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Abstract 
 
This paper proposes a methodology for leveraging convolutional neural networks (CNNs) in conjunction with advanced data preprocessing 
to facilitate optimal quality control decision-making in high pressure casting (HPDC) processes. The approach assists in predicting key 
values of the dependent variable associated with defect occurrence, enabling foundries to enhance product quality, reduce waste, and augment 
overall production process efficiency. The proposed study is founded on two principal pillars: the transformation of process tabular data 
(generated using the Conditional Tabular Generative Adversarial Network (CTGAN)), involving the mapping of features onto a fixed grid 
in a heatmap structure, and the configuration of the CNN algorithm to extract complex patterns in the data that are not readily apparent in 
the original tabular format. The study utilized a substantial dataset with a total of 61,584 images, and the most effective model attained an 
impressive Root Mean Square Error (RMSE) of 0.81, underscoring the model's remarkable capacity to accurately detect and predict casting 
quality issues. The model's efficacy was evaluated through its application to both large and small, differently distributed data sets. Utilizing 
a combination of statistical pre-processing, intelligent generative models, visual data transformations and deep learning, the methodology 
offers a comprehensive approach to enhancing production efficiency, ensuring superior process control and improving the quality of HPDC 
products. This development signifies a significant advancement in the field of intelligent systems for manufacturing process optimization, 
aligning with the principles of Industry 4.0 and Quality 4.0. 
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1. Introduction 
 
The concept of Industry 4.0 has catalyzed a paradigm shift in 

the domain of manufacturing, resulting in the integration of cutting-
edge technologies to achieve unprecedented levels of efficiency, 
quality, and productivity [1, 2]. Quality 4.0, a transformative 
concept, lies at the heart of this revolution, synergizing digital 
tools, data analytics, and artificial intelligence to redefine product 
quality assurance [3]. This evolution has given rise to smart 
manufacturing and smart factories, which are sophisticated 
ecosystems where interconnected systems, real-time data streams, 

and autonomous decision-making converge to tackle the intricate 
challenges of modern industrial processes [4]. These advancements 
are tailored to navigate escalating complexities while upholding 
stringent quality benchmarks and promoting sustainable practices. 

The field of deep learning, a subfield of artificial intelligence, 
plays a critical role in the Quality 4.0 paradigm [5]. The 
employment of deep learning algorithms, such as CNNs, has led to 
significant advancements in the realm of advanced analytics and 
predictive modeling [6]. Convolutional neural networks have 
gained prominence for their proficiency in extracting latent patterns 
from voluminous data sets, which has historically been challenging 
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to analyze. The adaptation of CNNs from the domain of image and 
video analysis to that of industrial processes offers substantial 
potential in enhancing quality control within manufacturing 
operations, thus contributing to enhanced efficiency and reliability. 

The field of computer vision, an integral component of deep 
learning, plays a pivotal role in process optimization and defect 
detection [7]. It empowers the analysis of visual data to identify 
anomalies, effectively monitor operations, and enhance decision-
making processes. Although the primary focus of computer vision 
methodologies has historically been in the domain of visual 
inspection tasks, recent advancements have sparked a surge in 
interest in expanding these techniques to the realm of tabular data 
industrial processes [8]. The process involves the transformation of 
structured data into image-like representations, enabling the 
utilization of convolutional neural networks for pattern recognition 
and predictive analytics [9].  

In the domain of HPDC process a pivotal manufacturing 
process for the production of complex and precise metal 
components, ensuring the maintenance of product quality assumes 
paramount importance [10]. The HPDC process encompasses the 
rapid injection of molten metal into a mold, characterized by 
elevated pressure levels and velocity. This results in the formation 
of components that boast exceptional dimensional accuracy and 
surface quality. High-pressure die casting is a complex process 
influenced by numerous factors that critically impact the quality of 
the final cast product [11]. Nonetheless, the process exhibits 
vulnerabilities that lead to quality concerns such as porosity, 
surface imperfections, and dimensional inconsistencies, 
attributable to fluctuations in process parameters. Conventional 
statistical methodologies often prove inadequate in capturing the 
intricate interrelationships between these parameters, underscoring 
the necessity for the adoption of sophisticated data-driven 
methodologies. 

A notable challenge arises from applying computer vision 
methods to HPDC process data, which involves transforming the 
typically tabular process data representing sensor readings, 
operational parameters and material properties into heatmaps. The 
generation of these heatmaps enables the utilization of CNNs to 
identify subtle process anomalies and predict product quality 
metrics with greater precision than conventional methods. 

