

A R C H I V E S
o f

F O U N D R Y E N G I N E E R I N G
10.24425/afe.2025.153807

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

ISSN (2299-2944)
Volume 2025
Issue 2/2025

173 – 182

19/2

© The Author(s) 2025. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made.

Analysis of the Possibility of Using Selected

Artificial Intelligence Algorithms for the
Assessment of the Microstructure

of Vermicular Cast Iron

U. Janiszewska a, Ł. Marcjan a, S. Gajoch a, K. Jaśkowiec b, A. Bitka b, M. Małysza a,
D. Wilk-Kołodziejczyk * a, b

a AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland
b Łukasiewicz Research Network-Krakow Institute of Technology, Poland

* Corresponding author: E-mail address: dwilk@agh.edu.pl

Received 01.12.2024; accepted in revised form 12.03.2025; available online 30.06.2025

Abstract

This paper presents an analysis of artificial intelligence algorithms in the context of their applicability to the automatic analysis of
microstructure images. In the example presented, reference is made to exemplary images of the microstructure of vermicular cast iron. A
characteristic feature of this alloy is the shape of the graphite separations. The microstructure consists of elements that humans can learn to
recognise quite simply. Developing an application that recognises ‘dark colour’ and ‘worm shape’ is no longer so straightforward. The
determination of the ‘dark’ colour in the algorithm becomes problematic, because depending on the conditions under which the photo was
taken (e.g. time: day/night), the actual intensity values are altered. A similar situation occurs in the determination of shape, which varies
from case to case. Such a classification is very general and results in large differences between instances of the class. Even a term like
‘relatively large’ can change depending on the size of the graphite separation itself. A dark colour can be represented as a sudden change in
image intensity, i.e. large values of the gradient modulus. The question arises: what happens if ‘dark’ can be more than one
microcomponent, for example graphite and perlite. A good solution would be to define an associated set of features that would more
precisely define just this component of the microstructure - that is, its shape, colour and surroundings. The paper uses the local feature
paradigm to do this. Referring to the literature, it can be pointed out that [1] local features are referred to as non-small and specific parts of
an image. Distinctive image features need to be distinguished in order to detect these places of interest. In this case, they are: edges, spots
and ridges.

Keywords: Microstructure images, Vermicular cast iron, Artificial intelligence HOG algorithm

1. Introduction

Searching microstructure elements or other local features is a

current research topic, especially in the context of using artificial
intelligence methods. Creating a new method of representing

images using numerical vectors based on the bag of features
concept was indicated in literature, especially in [2]. Images are
divided and converted into visual words, in order to be able to use
them later in the image identification process. Works focusing on
local features of images. Feature extraction is performed, which

http://creativecommons.org/licenses/by/4.0/

174 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2

means that characteristic places in the image are determined.
Features are described using descriptors (SIFT and SURF
algorithm). In the final phase, you can compare key points and
recognize whether there is an interesting element in the image. An
extension of the bag of features model is the spatial pyramidal
representation, which takes into account the spatial arrangement
of words in the image. This allows for a better description of the
structure and relationships between image elements. Initially,
hierarchical image partitioning is performed, then the bag of
features for each window, histograms are combined and
compared. This algorithm takes into account spatial information
in the image representation, allowing the detection of certain
regularities in the image composition, which is useful in
classification tasks. A more efficient algorithm for constructing a
pyramidal representation was implemented, using binary tree
structures and arrays. This makes the algorithm more efficient
than a naive algorithm that would check the windows in order.
For each visual word in the image, a histogram is computed in
such a way that it is not necessary to check all the windows. The
code contains operations that define a window with a given visual
word and calculate the offset in the histogram for that word. The
algorithm uses binary trees containing edges of all windows on a
given level of the pyramid. By selecting the appropriate edges,
one can effectively identify windows containing a given visual
word. Another example is the automatic analysis of
microstructures [3], in which the authors use the backpropagation
algorithm to train an artificial neural network. For this purpose,
images of materials such as ductile, gray and malleable cast iron
were used to segment and quantify various microstructures in
metallographic and microphotographic images. In this case,
segmentation includes dividing images into specific
microstructure components, i.e.: pearlite, cementite, graphite or
martensite. The multilayer perception network belonging to the
feedforward network was used. This type of network consists of
multiple layers, including one or more hidden layers that process
input data and lead to an output layer that gives a solution. The
neural network used in the work consists of 39 neurons,
distributed over two layers: an input layer with three inputs
(colors) and a hidden layer with 30 neurons and an output layer
with nine neurons, corresponding to nine types of microstructures
to be recognized. The training process consisted of manual
selection of pixels from the micrographic image. Separate
network training was performed for each type of material to be
analyzed. Each pixel of the input image is classified based on
colors (RGB) and assigned to the appropriate element of the
microstructure using the neural network.

