem. 
To address this issue, Hochreiter and Schmidhuber proposed an improved type of recurrent 
neuron called the Long-Short Term Memory (LSTM) cell (Hochreiter and Schmidhuber 
1997). The LSTM cell contains additional gates that regulate the inclusion or exclusion of 
information. This allowed the LSTM networks, unlike regular RNNs, to selectively forget 

 

 
Fig. 3. Visual representation of a Feedforward Neural Network (based on: Jain and Medsker 1999)

Rys. 3. Reprezentacja wizualna jednokierunkowej sieci neuronowej
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information over time (Hochreiter and Schmidhuber 1997). Figure 5 represents a single 
LSTM cell. Equation 4 explains each step of the LSTM cell’s data processing, where σ 
and tanh are nonlinear activation functions of a neuron in the moment t, w are appropriate 
weights, x is the input, a is the output, c is the cell state, and b the bias (Hochreiter and 
Schmidhuber 1997).

 

 Fig. 4. The representation of a Recurrent Neural Network (based on: Jain and Medsker 1999)

Rys. 4. Reprezentacja rekurencyjnej sieci neuronowej

 

 Fig. 5. Single LSTM cell representation (based on: Yu et al. 2019).

Rys. 5. Reprezentacja pojedynczej komórki sieci typu długa pamięć krótkotrwała
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	 ( )1t fa t fx t ff w a w x b−= σ ⋅ + ⋅ + �  

	 ( )1t ia t ix t ii w a w x b−= σ ⋅ + ⋅ + �  
	 ( )1t ca t cx t cc tanh w a w x b−= ⋅ + ⋅ + � (4) 

	 1t t t t tc f c i c−= ⋅ + ⋅ �  

	
( )1t oa t ox t oo w a w x b−= σ ⋅ + ⋅ +

�  
	 ( )tanht t th o c= ⋅ �

1.2.4. Gated Recurrent Unit

In 2014, in order to reduce the number of parameters in an LSTM cell, Chu et al. proposed the 
RNN Encoder-Decoder model. Commonly known as the Gated Recurrent Unit (GRU), this hidden 
unit implements the update and the reset gates (Cho et al. 2025). The first determines whether to 
update the hidden state and the second whether the previous hidden state should be ignored, as 
shown in Figure 6. Equation 5 shows calculations during every intermediate step of the process, 
where u (update gate), r (reset gate) and ã are intermediate states of information in the moment t, w 
are appropriate weights, x is the input, a is the output, and b is the bias (Agarap 2018).

	 ( )1t ua t ux t uu w a w x b−= σ ⋅ + ⋅ + �  

	 ( )1t ra t rx t rr w a w x b−= σ ⋅ + ⋅ + � (5) 

	
 ( )( )1tanht ar t t ax t aa w r a w x b−= ⊗ + ⋅ + �  

	 ( ) 

11t t t t ta u a u a−= − ⊗ ⊗+
�

 

 Fig. 6. Gated Recurrent Unit representation (based on: Agarap 2018)

Rys. 6. Reprezentacja bramkowej jednostki rekurencyjnej
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1.2.5. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of Artificial Neural Network (ANN) 
architecture composed of filters that produce feature maps by sliding over the input data, thereby 
capturing local patterns. Commonly used in tandem, pooling layers reduce the dimensionality 
of these feature maps while retaining crucial information (O’Shea and Nash 2015). Figure 7 
presents the CNN architecture.

Each architecture was run through hyperparameter tuning using KerasTuner. The tuner trains 
models in a loop, adjusting their hyperparameters, namely the number of layers, the number 
of neurons per layer, the activation function, and the dropout rate between iterations. Models 
were trained using the Adam optimizer provided by the keras library. The most efficient model 
of each type was saved for further testing and comparison. Electricity prices, along with other 
highly related time series, were split into training, validation, and testing datasets in a ratio 
of 0.7:0.15:0.15. The final models allow for electricity price forecasting with varying levels of 
accuracy, depending on the specific model architecture. Other models, namely the Temporal 
Convolution Network (TCN) and Transformer, did not show promising results during the initial 
analysis and were excluded from further tuning.