The scarcity of real-world HPDC process data, attributable to 
concerns regarding proprietary information, limitations in data 
collection capabilities, and considerable experimental costs, 
introduces an additional layer of complexity. To address this 
challenge, synthetic data generation techniques, such as the 
CTGAN [12], offer a promising solution. By generating 
representative synthetic datasets, these methods enable robust 
model training and evaluation while preserving the statistical 
properties of the original data [13]. The generation of synthetic data 
facilitates reproducibility and scalability in research, thus 
overcoming the limitations of small or incomplete datasets. 

Researchers across various disciplines like  medicine [14, 15], 
bioinformatics [16, 17, 18] and others [19-27], have investigated 
similar challenges involving non-image data transformation, 
processing, feature extraction and pattern recognition, thereby 
underlining the pertinence of this subject. In certain cases, tabular 
data can be reorganized in a 2D space to explicitly highlight 
relationships between features, such as categories or similarities 
among them [28, 29, 30]. To date, four primary methods have been 

proposed for transforming non-image tabular data into image 
representations suitable for predictive modelling with CNNs. 
REFINED (REpresentation of Features as Images with 
NEighborhood Dependencies), which uses Bayesian 
multidimensional scaling to globally minimize distortion while 
projecting features into 2D [29]. The projected features are then 
mapped to image pixels, and a hill-climbing algorithm is applied to 
further refine the arrangement of feature positions in the image 
[29]. DeepInsight, which uses t-SNE to project feature vectors into 
a 2D space by minimizing the Kullback-Leibler divergence 
between the feature distributions in the original high-dimensional 
space and the 2D projection [28]. Within this projection, a minimal 
rectangular region encompassing all feature points is identified, 
forming the image representation [31]. OmicsMapNet, which is 
specifically designed for gene expression data [30]. This method 
transforms cancer patient data into 2D images for tumor grade 
prediction by using functional gene annotations from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [32]. Using the 
TreeMap approach, OmicsMapNet ensures that genes with similar 
molecular functions are positioned close together in the image. 
Generator for Tabular Data (IGTD), which assign features to pixels 
by minimizing the difference between two rankings: the ranking of 
pairwise distances between features in the original data and the 
ranking of pairwise distances between the assigned pixels in the 
generated image [33]. The pixel distances are calculated based on 
their coordinates within the image. Compared to the four existing 
methods the proposed approach offers several distinct advantages 
described in chapter 5. 

In this study, a novel approach to the prediction of quality in 
HPDC process is presented. This approach involves the new 
transformation of tabular process data into image representations 
and the employment of CNNs for in-depth learning analysis [34]. 
The study commences with the generation of synthetic HPDC 
process data using CTGAN, with the quality of this data being 
validated through the application of statistical metrics and the 
replication of experiments conducted on real benchmark datasets. 
Subsequently, the transformation of tabular data into heatmap 
images is demonstrated, thus enabling their utilization as input for 
CNN models. Finally, we assess the predictive capabilities of the 
proposed approach in determining casting quality, highlighting its 
potential for advancing Quality 4.0 initiatives in smart 
manufacturing. 

 
 

2. Synthetic Tabular Data Preparation 
and Evaluation 

 
The generation and evaluation of synthetic tabular data 

signifies a substantial innovation in overcoming the challenges 
associated with real-world datasets in the foundry industry, 
particularly in HPDC process research. Industrial data frequently 
exhibits imperfections, including poor quality, imbalanced value 
representation, diverse variable distributions, and correlations 
between process parameters. These issues complicate the 
development of machine learning (ML) models, which rely on 
large, well-structured datasets. To address these challenges, the 
present study utilized the CTGAN a cutting-edge tool designed for 
synthesizing tabular data has been shown to be especially effective 
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in generating datasets that faithfully capture the intricate statistical 
characteristics of industrial HPDC processes. 

The present study utilized the CTGAN model to generate 
synthetic data, drawing upon information from the benchmark 
HPDC process dataset (described in [35, 36, 37]). The model, 
implemented in Python code, was initiated with default parameters, 
which included a generator and discriminator learning rate of 
0.0002 and dimensions set at 128 [38]. The primary objective of 
the model was to learn statistical distributions and relationships in 
tabular data, with the aim of generating synthetic samples that 
exhibited comparable characteristics. The model was fitted to the 
data using the 'fit(df, epochs=300)' method, which involved 
training for 300 epochs, enabling the generator and discriminator 
to optimize the loss function collaboratively [38]. The generator 
then generated synthetic samples that were evaluated by the 
discriminator as true or false, with both components learning 
through a competitive process. Following the training phase, the 
model was configured to generate synthetic data using the 
sample(n=len(df)) method. In this instance, the number of rows 
generated corresponded to the benchmark dataset [35, 36, 37]. The 
created dataset consisted of 58 variables and more than 10,000 
samples of analyzed castings. The dependent variable, ‘leakage in 
the high-pressure circuit' served as a direct indicator of porosity 
linked with casting quality. Independent variables encompassed 
process parameters potentially affecting leakage, forming the 
foundation for further analysis. 