Methods for microstructural image segmentation, particularly
for complex textures used in metallographic analysis, have been
described in research studies. Traditional segmentation techniques
often struggle with such images due to their rich details and
irregular structures. Article [4] presents a hybrid algorithm
combining multiple methods: Gaussian filter, mean shift method,
FloodFill algorithm, and an enhanced flow-based difference-of-
Gaussians algorithm. This approach enables more effective
segmentation of microstructural elements in metallographic
images. Experiments demonstrated higher effectiveness of this
method compared to existing segmentation techniques,
particularly for complex texture images with a limited number of
samples. Article [5] introduces a metal microstructure analysis

method that integrates deep learning with traditional image
segmentation techniques. The main objective of the study was to
develop a hybrid approach (HADMA) to improve the accuracy
and repeatability of microstructural analysis. A boundary class
semantic segmentation (BCSS) method was proposed, allowing
for precise differentiation of grain and phase boundaries in the
material. The BCSS method was then combined with the
Watershed algorithm, enabling a more accurate determination of
material structure. The method was tested on microstructure
images of the Ti6Al4V alloy, obtained using a scanning electron
microscope (SEM), achieving high accuracy compared to
standard manual methods. The results highlight the potential of
deep learning in automating microstructural analysis, which can
significantly improve quality control and materials research
processes. Automated structure identification plays a crucial role
in the control and diagnostics of melting and casting processes for
cast iron materials. This approach offers several advantages over
traditional methods, enhancing efficiency, accuracy, and
consistency.

1.1. Descriptors in Image Analysis

The methods of identifying vermicular graphite in the
microstructure are known, but the problem remains the tools that
will allow for finding microstructural features in practice. The
solution may be the use of descriptors, i.e. tools used in image
analysis to describe important features of objects and image
fragments. Image descriptors are a key element of the image
analysis and feature detection process [8]. As mentioned in [2],
they are numerical representations of specific features of objects
in images, which allows for more precise comparison and
identification of these objects. Recognition of the structure of
vermicular cast iron using descriptors plays an important role in
the extraction of characteristic microstructural features. In the
case of analysis of the structure of vermicular cast iron, local
feature descriptors are crucial. Local features focus on the
description of small, characteristic image fragments that are
uniquely localized. In the case of the microstructure of vermicular
cast iron, local features may include areas containing separated
graphite, ferrite areas, or pearlite stripes. Local feature descriptors
allow for the extraction of information from these specific
fragments, which is crucial in the recognition and analysis of this
structure.

Resistance to transformations: Local features are often
resistant to various types of image transformations, such as
changing the scale, rotation, or translation [3]. The study of the
microstructure of cast iron is based on images that can be
collected under different conditions. Local feature descriptors
allow for consistency in feature extraction, regardless of these
transformations. Precise matching: Local feature descriptors allow
for precise matching of features between different images. In the
case of the project on the microstructure of cast iron, this allows
for the identification and comparison of different instances of this
structure in the images.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2 175

1.2. Selecting Appropriate Descriptors for the
Microstructure of Vermicular Cast Iron

Due to the microstructure of vermicular cast iron, where

graphite is characterized by vermicular (worm-like) graphite
particles, which differ significantly from flake graphite in gray
cast iron and spheroidal graphite in ductile iron, this material
finds wide industrial applications. It is particularly used in
components requiring a combination of high mechanical strength
with excellent resistance to thermal and impact fatigue. The
unique morphology of graphite with complex shapes presents a
challenge in microstructure identification, especially compared to
flake and spheroidal graphite analysis. The shape of graphite
precipitates contributes to an optimal balance between ductility
and strength, making this material highly attractive for modern
engineering applications [6,7].

The key step in effectively recognizing the microstructure of
cast iron in images is to select appropriate descriptors. Descriptors
are the most important part of the image analysis process, because
they allow the extraction of important information from images
and their representation in the form of numerical data. In the case
of cast iron microstructure, there are many features that can be
important for recognition and analysis [8]. It is important to select
descriptors that are able to capture these features effectively and
reliably. In order to find interesting features of the images for
vermicular cast iron, local feature descriptors were used. The
literature analysis shows that they are insensitive to image
changes. Therefore, the size or the way of lighting should not
affect the searched characteristic feature. The focus was on two
popular descriptors in the field of image processing, such as SIFT
and HOG. The decision was made based on the work [9] where it
was indicated that SITF (Descriptor Scale Invariant Feature
Transform) works well in identifying similar images or their
fragments, is insensitive to changes in contrast or brightness. The
descriptor analyzes the orientation of the gradient calculated in
the extrema of the Laplacian function with Gauss. At the key
point for the image, a vector of local features is calculated. The
first step is to search for extrema in scale and space. For this
purpose, a convolution function is used, which uses the image
brightness function and the Gaussian function, taking the scale as
an argument. Increasing the scale value leads to a greater blurring
of the image. In this way, the images are repeatedly blurred. Their
groups form octaves. Between octaves, the image resolution is
reduced by a factor of two. The DoG function of the difference
for two scale values is used to detect key points. Potential key
points, or extrema, are selected by comparing neighboring pixels
in successive scales. To confirm whether a given extremum is
indeed a key point, the Taylor formula is applied, performing
differentiation and transformations, which allows to determine the
exact location of the local extremum. Finally, only points with
sufficiently high contrast that do not lie on the same line are
retained. In this process, the Hessian (H) and the curvature
coefficient are used. Rotation resistance is obtained by calculating
the gradient and rotation for the neighborhood of the key point.
The last part of the SIFT descriptor consists of a vector of 128
values of the orientation histogram, obtained by analyzing the
gradient coefficient in a 16x16 neighborhood of the keypoint. The
gradients are weighted with a Gaussian filter with a scale equal to
half the image scale. The vector is then normalized to ensure