2. Results and discussion

The training and testing results of the machine learning models are presented in this section. 
The following models were analyzed: Multilayer Perceptron (MLP), Long-Short Term Memory 
(LSTM), Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), and hybrid 
models built from combinations of these architectures. The characteristics of the best-performing 
models from each architecture are presented in Table 1. The number and type of layers, number 

 

 Fig. 7. Convolutional Neural Network representation (based on: O’Shea and Nash 2015)

Rys. 7. Reprezentacja konwolucyjnej sieci neuronowej
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of neurons, and activation functions are used to describe them. It is worth noting that since all 
activation functions were linear, the MLP model is not a multilayer perceptron sensu stricto. The 
name was not changed, however, for the sake of convention.

The developed models were compared with one another and with those identified during 
the literature review, using standard metrics such as Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and the coefficient of determination (R2). Mean absolute error is 
a measure of the average absolute difference between the predicted and observed historical 
testing data. The exact mathematical formula for MAE is presented in Equation 6, where i 
is the current sample out of n samples, x is the original sample, and y is the predicted value. 
Root Mean Squared Error is the square root of the average square of the difference between the 
predicted and observed historical testing data, as shown in Equation 7, where i is the current 
sample out of n samples, x is the original sample and y is the predicted value. The coefficient 
of determination is usually explained as the measure of how much of the variance the model 

Table 1. Results of hyperparameter optimisation

Tabela 1. Wyniki optymalizacji hiperparametrów

Model Number and types of layers Number of neurons or filters Activation functions

MLP
Input,
Dense,

Dense (output)

168,
5,
24

None,
Linear,
Linear 

LSTM

Input,
LSTM,
Dropout,

Dense (output)

7,
4,

(rate 0.2),
24

None,
Hyperbolic tangent,

None,
Linear 

CNN

Input, 
1D convolution,
Max pooling,

Flatten,
Dense (output)

168, 
5 (kernel size 3),
(pool size 2),

None,
24

None, 
Rectified Linear Unit (ReLU),

None,
None,
Linear

GRU
Input,
GRU,

Dense (output)

7,
3,
24

None,
Hyperbolic tangent,

Linear

CNN + LSTM

Input,
1D Convolution,
Max pooling,

LSTM,
Dense (output)

7,
9 (kernel size 3),
(pool size 2),

6,
24

None,
ReLU,
None,

Hyperbolic tangent,
Linear

CNN + GRU

Input,
1D Convolution,
Max pooling,

GRU,
Dense (output)

7,
8 (kernel size 3,
(pool size 2),

6,
24

None,
ReLU,
None,

Hyperbolic tangent,
Linear
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accounts for. Computationally, R2 is the proportion of the residual sum of squares to the total 
sum of squares subtracted from one, as in Equation 8, where i is the current sample out of n 
samples, x is the original sample, y is the predicted value, and  is the average sample value. 
An R2 value below zero means that the model’s prediction is less accurate than a constant 
function predicting the mean of the data ( x ).

	
1

1 n

i i
i

MAE x y
n =

= ⋅ −∑ � (6)
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To compare the models, each one was trained and tested on the same dataset, using the 
same set of features selected as best suited for the analysis, and evaluated through time series 
cross-validation. The original performance claims reported by the authors of the compared 
studies could not be replicated due to the lack of specifications, differences in implementation 
environments, and inaccessible data. After the initial tuning had demonstrated the advantage 
of simpler feedforward models, another tuning process was conducted, focusing solely on the 
MLP model to identify the optimal combination of hyperparameters. Since this architecture is 
less complex, a larger number of combinations could be tested within a reasonable time frame.