The fidelity of the synthetic data was then validated by 
conducting a series of comparative analyses against the 
aforementioned benchmark dataset, utilizing a range of statistical 
metrics including the mean, standard deviation, minimum and 
maximum values, and quartiles (25%, median, 75%) [39]. The 
relative differences (RD) [40] between the descriptive statistics of 
the synthetic data (SV) and the benchmark values (BV) were 
evaluated by computing them using equation 1. Visualization 
techniques, including histograms and run charts, provided insights 
into the alignment of data. The Synthetic Data Quality Score 
(SDQS) [41] has been developed as a metric for the evaluation of 
the alignment of synthetic datasets with expected statistical 
properties. The calculation of this score, as outlined in equation 2, 
involves the averaging of the relative differences across all metrics 
evaluated, with the results expressed as a percentage. In this 
formula, k denotes the number of statistical measures, and RDSi 
corresponds to the average relative difference for the i-th statistic.  
By aggregating these differences, the SDQS offers an efficient and 
precise evaluation of the statistical similarity between the synthetic 
data and the benchmark values. 

 
RD = |𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵|

|𝐵𝐵𝐵𝐵|
𝑥𝑥100                 (1) 

 
SDQS = 1

𝑘𝑘
𝑅𝑅𝑅𝑅𝑆𝑆𝑖𝑖             (2) 

 
The computed SDQS demonstrated a substantial alignment with a 
score of 4.43%, thereby validating the quality of the synthetic data. 
The findings underscore the fact that synthetic data meticulously 
adheres to the anticipated standards, thereby affirming its viability 
for analytical pursuits and pragmatic applications and 
corroborating its aptitude for sophisticated modelling. 

The study was built on the preceding foundation described in 
[35, 36, 37] by means of a comprehensive statistical framework 
integrating analysis of variance direct and reversed (ANOVA) and 
the Kruskal-Wallis test (K-W) direct and reversed (RK-W). This 
was employed so as to identify critical process variables affecting 
casting defects on the basis of F, H and p-value statistics. The data 
was divided into five distinct subsets according to defect severity. 
The first research set included the complete synthetic dataset of 
10 094 observations generated by the CTGAN model without 
filtering. The second set with 90 observations focused on cases 
with higher leakage levels, containing records where the dependent 
variable was ≥8. The third set with 10 094 observations represented 
lower leakage levels, including records where the dependent 
variable was <8. The fourth set with 180 observations combined all 
data from the second set with 90 records from the upper range of 
the third set, while the fifth set with 160 observations integrated the 
second set with 90 records from the third set, selected at equal 
record intervals. In order to assess variable significance, three 
selection criteria were used K-W, RK-W and ANOVA. The 
relevance of the input features was refined progressively by each 
of these.  

 
Fig. 1. Results of data dimensionality reduction 

 

Fifteen datasets were constructed by combining variable 
selection strategies with tailored data subsets. This iterative 
approach reduced redundancy while also enhancing the 
interpretability of key influences on casting quality. The 
consequence of this was a 52% reduction in the number of input 
variables in the data dimensionality reduction step (presented in 
Figure 1.). This result is less favorable when compared to that 
obtained on the benchmark data [35, 36, 37]. The upshot of this is 
a more complex data analysis and modelling process. 
 
 

3. Tabular-to-Image Transformation 
 

The conversion of tabular data as the most common type of data 
in industry [42, 43] and foundry industry into image representations 
constitutes a pioneering linkage between structured datasets and 
computer vision techniques, thereby enabling the application of 
CNNs to traditionally non-visual data domains. This conversion 
involves the conversion of tabular process parameters into grid-
based visual structures, thereby facilitating the detection of 
intricate patterns and dependencies that might otherwise go 
unnoticed by conventional statistical methods [44]. The 
transformation of tabular data into image representations 
constituted a pivotal innovation in the field of data representation, 
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offering a framework for advanced pattern recognition and process 
analysis through the utilization of visual representation [34]. This 
transformation was implemented programmatically to ensure 
consistency and reproducibility, whilst leveraging Python's robust 
computing libraries. The flowchart (presented in Figure 4.) and 
algorithm steps are presented as follows [19]: 

Data preparation: 
• Step 1: Load input data  

o Load Excel files from the specified directory. 
o Extract data into a pandas data frame. 

• Step 2: Prepare output directory 
o Check if the output directory exists. 
o Create the directory if it does not exist. 

• Step 3: Separate independent and dependent variables 
o All columns (independent variables) except the first 

one normalize to the range <0, 1> and teat as features. 
o The first (dependent variable) column treat as the label. 