robustness to changes in the object's brightness and contrast.
Using the SIFT descriptor requires a significant amount of
computation to be able to calculate even the keypoints
themselves. The pool of existing descriptors is relatively large,
because it gives 255128 possible feature values, which comes
down to creating complex algorithms that could compare images.
Due to its high computational cost, this descriptor is not the best
choice for large databases, especially in systems where time is a
key factor.

2. SIFT Implementation and Results

The application verifying the assumptions was written in
Python. OpenCV libraries were imported to use the SIFT method
and Numpy, which allows for manipulation of microstructure
images. After reading the microstructure image from the file, a
SIFT algorithm object is created, which finds key points and their
corresponding descriptors in the microstructure image. The
function from the OpenCV library is used for this purpose:
cv2.SIFT_create(). The microstructure image is reduced, and then
key points are plotted on it using red dots. Then, for each point,
the orientation (green line indicating the direction) and the blur
scale (blue circles) are marked (Figure 2, subpoints b, d).
Orientation helps find the direction of the “greatest uniqueness”
of a given area, and the blur scale determines how large a given
structure is around the selected feature point. Finally, the image
with the changes plotted is displayed.

Fig. 1. Orientation Histogram with Frame

Figure 1 shows the orientation histogram for the first keypoint

with a bounding box defining the area in the image where this
descriptor was calculated. The values of the width and height of
the box are around 4.93, which indicates that the analyzed area is
small. The center position of the box is (4.73, 736.31), which
defines where the SIFT algorithm located the first keypoint.

176 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2

Fig. 2. Microstructure images A (a) and C (c) with plotted

changes (b, d): key points (red circles), orientation (green line
indicating the direction) and blur scale (blue circles)

Figure 2 shows two images of microstructures with the

corresponding result images after passing the microstructures to
the SIFT descriptor calculation program. The marked key points
are important from the analysis point of view, they have a
particular feature that is important for the structure being studied.
The orientation indicates the direction of the preferred orientation
of the structures in the material, this is important when the
material properties change depending on the direction. The blur
scale indicates how far from a given key point or structure area
the influence of a given phenomenon can be expected.

2.1. HOG algorithm

After enabling libraries (cv2, skimage.feature with HOG

function) and loading the microstructure image using the hog
function, descriptors are calculated (code fragment 1). The
appropriate parameters are selected:

Code Fragment 1: Calling the Built-in HOG Function with the

Parameters Used

In code snippet 1, the orientations parameter corresponds to

the number of gradient directions in one block, pixels_per_cell
specifies the number of pixels in one cell, cells_per_block the
number of cells in one block, and visualize=True returns the HOG
visualization image along with descriptors. How scikit-image
HOG works:

Global Normalization (optional):
Reduce the impact of lighting effects with global

normalization, for example through gamma compression. Image
Gradients (First Row): Calculate image gradients in x and y
directions, capturing contour, silhouette, and texture information.
Gradient Directions (Second Row): Create local histograms of
gradient directions for each cell, resulting in an "orientation

histogram". The orientations=8 parameter specifies how many
directions to divide the gradient angle range in one cell.

Local Normalization (Third Order):
Normalization of gradients in local groups of cells - blocks

which improves robustness to lighting, shadow and contrast
variables. The parameters pixels_per_cell=(16, 16) and
cells_per_block=(1, 1) define the number of pixels in one cell and
the number of cells in one block, respectively. Collecting HOG
Descriptors (Final Step): Collecting HOG descriptors from all
blocks in a dense, overlapping grid of blocks to create a joint
feature vector for window classification.

Fig. 3. Images of microstructures (a, c) with HOG descriptors (b,
d) calculated for them

Figure 3 shows the results of the program calculating the

HOG descriptor for two microstructure images (a, c). The
resulting images (b, d) show distinct precipitates of vermicular
cast iron. They are darker in color and have a worm-like shape,
which makes them clearly visible against the background of other
microstructures.