As shown in Table 2, the hybrid CNN+LSTM model outperformed the others. Flattened 
CNN+LSTM forecasting results are shown in Figure 8. The last 15% of the time series was used 
as the testing data. The lowest MAE and RMSE values suggest that this architecture allows for 
the most accurate electricity price forecasting. A high coefficient of determination also ensures 
that the model can explain a significant percentage of the market variability. The convolutional 
layers learn to detect local patterns, such as peaks or short-term sequences, while the recurrent 
layers allow for effective temporal modeling. The MLP model performed only slightly worse 
in terms of MAE, and the CNN model was not far behind in terms of MAE, RMSE, and R2. 
This shows that appropriately adjusted simple models with carefully adapted features may still 
outperform plain RNNs. 

Models based on compared studies showed lower accuracy, with the Halicka (2010) model 
performing comparably to, though slightly below, a constant mean function, which may reflect 
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differences in dataset characteristics or modeling assumptions. The models were trained using 
the methods specified in the papers, except for Ejdys et al. (2015), for which the method was 
not reported, and the Keras Adam optimizer was used instead. A full comparison is presented in 
Figure 9.

Limiting the input data to shorter time ranges improves the model’s accuracy. By narrowing 
it down to just one month (March 2016), the CNN+LSTM MAE decreased to 13.64 PLN/MWh 
(0.1% Mean Absolute Percentage Error). This, however, sacrifices the long-range dependencies 
of learning.

Table 2. Performance comparison of machine learning models trained on 8 years  
of data using time series cross-validation

Tabela 2. Porównanie wydajności modeli uczenia maszynowego trenowanych na danych z 8 lat, 
po walidacji krzyżowej szeregów czasowych

Metric

Model

Halicka 
(2010)

Miller and 
Bućko 
(2014)

Ejdys et 
al. (2015) MLP CNN LSTM GRU CNN +  

+ LSTM
CNN +  
+ GRU

MAE 209.61 216.27 100.87 77.28 76.48 96.02 89.90 75.21 79.34

RMSE 336.32 229.40 133.14 107.85 105.77 129.18 123.17 103.64 107.75

R2 –0.59 0.75 0.62 0.56 0.58 0.37 0.42 0.59 0.56

Fig. 8. CNN+LSTM forecasting results on top of test data. Forecasts were flattened for better visibility

Rys. 8. Wyniki prognozy modelu CNN+LSTM naniesione na dane testowe.  
Wyniki spłaszczono dla lepszej widoczności
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To investigate the impact of seasonality on the model’s accuracy, an analysis was conducted 
for each season separately. Figure 10 presents the first 500 forecasting results, organized by season 
for better visibility. Figure 11 shows a comparison of performance metrics across seasons. The 
model performed best in forecasting data from spring, achieving an MAE of 50.43 PLN/MWh  
and RMSE of 94.39 PLN/MWh. In contrast, the worst performance was observed for summer 
data forecasting, reaching an MAE of 78.10 PLN/MWh and an RMSE of 200.64 PLN/MWh. The 
model achieves a lower MAE per season than overall, except for summer, while also exhibiting 
higher RMSE, except in spring. This may be attributed to the increased volatility of input 
variables within individual seasons. Since RMSE is more sensitive to outliers, this could also 
indicate that although average error decreased, a greater number of high-magnitude prediction 
errors may have occured.

Fig. 9. Comparison of machine learning models according to different metrics

Rys. 9. Porównanie modeli uczenia maszynowego na podstawie różnych wskaźników
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Conclusions

The study focuses on electricity price forecasting in the Polish Day-Ahead Market using 
machine learning models trained on current market data and employing newer and more 

Fig. 11. Comparison of the model seasonal performance

Rys. 11. Porównanie dokładności modelu w różnych porach roku
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optimized methods than those used in the compared studies. The need for accurate and timely 
price forecasts is becoming increasingly important due to the growing share of intermittent 
renewable energy sources, which contribute to higher market volatility and uncertainty.

Initial feature extraction, supported by the literature, revealed that historical electricity prices 
and volumes, as well as wind speed, temperature, cloud cover, and temporal data, are the most 
relevant input data. This indicates that both market-related and weather-dependent variables play 
a crucial role in shaping short-term price dynamics and should be prioritized when developing 
forecasting models.