• Step 4: Determine grid dimensions 
o If the number of independent variables is in the range 

36<n<47, set grid dimensions to 6x6. 
o If the number of variables is in the range <37, 49>, 

set grid dimensions to 7x7. 
• Step 5: Iterate over normalized rows 

o Reshape the row into the determined grid dimensions. 
o Use zero padding if necessary to fill the grid. 
o Generate a heatmap visualization. 
o Save the heatmap as a .png file in the output directory 

with name related to label. 
The process commenced with the normalization of independent 

variables, utilizing the ‘MinMax scaling’ method from the 
‘sklearn.preprocessing’ library, which rescaled values to a range of 
<0-1>. This ensured the preservation of the relative relationships 
among variables while standardizing their magnitudes for 
consistent visualization. The dependent variable, representing the 
quality metric, was preserved as a label, ensuring compatibility 
with downstream supervised learning tasks. 

 

 
Fig. 2. Results of conversion of one tabular observation from 1st 

research set according to K-W criterion to 6x6 image 
 
 

 
Fig. 3. Results of conversion of one tabular observation from 1st 

research set according to ANOVA criterion to 7x7 image 
 

 
Fig.4. Flowchart of the tabular data transformation into heatmap 

visualization process 
 
The transformation of the tabulated data into a two-

dimensional grid structure was performed for each row of data 
corresponding to a single observation [28]. The grid dimensions 
were set to 6x6 when the number of variables (n) did not exceed 36 
(presented in Figure 2.), or 7x7 [44] when the number of dependent 
variables did not exceed 49 (presented in Figure 3.). In instances 
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where the number of variables was inadequate to fill the entire grid, 
zeros were introduced to ensure the grid remained constant in size. 

The creation of heatmaps from these grids was achieved using 
Python’s matplotlib library. For each observation, a grid of 
normalized data was rendered into a heatmap where the intensity 
of each grid cell represented the corresponding variable's value. 
The "viridis" colormap was selected for its perceptually uniform 
gradient and high contrast, enabling clear visual distinction 
between variable intensities. Visual clutter was minimized by 
omitting all non-essential elements, such as axes, labels, and 
gridlines, resulting in clean, computationally efficient image 
outputs. 

In the created heatmap, cells with values close to 0 were 
depicted in a deep shade of blue, whereas those with values closer 
to 1 appeared in yellow [34]. This color gradient effectively 
represented the normalized value range. The blue tones highlighted 
lower values, including zero, whereas yellow emphasized the 
higher values, thus providing a comprehensive representation of 
the data variations across the heatmap. The intermediate values 
were displayed in green and teal shades, ensuring a clear and easily 
comprehensible visualization of the data variation. This systematic 
mapping of variables to specific grid cells preserved contextual 
relationships and ensured consistency across observations. 

The workflow encompassed automated file management, 
wherein the heatmaps were saved as high-resolution 61 584 PNG 
files in a predefined directory. The filenames encoded key 
metadata, including dataset identifiers, observation indices, and 
dependent variable labels, ensuring traceability and facilitating 
downstream analysis. The systematic iteration through 
observations ensured that every row of tabular data was 
transformed into its corresponding heatmap, thereby creating a 
comprehensive visual representation of the dataset. 

 
 

4. CNN-Based Deep Learning Quality 
Prediction Model 

 
The development of a CNN-based model for predicting quality 

metric, so value of the dependent variable in HPDC processes 
constituted a pivotal component of the present study. The model 
with adequate parameters (shown in Table 1.), was applied to each 
of the 15 datasets (shown in Table 2.), implementing two distinct 
data handling methodologies: a 100% split for training and 
prediction on the entire dataset, and an 80% split for training and 
20% testing. CNN architecture, customized for these two scenarios, 
exhibited both robustness and adaptability in the analysis of 
heatmap representations of tabular data. The flowchart (presented 
in Figure 5.) and algorithm steps of the proposed methodology are 
presented as follows [19]: 

Data preparation: 
• Step 1: Load Input Images and Labels 

o Load image files from the specified directory 
o Extract labels from filenames. 
o Resize images to either 6x6 or 7x7 pixels with 3 

channels (RGB). 
• Step 2: Normalize image data 

o Scale the pixel values to the range <0, 1>. 
• Step 3: Convert images and labels into NumPy arrays 

o Convert image data into a 4D array: 
(number_of_images, height, width, channels). 

o Convert the labels to a 1D array: (number_of_images,). 
Dataset splitting: 

• Step 4: Split dataset into training and testing sets 
o Use an 80/20 split for selected datasets. 
o For other cases, use a 100/0 split (no separate test set). 

Architecture definition: 
• Step 5: Define the CNN architecture 

o Add the convolutional layer. 
o Add a max pooling layer. 
o Add a flatten layer. 
o Add a dense layer. 
o Add an output danse layer. 

Model compilation: 
• Step 6: Compile the model 

o Use the Adam optimizer. 
o Use MSE as the loss function. 
o Use RMSE as the performance metric. 