2.2. Application of image processing
techniques for edge analysis and detection

The use of gradient proved to be an effective solution for
detecting vermicular cast iron, which distinguishes it from other
microstructures. For this reason, the image intensity gradient was
used in the contour search algorithm.

Method 1
The first program uses image analysis, focusing on low light

areas around the largest closed contours. After loading the image,
it is converted to grayscale using the built-in OpenCV cvtColor
function. Then, the image is smoothed using a Gaussian filter to
reduce noise. The next step is edge detection using the Canny
operator. After that, a morphological closure operation is applied
to connect the separated edge regions. Then, contours are found
again and filtered to leave only those that are closed (have more
than 4 points). Closed contours are sorted by their area in
descending order. Finally, only 10% of the largest contours are
selected from the sorted ones. Then, the low light areas inside the

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2 177

contours are analyzed: masks of low light areas inside the selected
contours are created and contours in low light areas are found.
The last step is to leave only 0.5% of the largest contours and
draw them on the output image.

Convert to Grayscale:
After loading the image, the image is converted to grayscale

using the cvtColor function from the OpenCV library [10]. It
takes two arguments: the image and cv2.COLOR_BGR2GRAY, a
constant defining the grayscale conversion code. The function
converts the input image from one color space to another.

The following conversion occurs::

Formula 1: Transformation occurring when calling the

cvtColor function from the OpenCV library to convert an image
to shades of gray, source: [11]

where R is red, G is green, and B is blue.
Their values are multiplied by the appropriate coefficients to

obtain the color gray (formula 1). Conversion to grayscale can
facilitate image analysis, reduce data complexity, increase
performance, and enable better compatibility with some image
processing algorithms.

Image Smoothing:
The Gaussian filter was used to smooth the image and reduce

noise. The GaussianBlur function from the OpenCV library (code
fragment 2) was used for this purpose, which uses the Gaussian
kernel [12]. The function accepts the following parameters:

Code Fragment 2: Passing arguments to a built-in GaussianBlur

function

where: gray is the input image (3, 3) is the kernel size, 0

corresponds to the standard deviation value.
Filter kernel is the area that is moved over the image to

perform the operation, in this case it is 3 pixels by 3 pixels (code
fragment 2). A larger area size leads to more intensive smoothing,
but can also introduce more blur. The standard deviation is
responsible for the blurring of the image, increasing its value
increases the blurring.

Operator Canny:
The Canny operator is used to detect edges on the previously

smoothed image. The algorithm removes noise using a 5x5
Gaussian filter and finds edges using the image intensity gradient.
The smoothed image is filtered by formula 2 in both horizontal
and vertical directions to obtain the first derivative in the
horizontal (Gx) and vertical (Gy) directions. By analyzing the
collected information from both these images, the gradient of the
edges and their direction can be determined for each pixel using
the following formulas:

Formula 2: Calculating the direction and gradient of edges in the

Canny edge detection algorithm

The gradient direction is always perpendicular to the edge. It
is rounded to one of four angles representing the vertical,
horizontal and two diagonal directions. After obtaining the
gradient magnitude and direction, a full scan of the image is
performed to remove pixels that are not edges by checking if the
pixel is a local maximum in its neighborhood in the gradient
direction. Then, a decision is made which of them are the most
important, creating a binary image with clear edges, using two
threshold values: minVal and maxVal (code fragment 3). All
edges with intensity gradients above maxVal are definitely edges,
and those below minVal are definitely not edges, so they are
discarded. Those that are between these two thresholds are
classified as edges or non-edges depending on their connectivity.
If they are connected to pixels of another edge, they are
considered as part of the edge. Otherwise, they are also discarded.
This step also removes small pixel noises assuming that the edges
are long lines. This way we get clear edges on the image.

The arguments passed to the function in the program are:

Code Fragment 3 Passing arguments to a built-in Canny function

(OpenCV library)

where: blurred is the smoothed image passed to edge
detection, thereshold1 is the first thresholding threshold that
determines when edges are considered weak, and thereshold2 is
the second thresholding threshold that determines when edges are
considered strong.

Morphological Closing Operation:
Closing consists of two steps: dilation and expansion. Then

we move on to erosion and reduction. The effect of this operation
is filling small holes inside the objects [13]. The morphological
closing operation was used to connect the separated edge areas.
The ones function from the numpy library was used to create a
5x5 kernel, which is an array filled with 1. The morfologyEx
function from the OpenCV library is used for closing, in which
the image with edges, MORPH_CLOSE - a constant representing
the closing operation and the previously created kernel are passed.

Finding Contours:
The contours in the image are found using the findContours

function from the OpenCV library (code snippet 4). The
parameters of the function include the source image, a method to
approximate the contours (in this case, the outer contours), and a
method to represent the contour, where the contours will be
narrowed and only their significant points will be preserved [14].