While it is generally assumed that RNNs perform better for time series forecasting, their 
complexity might lead to overfitting. They are also less tolerant to noise and external factors 
than MLPs. The sequential nature of RNNs may cause the model to expect patterns from random 
fluctuations or one-time events, leading to incorrect predictions. Explicitly feeding an MLP 
with temporal features may improve its long-term dependency learning, further diminishing the 
RNN’s advantage. CNNs cover comparably small time windows in order to extract patterns. The 
higher accuracy of CNNs over RNNs may indicate that local patterns have a greater impact on 
electricity prices than long-term trends. The study showed that simpler models with fewer layers 
and neurons perform better in the context of electricity price than more complex architectures.

Combining a  CNN for local pattern extraction with an RNN responsible for long-term 
temporal modeling appears to be an optimal approach, as it leads to lower forecasting errors and 
a higher coefficient of determination than either of its components. The accuracy of the models 
could be further improved by narrowing the input data to shorter time ranges. This would, 
however, limit their applicability since the long-term temporal patterns could not be observed. 

Known machine learning-based electricity price forecasting techniques require continuous 
updating, as the power system is subject to ongoing changes due to a  range of internal and 
external factors, such as shifts in the energy mix, fuel price fluctuations, and other socio-economic 
factors. Since machine learning has gained significant attention in recent years, the architectures 
and methods used to train machine learning models are being continually improved. This raises 
the need to update current forecasting models even further.

Future research should focus on further developing the hybrid models or exploring entirely 
different architectures. Another way to improve these findings would be to include the socio-
economic factors that were outside of the scope of this study.
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Rafał Sowiński, Aleksandra Komorowska

Przewidywanie cen energii elektrycznej  
na Polskim Rynku Dnia Następnego z wykorzystaniem  

modeli uczenia maszynowego

Streszczenie

Ze względu na stale zmieniające się ceny energii elektrycznej, spowodowane zmianami w miksie  
energetycznym, regulacyjnymi i innymi czynnikami społeczno-ekonomicznymi, konieczne staje się okre-
sowe weryfikowanie podejścia do prognozowania cen. Tradycyjne metody statystyczne mogą zawodzić 
w warunkach nasilonej zmienności, nieliniowych zależności i często zmieniających się cech wejściowych. 
Modele uczenia maszynowego, a zwłaszcza Sztuczne Sieci Neuronowe (SSN), potrafią skutecznie dostoso-
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wywać się do złożonych, niestacjonarnych wzorców w szeregach czasowych. W niniejszym badaniu opra-
cowano i wytrenowano sześć różnych modeli SSN, korzystając z danych historycznych z Polskiego Rynku 
Dnia Następnego z lat 2016–2024. Cztery z tych modeli to czyste modele głębokiego uczenia: wielowar-
stwowy perceptron (MLP), sień konwolucyjna (CNN), długa pamięć krótkotrwała (LSTM) oraz bramkowa 
jednostka rekurencyjna (GRU). Dwa pozostałe to architektury hybrydowe, oznaczone jako CNN+LSTM 
i CNN+GRU, łączą zdolność CNN do wychwytywania cech z węższych okien czasowych i umiejętność 
warstw rekurencyjnych do uczenia się zależności długoterminowych. Wydajność modeli oceniano na pod-
stawie trzech miar: średniego błędu bezwzględnego (MAE), pierwiastka ze średniego błędu kwadratowego 
(RMSE) i współczynnika determinacji (R2). Najlepsze wyniki osiągnęła architektura CNN+LSTM, uzy-
skując MAE na poziomie 75,21 zł/MWh, RSME równe 103,64 zł/MWh i R2 wynoszące 0,59. Wyniki te 
mogą zostać wykorzystane do usprawnienia procesów prognozowania cen energii elektrycznej poprzez 
wskazanie wytycznych dotyczących projektowania modeli prognostycznych opartych na uczeniu maszy-
nowym, co z kolei może wiązać się z wydajniejszym planowaniem działania systemu energetycznego.

Słowa kluczowe: energia elektryczna, Rynek Dnia Następnego, sztuczne sieci neuronowe, ceny,
prognoza 