Model training: 
• Step 7: Train the model 

o Set the batch size (32 for big datasets, 8 for smaller). 
o Train for up to 400 epochs using early stopping 

(patience = 15). 
Model evaluation: 

• Step 8: Evaluate the model 
o Predict values of the dependent variable 
o Calculate evaluation metrics: MSE, RMSE, and MAE. 

Results and visualization: 
• Step 9: Save results and generate plots 

o Save training history, evaluation metrics, and 
predictions to Excel files. 

o Generate plots: training loss curve, scatter plot for true 
vs. predicted values, residual plot for errors. 

Output storage: 
• Step 10: Save outputs to the results directory. 

 
Table 1. 
Model parameters description 
Parameter Description 
Input shape (6, 6, 3) or (7, 7, 3) 
Normalization Pixel values scaled to <0, 1>  

 by dividing by 255 
Optimizer Adam 
Train/Test split 100/0 or 80/20 
Loss Function MSE 
Metrics MAE 
Batch size 8 or 32 
Epochs 400 
Early Stopping Loss with patience 15 
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Fig. 5. Flowchart of CNN-based methodology for prediction 

values of dependent variable 
 

Table 2. 
Datasets features description 

Model 
nb 

Dataset nb / 
Criterion 

Total 
size 

Image 
dimension 

Train/test 
set size 

[%] 

Label 
range 

1 
2 1/K-W 10094 6x6 100/0 

80/20 
0,01 -
222,27 

3 
4 1/RK-W 10094 7x7 100/0 

80/20 
0,01 -
222,27 

5 
6 1/ANOVA 10094 7x7 100/0 

80/20 
0,01 -
222,27 

7 
8 2/K-W 90 6x6 100/0 

80/20 
8,00-

222,27 
9 

10 2/RK-W 90 6x6 100/0 
80/20 

8,00-
222,27 

11 
12 2/ANOVA 90 6x6 100/0 

80/20 
8,00-

222,27 

13 
14 3/K-W 10004 6x6 100/0 

80/20 
0,01-
7,99 

15 
16 3/RK-W 10004 6x6 100/0 

80/20 
0,01-
7,99 

17 
18 3/ANOVA 10004 7x7 100/0 

80/20 
0,01-
7,99 

19 
20 4/K-W 180 7x7 100/0 

80/20 
7,33-

222,27 
21 
22 4/RK-W 180 7x7 100/0 

80/20 
7,33-

222,27 
23 
24 4/ANOVA 180 7x7 100/0 

80/20 
7,33-

222,27 
25 
26 5/K-W 160 6x6 100/0 

80/20 
0,01 -
222,27 

27 
28 5/RK-W 160 6x6 100/0 

80/20 
0,01 -
222,27 

29 
30 5/ANOVA 160 7x7 100/0 

80/20 
0,01 -
222,27 

 
The methodological steps mentioned above indicate that the 

CNN was designed to process input images with dimensions of 7x7 
and 6x6 pixels, corresponding to the heatmaps derived from the 
normalized tabular data. The network's architecture (presented in 
Figure 6.), consisted of convolutional layers, a flattening layer and 
dense layers. The first convolutional layer featured 32 filters with 
a kernel size of 3x3, designed to extract spatial features from the 
input images [6]. This was followed by a rectified linear unit 
(ReLU) activation function to introduce non-linearity. A 
MaxPooling layer, with a pool size of 2x2, reduced the spatial 
dimensions, thus retaining essential features while minimizing 
computational complexity [45, 46]. Subsequent to the 
convolutional and pooling layers, the feature maps were flattened 
into a one-dimensional vector, thereby preparing the data for the 
fully connected layers. The network included one dense layer with 
64 neurons and a ReLU activation function to process the extracted 
features. The output layer contained a single neuron with a linear 
activation function, suitable for the regression task of predicting 
continuous quality metrics [47]. 

The model was trained using the Adam optimizer, which 
offered adaptive learning rates to enhance convergence [48]. The 
loss function was Mean Squared Error (MSE), which is suitable for 
regression tasks, and the Root Mean Square Error (RMSE) was 
calculated to assess the overall deviation of predictions from true 
values. This provided a robust measure of model performance. 
Additionally, the training process was monitored using the Mean 
Absolute Error (MAE) metric, which offers a straightforward 
indication of prediction accuracy [49]. 

In scenarios where the entirety of the dataset was utilized for 
training and prediction. Initially, all images and their corresponding 
labels were loaded. Subsequently, the image data was normalized 
to scale pixel values within the range <0, 1>.The model was then 
trained on the complete dataset without the reservation of a test set. 
The maximum number of epochs allowed was 400. Early stopping, 
based on the loss function, was implemented to prevent overfitting, 
and a patience parameter of 15 epochs was employed to ensure the 
model did not overtrain. 