Used parameters:

Code Fragment 4: Calling a Built-in Function to Find Contours
with Passed Arguments (OpenCV Library)

Filter, sort and select 10% of contours:
Only those that are closed (have more than 4 points) will

remain. Closed contours are sorted by their area in descending
order. Only the 10% largest contours among those sorted will be
selected.

Analysis of Areas with Low Light Intensity:

178 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2

Masks of low-intensity areas inside the selected contours are
created. The low_intensity_areas image is initialized as a black
image of the same size as the original image. Then, for each
contour in largest_contours, a low_intensity_mask is created
based on the low-intensity area inside that contour. This mask is
then summed with the low_intensity_areas image using a logical
AND operation (cv2.bitwise_and), allowing only the lowintensity
areas to be included in the resulting image [15]. The whole
process is repeated for all contours, ending with a
low_intensity_areas image containing the low-intensity areas
inside the largest contours.

Finding Contours in Low Light Areas:
Contours in low light areas are found using the previously

described findContours function.
Filtering Outlines in Low Light Areas and Drawing:
What remains are the largest 0.5% of contours that are drawn

in the resulting image.

Fig. 4. Microstructure images (a, c) and the resulting images (b, d)

generated for them with contours marked

Figure 4 shows the results of the program finding contours for
two images of microstructures (a, c). In the resulting images (b,
d), the areas of low light intensity were marked with a red
contour. Using this method, it was possible to outline several
microstructure precipitates, including vermicular cast iron.
Elements with a high gradient were marked. In the further part of
the paper, two methods will be presented to improve the
performance of this program so as to ignore other microstructures.

Method 2 – Pink Squares
The next method focuses on "painting" the areas outside the

ferrite precipitates. Modifications have been added to the previous
code. The changes appear after drawing the contours on the
image. A mask is created for the areas with contours. A
thresholding operation is used to be able to adjust the image
transformation in such a way that pixels with brightness above a
certain threshold are set to the maximum value (255), and the rest
to the minimum value (0). The mask has white pixels in the place
of the contours, and the remaining pixels are black. Then, using
the bitwise_not function from the OpenCV library, a bitwise
negation of the mask is performed, which inverts the colors to the

opposite. Areas that are not black are painted in pink (Figure 5,
subpoints b, c).

Fig. 5. Microstructure images (a) with plotted changes with a

threshold value of 20 (b) and 30 (c)

Figure 5 consists of 3 elements: the input image of the
microstructure (a) and two output images that differ from each
other due to the differently selected thresholds (b, c). Depending
on the selected parameter values, the method works more or less
precisely.

Method 3 – Searching Inside Closed Contours
Another idea for modifying the first program is to analyze the

image for low intensity areas, but only inside closed contours, this
way fragments located outside the ferrite areas should be ignored.

The modified program works similarly to its original, with the
main changes:

• Thresholding using the Otsu algorithm..

Code Fragment 5 Calling the built-in function for image

binarization with arguments (OpenCV library)

In code snippet 5, a grayscale image is converted to a binary
image using Otsu's algorithm, where pixels are divided into white
(255) and black (0) depending on a dynamically determined
threshold. Otsu's algorithm analyzes the histogram of the image,
looking for a binarization threshold that minimizes the intraclass
variance (spread of pixels within classes) while maximizing the
interclass variance (differences between classes) [16]. The result
is an optimal threshold that effectively separates the background
from objects in the image, enabling automatic binarization. This
approach eliminates the need for manual threshold selection and
is particularly effective in situations where the contrast or
illumination of the image is a variable feature.
• Contours are filtered by analyzing the areas with the highest

gradient: a list w is created, in which contours are filtered.
• Areas with the highest gradient (threshold above 0.8)

surrounded by white pixels are selected and displayed
• The number of final areas is not fixed, but is adjusted

depending on the sum of areas.
The areas of all contours are summed up and a threshold is

created below which the number of contours will not be adjusted.
If the sum of areas is greater than the threshold, the number of
contours to draw will be equal to the quotient of the sum of areas
and the area threshold. Otherwise, if the sum of areas does not
exceed the threshold, the number of contours to draw will be
equal to the number of filtered contours. Such a mechanism was
introduced in order to flexibly adjust the number of lines drawn
depending on the microstructure features. If there are many small
areas in the image, the algorithm will be more restrictive and thus

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2 179

fewer contours will be drawn. In the case of several large areas, a
greater number of contours will be drawn.

Fig. 6. Images of three microstructures (a, c, e) and their

corresponding images generated by method 3 (b, d, f)

Analysis of Figure 6 leads to two conclusions. First: the
program results seem to be the most precise for method number 3.
Second: the largest number of contours is correctly marked, but
not in every case (Figure 6d). Using this approach requires
selecting parameters for specific cases, despite attempts to
automate their selection. To obtain satisfactory results for all three
methods, the parameters must be selected appropriately,
depending on the image, which is why a different approach to
recognizing vermicular cast iron in images will be used later.

2.3. Creating and training a neural network
model

Keras and TensorFlow [17] were used to create the neural
network. Keras is a deep learning programming interface written
in Python, operating on the TensorFlow machine learning
platform. It was created to enable fast analysis. The programs
were written in Python using the TensorFlow library and its Keras
module to implement a deep neural network. These programs are
designed for image classification, specifically for distinguishing
between two classes: "is" and "isn't". A database of images was
created for the needs of the neural networks.

Fig. 7. Database prepared for training and validation of the

artificial neural network

Figure 7 shows a database that was specially created for
training and validation of neural networks. It consists of 262
elements, which contains individual segments of vermicular cast
iron and images of entire melts. The database was divided into
training and validation, which contain folders jest and nie_ma.
190 elements were used for training, and 72 elements for
validation. Four versions of the program were created to create
and train neural network models, the basic structure of which is
similar. ImageDataGenerator was used to prepare training and
validation data. Batches of tensor data are generated, which
contain images, and in some cases, real-time data augmentation is
also used [18]. Data augmentation is the process of introducing
various random modifications to images to artificially increase the
training set. In this way, the diversity of training data is increased
and the overall ability of the model to generalize to new data is
improved. The Sequential model was used. It is a simple model in
Keras that allows building neural networks in a sequential
manner, i.e. one layer after another [19].

Layers in models (each model has a different structure):
Convolutional layers (Conv2D), Pooling layers (MaxPooling2D),
Flatten and Dense.
• The Conv2D layer applies filters to the image, extracting

features and creating a new output tensor. These filters are
small "windows" that slide over the image [20].

• The MaxPooling2D layer reduces the size of spatial data by
selecting the maximum values in a window of a specified
size for each input channel. It is often used to reduce the
dimensions of the data while preserving the important
features [21].

• The Flatten layer in a neural network transforms complex,
multidimensional image data into a one-dimensional list so
that it can be processed by fully connected layers [22].

• The Dense layer [23] in a neural network is a standard block
that transforms the input data by multiplying it by a weight
matrix, adding a load vector, and applying an activation
function. The units parameter specifies the number of
neurons in the layer, and activation allows for setting the
activation function, for example ReLU.

The sigmoid activation function was used for the binary
classification task. It returns values between 0 and 1, where for
small values (<-5) it approaches zero, and for large values (>5) it
approaches one. It is often used to transform results into
probability intervals [24]. The adam optimizer was used, which is
based on adaptive estimation of first and second order moments.
It works efficiently and has low memory consumption. The loss
function was assumed to be binary_crossentropy used in binary

180 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2

classification tasks. It measures the difference between the actual
and predicted values for a problem where each sample can belong
to one of two classes. The fit function is used to train the model
on the training and validation data. For a specified number of
epochs (for all versions 10), the model is trained on the provided
training data (x and y). The arguments of this method allow to
adjust the training process, such as the number of epochs, batch
size, or use of validation data. The image size is the same and is
150x150 pixels, and accuracy is used as a metric. The differences
in the programs include the choice of model architecture,
activation functions, data augmentation, and use of existing
architecture (in the program 4 VGG16).

Version 1:
ImageDataGenerator from Keras library was used for

dynamic real-time image processing during model training.
Parameter rescale=1./255 normalizes image pixel values to the
range [0, 1].

The construction of the neural network model includes 5
layers.
• Conv2D: Convolutional layer with 32 filters of size (3, 3),

ReLU activation function and input shape (img_height,
img_width, 3), where 3 is the number of channels (RGB).

• MaxPooling2D: Max pooling layer of size (2, 2).
• Flatten: A layer that flattens the data into a one-dimensional

vector before moving on to fully connected layers.
• Dense(64, activation='relu'): Fully connected layer with 64

neurons and ReLU activation function.
• Dense(1, activation='sigmoid'): Output layer with one

neuron and sigmoid activation function.
Version 2:

• ImageDataGenerator was used with the same normalization
parameter as in version 1.

• Changed the activation function to hyperbolic tangent (tanh)
in the convolutional (Conv2D) and fully connected (Dense)
layers of size 64. The tanh activation function replaces the
standard ReLU function, which may impact the model's
ability to capture nonlinear dependencies in the data by
using a hyperbolic tangent activation function.

Version 3:
ImageDataGenerator was used to augment the training data

through various transformations such as rotation, translation,
skewing, zooming, and horizontal flipping. The neural network
model contains three convolutional layers with ReLU activation
function, MaxPooling layers for dimensionality reduction, Flatten
layer for flattening the data, and two fully connected layers with
ReLU and sigmoid activation function. Additionally, a Dropout
layer was used to regularize the model by randomly excluding
neurons during training.