The generation of detailed metrics, including MSE, RMSE, and 
MAE, was achieved and saved to structured directories. Visual 
insights into the model's performance were provided by scatter 
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plots comparing true vs. predicted values and residual plots. For 
datasets where 80% of the data was allocated for training, and 20% 
was reserved for testing. In the context of smaller datasets with 
number (N) variables smaller than 180, it was necessary to reduce 
the batch size from 32 to 8 in order to accommodate the limited 
data availability and to ensure the efficient training of the model 

[50]. The number of epochs was set based on the loss curve, thus 
ensuring that the model was trained adequately without overfitting. 

The model's performance across the research datasets 
demonstrated significant variability, influenced by the dataset type. 
For the datasets with 100% values in the training set, the RMSE 
values remained consistently low across datasets, indicating high 
predictive accuracy when the model was trained and evaluated on 

 

 
Fig.6. Architecture of the CNN used for predicting ‘leakage in the high-pressure circuit’ values, based on image representations [37] 
 

the same data (shown in Table 3.). For example, model 1, which 
used a dataset of 10,094 samples, achieved an average MSE of 
2.00, average MAE of 0.96 and average RMSE of 1.41, 
demonstrating its ability to learn effectively from big datasets. 
While this approach minimized training error, it risked overfitting 
due to the lack of a test set to evaluate. Models that were trained 
with an 80/20 split generally showed more reliable generalization 
metrics, as the inclusion of a test set provided an unbiased 
assessment of the performance of the model. For example, Model 
2, reflecting a balance between training and testing performance, 
achieved an average MSE of 8.50 and an average RMSE of 2.91. 
Similarly, Model 14 achieved low error values (average MSE = 
1.24, average RMSE = 1.11) on data sets with smaller label ranges, 
confirming its ability to generalize effectively.  
 
Table 3. 
Performance metrics of CNN experimental results 
Model 

nb 
Average Processing 

Time [s] 
Average 

MSE 
Average 

MAE 
Average 
RMSE 

1 
2 

173,49 
150,60 

2,00 
8,50 

0,96 
0,94 

1,41 
2,91 

3 
4 

79,55 
59,21 

2,22 
10,32 

0,94 
0,97 

2,99 
3,21 

5 
6 

222,08 
126,84 

1,76 
8,99 

0,87 
0,96 

1,32 
2,99 

7 
8 

15,44 
15,93 

2,97 
310,72 

1,36 
7,36 

1,72 
17,62 

9 
10 

15,2 
12,53 

23,26 
394,88 

3,68 
7,27 

4,80 
19,78 

11 
12 

16,05 
12,71 

9,78 
474,01 

2,30 
8,12 

2,91 
21,71 

13 
14 

335,94 
274,51 

0,92 
1,24 

0,68 
0,74 

0,96 
1,11 

15 
16 

329,18 
261,25 

1,01 
1,31 

0,69 
0,76 

1,00 
1,14 

17 303,61 1,03 0,72 1,01 

18 262,51 1,27 0,74 1,12 
19 
20 

26,37 
21,17 

0,76 
29,42 

0,71 
2,49 

0,87 
5,35 

21 
22 

26,53 
22,91 

1,14 
52,30 

0,81 
2,85 

1,04 
7,00 

23 
24 

27,16 
21,18 

0,79 
70,11 

0,64 
2,89 

0,81 
8,34 

25 
26 

22,45 
20,68 

1,98 
427,50 

1,09 
5,42 

1,37 
20,67 

27 
28 

24,83 
18,79 

3,14 
322,90 

1,31 
5,02 

1,69 
17,90 

29 
30 

25,03 
20,31 

2,34 
353,39 

1,2 
5,25 

1,50 
18,78 

 
Models that were trained on big data sets showed a strong 
performance in both splits. It also should be noted that the results 
show significant differences between the splits for smaller datasets. 
For instance, the performance of model 7 was significantly better 
than that of model 8. It appears that the reduced quantity of training 
data in the 80/20 split has had a detrimental effect on performance. 
This observation highlights the challenge of generalization when a 
subset of the data is reserved for testing. A comparison of feature 
selection methods (K-W, RK-W, and ANOVA) was also 
conducted, revealing that datasets created using the K-W criterion 
exhibited the greatest robustness across a range of dataset sizes and 
splits. The ANOVA and RK-W criterion demonstrated excellence 
for big datasets but exhibited greater variability with small datasets, 
likely due to its reliance on sufficient sample sizes for feature 
selection. It was also established that the duration of the processing 
increases in proportion to the magnitude of the dataset, with the 
exception of instances where training was terminated prematurely 
as a consequence of the implementation of an early stopping 
mechanism. This observation underscores the efficacy of early 
stopping in averting superfluous computational overhead by 
bringing training to a halt once the model attains convergence, 
irrespective of the dataset's magnitude. 
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Scatter plots of true versus predicted values for the datasets 
with 100% values in the training set showed a strong alignment 
along the ideal prediction line (presented in Figure 7.), while 
residual plots revealed minimal systematic errors.  