Version 4:
ImageDataGenerator was used with the same normalization

parameter as in version 1.
The VGG16 model from Keras library was used, omitting the

Dense layers on top of the model (no top). Then, the weights of
all layers of the base model were frozen to preserve the learned
features. Custom layers were added, including Flatten to flatten
the data, a 128-size Dense layer with a ReLU activation function,
a Dropout layer for regularization, and an output layer with one
neuron and a sigmoid activation function to solve the binary
classification problem

3. Results for different versions

Version 1:

Fig. 8. Program results for version 1

The analysis of the results presented in Figure 8 leads to the

following conclusions:
The Validation Loss parameter initially decreases, but in some

epochs it increases, which indicates possible overfitting of the
model, especially if the difference between the Training Loss
parameter and the Validation Loss parameter increases. The
Validation Accuracy parameter remains at the level of 55-68%,
which may indicate some difficulties in generalizing the model on
the validation data. The model achieves high efficiency on the
training data, but may be less efficient in generalizing to new
data, which may indicate overfitting. Augmenting the data or
subjecting the model to adjustments (e.g. dropout) can help
improve the generalization ability.

Version 2:

Fig. 9. Program results for 2 versions

The analysis of the results presented in Figure 9 leads to the

following conclusions:
The Training Loss parameter is relatively constant and does

not decrease significantly, suggesting that the model has difficulty
adapting to the training data. The Training Accuracy parameter
remains at 50.53%, indicating no improvement in classification on
the training data. The Validation Loss parameter also remains
relatively constant and does not show any significant change. The
Validation Accuracy parameter remains at 44.44%, indicating that
the model is unable to correctly classify on the validation data. It
should be noted that the model in Version_2 does not demonstrate
training efficiency or the ability to generalize to new data.

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2 181

Version 3:

Fig. 10. Results of the program for version 3

Analysis of the results presented in Figure 10 leads to the

following conclusions:
The Training Loss parameter systematically decreases, which

indicates the effective adaptation of the model to the training data.
The Training Accuracy parameter increases, reaching 85.26% in
the eighth epoch, which indicates that the model effectively
classifies the training data. The Validation Loss and Validation
Accuracy parameters show some variability, but generally remain
at a satisfactory level. The Validation Accuracy parameter reaches
75.00% in the seventh epoch, which indicates the model's ability
to generalize to the validation data. The model in Version_3
seems to cope better with both training and validation data
compared to previous versions.

Further adjustments to hyperparameters or model refinements
may be considered to further improve the results.

Version 4:

Fig. 11. Program results for 4 versions

Data analysis in Figure 11 leads to the following conclusions:
The Training Loss parameter systematically decreases, which

indicates the model is effectively adapting to the training data.
The Training Accuracy parameter increases, reaching an
impressive 99.47% in the tenth epoch, which indicates that the
model is very good at classifying the training data. The Validation
Loss parameter also decreases, which indicates the model's ability
to generalize. The Validation Accuracy parameter remains at a
level above 79%, which indicates the model's effectiveness in
classifying the validation data. The model in Version_4 achieves
very high effectiveness on the training data, which may suggest
that the model may be too well-fitted to the training data
(overfitting). The results on the validation data (79.17%) are
satisfactory.

In summary, Version 2 is the least effective in both training
and generalization. Version 4 may be too well-fitted to the
training data, which suggests the possibility of further analysis
and optimization..

4. Conclusions

Selected solutions and their modifications were presented.

Such a process allowed for drawing conclusions and a deeper
understanding of the features of the problem that was undertaken.
The use of descriptors did not provide an unambiguous solution to
the problem, but helped to understand that calculating the gradient
can be an important factor in identifying vermicular cast iron
precipitates. It is also possible to collect descriptors from different
areas of the image into one feature vector, which is a compact
representation of key information. On this basis, it is possible to
train the classifier, allowing the model to recognize unique
features in a given context, in order to be able to identify objects
in the photo. The use of image processing techniques for analysis
and edge detection showed that selecting the appropriate
parameters for each case leads to correct solutions, but with a
database containing more diverse elements it can be burdensome.
In the last approach - the use of artificial neural networks, thanks
to this, it was also possible to achieve satisfactory results. In this
case, the larger the database used for training and validation, the
more effective adaptation of the model to training data and the
ability to effectively generalize to new data would be possible. In
cases where the database contains only a few hundred elements, it
is a good practice to use data augmentation, which allows
improving the results obtained using the generalization model.

The conducted study analyzed the potential use of selected
artificial intelligence algorithms for evaluating the microstructure
of vermicular cast iron. The obtained results indicate that image
processing techniques and gradient analysis can serve as effective
tools for identifying graphite precipitates; however, their
effectiveness depends on the parameters of the applied methods
and the characteristics of the analyzed dataset. The analysis
highlights the potential of the applied models, but expanding the
training dataset and further optimizing the network architecture
are necessary to enhance their generalization ability and
effectiveness in real industrial conditions. Future research should
focus on further testing the developed methods on real industrial
data and their integration with quality control systems in foundry
processes.

References

[1] Kosa, E. (2012). Research on the structure of nitrided layers

produced on EN-GJL 250 cast iron under glow discharge
conditions. Engineering diploma thesis, Warsaw University
of Technology, Faculty of Materials Engineering. (in Polish).

[2] Szpak, Ł. (2014). Image classification based on the author's
hypsometric representation. Master's thesis, Warsaw
University of Technology, Faculty of Electronics and
Information Technology, Institute of Computer Science. (in
Polish).

[3] de Albuquerque, V.H.C., Cortez, P.C., de Alexandria, A.R.
& Manuel, J.R.S. (2008). A new solution for automatic
microstructures analysis from images based on a
backpropagation artificial neural network. Nondestructive
Testing and Evaluation. 23(94), 273-283.
https://doi.org/10.1080/10589750802258986.

182 A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 2 5 , I s s u e 2 / 2 0 2 5 , 1 7 3 - 1 8 2

[4] Han, Y., Lai, C., Wang, B. & Gu, H. (2019). Segmenting
images with complex textures by using hybrid algorithm.
Journal of Electronic Imaging. 28(1), 013030. DOI:
10.1117/1.JEI.28.1.013030.

[5] Fotos, G., Campbell, A., Murray, P. & Yakushina, E. (2023).
Deep learning enhanced Watershed for microstructural
analysis using a boundary class semantic segmentation.
Journal of Materials Science. 58(36), 14390-14410.
https://doi.org/10.1007/s10853-023-08901-w.

[6] Azlan Suhaimi, M., Park, K.H., Sharif, S., Kim, D.W.
Saladin Mohruni, A. (2017). Evaluation of cutting force and
surface roughness in high-speed milling of compacted
graphite iron. In MATEC Web of Conferences, 7-9 June
2017 (pp. 1-7). DOI:
10.1051/MATECCONF/201710103016.

[7] Zhu, C. & Zhang, A. (2007). Experimental study on fracture
toughness of vermicular cast iron. Journal of Mechanical
Strength. 29(2), 310-314.

[8] Guzik, P. (2014). Methods of searching for characteristic
points and their features. Engineering diploma thesis,
Warsaw University of Technology Faculty of Electronics and
Information Technology Institute of Computer Science. (in
Polish).

[9] Nowik, A. (2014). Local descriptors using reduced binary
histogram in similar image retrieval. Warsaw University of
Technology, Faculty of Electronics and Information
Technology Institute of Computer Science. (in Polish).

[10] Function Documentation. (2023). Color Space Conversions.
Retrieved November 25, 2023, from
https://docs.opencv.org/3.4/d8/d01/group__imgproc__colo
r__conversions.html#ga397ae87e1288a81d2363b61574eb
8cab

[11] Color conversions. (2023) Retrieved November 23, 2023,
from
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversio
ns.html

[12] Smotking Images: Gaussian Blurring. (2023). Retrieved
November 23, 2023, from,
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

[13] Morphological Transformations: Closing. (2023). Retrieved
November 23, 2023, from
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphologic
al_ops.html

[14] Structural Analysis and ShapeDescriptors: findContours.
(2023). Retrieved November 23, 2023, from,
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.
html#ga17ed9f5d79ae97bd4c7cf18403e1689a

[15] Arithmetic Operations on Images: Bitwise Operations.
(2023). Retrieved November 23, 2023, from,
https://docs.opencv.org/3.4/d0/d86/tutorial_py_image_arith
metics.html

[16] Image Thresholding: Otsu's Binarization. (2023). Retrieved
November 23, 2023, from,
https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.
html

[17] About Keras: Keras & TensorFlow 2. (2023). Retrieved
November 26, 2023, from
https://keras.io/about/tf.keras.preprocessing.image.ImageDat
aGenerator, Retrieved 2023-11-26,
https://www.tensorflow.org/api_docs/python/tf/keras/preproc
essing/image/ImageDataGenerator#used-in-the-notebooks

[18] fchollet, The Sequential model. (2023). Retrieved November
26, 2023, from https://keras.io/guides/sequential_model/

[19] Conv2D layer. (2023). Retrieved November 26, 2023, from
https://keras.io/api/layers/convolution_layers/convolution2d/

[20] MaxPooling2D layer. (2023). Retrieved November 23, 2023,
from
https://keras.io/api/layers/pooling_layers/max_pooling2d/

[21] Flatten layer. (2023). Retrieved November 27, 2023, from
https://keras.io/api/layers/reshaping_layers/flatten/

[22] Dense layer. (2023). Retrieved November 27, 2023, from
https://keras.io/api/layers/core_layers/dense/

[23] Layer activation functions. (2023). Retrieved November 26,
2023, from, https://keras.io/api/layers/activations/#sigmoid-
function

[24] Adam. (2023). Retrieved November 26, 2023, from
https://keras.io/api/optimizers/adam/

	Abstract