 

 
Fig. 7. Results of CNN modelling of the 4th Research Dataset 

according to K-W criterion with 100% values in the training set 
 

 
Fig. 8. Results of CNN modelling of the 4th Research Dataset 
according to K-W criterion with 80% values in the training set 

 
A comparison was also made between the results of image 
modelling using CNNs and the results of table data modelling by 
Artificial Neural Networks (ANNs) (shown in Table 4.) based on 
the methodology described in [35, 36].  It is evident from the results 
obtained after converting the data into images that lower RMSE 
values are achieved for the big dataset 1 for K-W and ANOVA 
criterion and big dataset 3 across all criteria (where a high 
variability of the value of the dependent variable is observed), 
additionally for dataset 4 for K-W criterion (whose analysis will 
allow the most valuable conclusions, on the topic of the influence 
of specific parameters on the increase of the value of the dependent 
variable) and 5 (which is the most balanced), indicating high 
performance in these specific cases. In contrast, ANN achieves low 
RMSEs for the small dataset 2 across all criteria (in which a high 
variability in the value of the dependent variable can be observed). 
The selection of the most suitable model is thus contingent upon 
the specific application in data driven decision system [51] context 
and the accessibility of training data. 

This CNN-based deep learning framework represents a 
significant advancement in quality prediction for HPDC process, 
showcasing its capacity to analyze complex manufacturing datasets 
and providing actionable insights for process optimization. Future 

studies could focus on enhancing generalization through advanced 
regularization techniques or modelling based on the hybrid 
datasets. 
 
Table 4. 
Results of ANN modelling on synthetic datasets 

Criterion 

Average 
RMSE 
Dataset 

1 

Average 
RMSE 
Dataset 

2 

Average 
RMSE 

Dataset 3 

Average 
RMSE 
Dataset 

4 

Average 
RMSE 
Dataset 

5 
K-W 3,12 6,53 1,39 7,27 3,31 

RK-W 2,11 0,21 1,35 3,04 4,47 
ANOVA 2,12 0,1 1,34 2,47 3,73 

 
 
5. Limitations and Discussion 

 
In this study, an innovative method for analyzing HPDC 

process data was introduced. This method involves the 
transformation of non-image data into meaningful heatmap images 
through a custom algorithm. This transformation enables the use of 
CNNs for predictive modelling, offering new avenues for data 
interpretation. However, while this approach leverages the 
strengths of CNNs, it does not address all challenges associated 
with HPDC process data. It is therefore vital to acknowledge these 
limitations in order to provide a contextual framework for our 
findings and shape future research endeavors.  

The proposed methodology in this study employs a 
substantially more straightforward approach, whereby features are 
mapped sequentially into a fixed grid, such as 6x6 or 7x7. Presented 
method can be applied without requiring any prior domain 
knowledge unlike OmicsMapNet, which relies on domain-specific 
knowledge. In contradistinction to DeepInsight, REFINED, or 
IGTD, it does not involve complex dimensionality reduction or 
optimization processes, which renders it significantly faster and 
easier to implement. This simplicity ensures image generation is 
computationally efficient, making the method particularly suitable 
for real-time or resource-constrained industrial environments, such 
as HPDC applications. The use of fixed grid dimensions ensures 
consistency across all generated images, simplifying downstream 
CNN training and making the method scalable for datasets of 
varying sizes. However, the straightforward approach also comes 
with trade-offs. For instance, the technique exhibits an inability to 
sustain the relationships between features during the mapping 
process. The allocation of features to the grid is predicated 
exclusively by their sequence in the dataset, with no consideration 
given to their correlations or interactions. This absence of 
optimization results in features with strong relationships that may 
be positioned at considerable distances from each other in the 
image, thereby diminishing the CNN's capacity to effectively 
capture these patterns. The simplified feature mapping process was 
implemented intentionally, as the tabular data underwent rigorous 
preprocessing and optimization prior to transformation into image 
representations. The dataset was refined using ANOVA, K-W, RK-
W analysis and Pearson and Spearman correlation analyses to 
identify and select the most relevant features while minimizing 
redundancy. This preprocessing step ensured that only the most 
statistically significant and non-redundant variables were included 
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in the final dataset, thereby effectively reducing the datasets 
dimensionality. It is posited that by relying on this rigorous 
optimization procedure, the method could bypass the more 
computationally expensive dynamic feature placement strategies 
employed by methods such as IGTD and REFINED, while still 
ensuring an adequate representation of the data for CNN modelling. 
This approach achieves an equilibrium between computational 
efficiency and data quality, aligning well with the practical 
requirements of industrial applications. 

The CNN method has been shown to have significant potential 
in regression tasks when applied to HPDC process modelling. 
While the model demonstrates practical utility, it is important to 
note that it also faces limitations that influence its generalization 
and performance. A pivotal element in preventing the model from 
overfitting the training data is the implementation of early stopping, 
which has been incorporated. Nevertheless, despite this measure, 
overfitting can potentially arise in smaller datasets or those 
exhibiting limited variability. Although early stopping impedes 
unnecessary overtraining, the absence of supplementary 
regularization techniques, e.g., dropout or L2 regularization, 
signifies that the model might still encode patterns specific to the 
training dataset. The employment of straightforward architecture 
results in training durations ranging from 15 to 400 seconds, 
contingent on the size and complexity of the dataset. The proposed 
model demonstrates notable strengths in terms of computational 
efficiency. This efficiency renders the model suitable for industrial 
applications, where time and resource constraints frequently prove 
to be critical factors. Nevertheless, the simplicity of the architecture 
may constrain its capacity to model more intricate feature 
relationships. Another point to consider is the use of MSE as the 
loss function. While this is appropriate for regression, it should be 
noted that it introduces sensitivity to outliers, as larger errors 
disproportionately influence the overall loss. An alternative that 
could  potentially stabilize model performance is to explore the use 
of Huber loss. 

Notwithstanding the aforementioned limitations, the model is 
suited to its intended application, achieving a balance between 
simplicity and computational efficiency. By addressing its 
limitations through dedicated strategies such as feature clustering 
and alternative loss functions, the model could be further optimized 
to enhance its robustness and predictive accuracy. Nevertheless, 
even in its current form, the model may serve as a practical and 
efficient tool in industrial contexts related to HPDC process quality 
control. 

 
 

6. Conclusions and Future Directions 
 
This research emphasizes the pivotal function of CNN-based 

deep learning in transforming quality control within HPDC 
processes. The ability to predict casting quality with precision is of 
the utmost importance for the minimization of defects, the 
reduction of waste, and the enhancement of operational efficiency.  

The modelling results confirm the validity of the proposed 
approach. The lowest RMSE result, 0.44, was achieved on a small 
dataset – 4, defined according to the ANOVA criterion, using 100% 
of the data for training. Additionally, this dataset yielded the lowest 
average RMSE across all trials, equal to 0.81. For large datasets, 
the lowest RMSE was obtained on Dataset 3, defined according to 

the K-W criterion, also using 100% of the data for training. Here, 
the lowest RMSE was 0.92, with an average RMSE across all trials 
of 0.96. When the data was split into 80% training and 20% testing, 
the best RMSE result, 1.09, was also achieved on the large dataset 
3, defined by the K-W criterion, yielding the lowest average RMSE 
for this split at 1.11. 

The current drive for solutions that enable rapid analysis to 
support decision making in industrial environments, while 
minimizing storage requirements, is a pressing priority. 
Organizations using AI methods are increasingly required to 
allocate additional storage in cloud computing environments, with 
predictions that storage requirements will double within the next 
three years. While long-term data storage has historically improved 
the predictive quality of AI-based systems, there is a growing focus 
on developing algorithms capable of real-time analysis and 
forecasting without significantly impacting corporate computing 
resources, particularly in industries such as foundries. The solution 
proposed in this study is very significant in terms of the above 
arguments and could contribute to the advancement of such 
systems and methodologies. Additionally, is limited by the lack of 
a strategy for spatially clustering related features, which limits the 
model's ability to identify the critical variables that drive the 
regression result so predicted values of dependent variable related 
directly with casting defect occurrence. Therefore, the next step in 
research development should be to identify the variables that 
significantly influence the formation of a defect in a casting using 
DL methods. The following stages of this research should entail the 
application of alternative methods like REFINED to raw foundry 
data without prior preprocessing, whilst simultaneously exploring 
more advanced CNN architectures. In addition, hybrid approaches 
integrating convolutional and recurrent networks could be 
investigated to accommodate both the spatial and temporal 
dynamics inherent in process data. As another potential extension 
of the current research, it is proposed that the output be redefined 
as a categorized system of labels, such as "repairable castings," 
"scrap castings," and "defect-free castings." This would align the 
results with those of accuracy-based studies. Under this 
classification scheme, the performance originally assessed via the 
RMSE can be directly compared to accuracy metrics from similar 
investigations. This would provide a more comprehensive insight 
into the performance of the model. These approaches, alongside the 
one presented in this study, are undoubtedly anticipated and desired 
by manufacturers aiming to enhance product and castings quality 
and optimize their production processes. 
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