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Abstract 
 
This paper presents an analysis of artificial intelligence algorithms in the context of their applicability to the automatic analysis of 
microstructure images. In the example presented, reference is made to exemplary images of the microstructure of vermicular cast iron. A 
characteristic feature of this alloy is the shape of the graphite separations. The microstructure consists of elements that humans can learn to 
recognise quite simply. Developing an application that recognises ‘dark colour’ and ‘worm shape’ is no longer so straightforward. The 
determination of the ‘dark’ colour in the algorithm becomes problematic, because depending on the conditions under which the photo was 
taken (e.g. time: day/night), the actual intensity values are altered. A similar situation occurs in the determination of shape, which varies 
from case to case. Such a classification is very general and results in large differences between instances of the class. Even a term like 
‘relatively large’ can change depending on the size of the graphite separation itself. A dark colour can be represented as a sudden change in 
image intensity, i.e. large values of the gradient modulus. The question arises: what happens if ‘dark’ can be more than one 
microcomponent, for example graphite and perlite. A good solution would be to define an associated set of features that would more 
precisely define just this component of the microstructure - that is, its shape, colour and surroundings. The paper uses the local feature 
paradigm to do this. Referring to the literature, it can be pointed out that [1] local features are referred to as non-small and specific parts of 
an image. Distinctive image features need to be distinguished in order to detect these places of interest. In this case, they are: edges, spots 
and ridges. 
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1. Introduction 
 
Searching microstructure elements or other local features is a 

current research topic, especially in the context of using artificial 
intelligence methods. Creating a new method of representing 

images using numerical vectors based on the bag of features 
concept was indicated in literature, especially in [2]. Images are 
divided and converted into visual words, in order to be able to use 
them later in the image identification process. Works focusing on 
local features of images. Feature extraction is performed, which 
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means that characteristic places in the image are determined. 
Features are described using descriptors (SIFT and SURF 
algorithm). In the final phase, you can compare key points and 
recognize whether there is an interesting element in the image. An 
extension of the bag of features model is the spatial pyramidal 
representation, which takes into account the spatial arrangement 
of words in the image. This allows for a better description of the 
structure and relationships between image elements. Initially, 
hierarchical image partitioning is performed, then the bag of 
features for each window, histograms are combined and 
compared. This algorithm takes into account spatial information 
in the image representation, allowing the detection of certain 
regularities in the image composition, which is useful in 
classification tasks. A more efficient algorithm for constructing a 
pyramidal representation was implemented, using binary tree 
structures and arrays. This makes the algorithm more efficient 
than a naive algorithm that would check the windows in order. 
For each visual word in the image, a histogram is computed in 
such a way that it is not necessary to check all the windows. The 
code contains operations that define a window with a given visual 
word and calculate the offset in the histogram for that word. The 
algorithm uses binary trees containing edges of all windows on a 
given level of the pyramid. By selecting the appropriate edges, 
one can effectively identify windows containing a given visual 
word. Another example is the automatic analysis of 
microstructures [3], in which the authors use the backpropagation 
algorithm to train an artificial neural network. For this purpose, 
images of materials such as ductile, gray and malleable cast iron 
were used to segment and quantify various microstructures in 
metallographic and microphotographic images. In this case, 
segmentation includes dividing images into specific 
microstructure components, i.e.: pearlite, cementite, graphite or 
martensite. The multilayer perception network belonging to the 
feedforward network was used. This type of network consists of 
multiple layers, including one or more hidden layers that process 
input data and lead to an output layer that gives a solution. The 
neural network used in the work consists of 39 neurons, 
distributed over two layers: an input layer with three inputs 
(colors) and a hidden layer with 30 neurons and an output layer 
with nine neurons, corresponding to nine types of microstructures 
to be recognized. The training process consisted of manual 
selection of pixels from the micrographic image. Separate 
network training was performed for each type of material to be 
analyzed. Each pixel of the input image is classified based on 
colors (RGB) and assigned to the appropriate element of the 
microstructure using the neural network.  

Methods for microstructural image segmentation, particularly 
for complex textures used in metallographic analysis, have been 
described in research studies. Traditional segmentation techniques 
often struggle with such images due to their rich details and 
irregular structures. Article [4] presents a hybrid algorithm 
combining multiple methods: Gaussian filter, mean shift method, 
FloodFill algorithm, and an enhanced flow-based difference-of-
Gaussians algorithm. This approach enables more effective 
segmentation of microstructural elements in metallographic 
images. Experiments demonstrated higher effectiveness of this 
method compared to existing segmentation techniques, 
particularly for complex texture images with a limited number of 
samples. Article [5] introduces a metal microstructure analysis 

method that integrates deep learning with traditional image 
segmentation techniques. The main objective of the study was to 
develop a hybrid approach (HADMA) to improve the accuracy 
and repeatability of microstructural analysis. A boundary class 
semantic segmentation (BCSS) method was proposed, allowing 
for precise differentiation of grain and phase boundaries in the 
material. The BCSS method was then combined with the 
Watershed algorithm, enabling a more accurate determination of 
material structure. The method was tested on microstructure 
images of the Ti6Al4V alloy, obtained using a scanning electron 
microscope (SEM), achieving high accuracy compared to 
standard manual methods. The results highlight the potential of 
deep learning in automating microstructural analysis, which can 
significantly improve quality control and materials research 
processes. Automated structure identification plays a crucial role 
in the control and diagnostics of melting and casting processes for 
cast iron materials. This approach offers several advantages over 
traditional methods, enhancing efficiency, accuracy, and 
consistency. 

 
 

1.1. Descriptors in Image Analysis 
 

The methods of identifying vermicular graphite in the 
microstructure are known, but the problem remains the tools that 
will allow for finding microstructural features in practice. The 
solution may be the use of descriptors, i.e. tools used in image 
analysis to describe important features of objects and image 
fragments. Image descriptors are a key element of the image 
analysis and feature detection process [8]. As mentioned in [2], 
they are numerical representations of specific features of objects 
in images, which allows for more precise comparison and 
identification of these objects. Recognition of the structure of 
vermicular cast iron using descriptors plays an important role in 
the extraction of characteristic microstructural features. In the 
case of analysis of the structure of vermicular cast iron, local 
feature descriptors are crucial. Local features focus on the 
description of small, characteristic image fragments that are 
uniquely localized. In the case of the microstructure of vermicular 
cast iron, local features may include areas containing separated 
graphite, ferrite areas, or pearlite stripes. Local feature descriptors 
allow for the extraction of information from these specific 
fragments, which is crucial in the recognition and analysis of this 
structure.  

Resistance to transformations: Local features are often 
resistant to various types of image transformations, such as 
changing the scale, rotation, or translation [3]. The study of the 
microstructure of cast iron is based on images that can be 
collected under different conditions. Local feature descriptors 
allow for consistency in feature extraction, regardless of these 
transformations. Precise matching: Local feature descriptors allow 
for precise matching of features between different images. In the 
case of the project on the microstructure of cast iron, this allows 
for the identification and comparison of different instances of this 
structure in the images. 
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1.2. Selecting Appropriate Descriptors for the 
Microstructure of Vermicular Cast Iron  

 
Due to the microstructure of vermicular cast iron, where 

graphite is characterized by vermicular (worm-like) graphite 
particles, which differ significantly from flake graphite in gray 
cast iron and spheroidal graphite in ductile iron, this material 
finds wide industrial applications. It is particularly used in 
components requiring a combination of high mechanical strength 
with excellent resistance to thermal and impact fatigue. The 
unique morphology of graphite with complex shapes presents a 
challenge in microstructure identification, especially compared to 
flake and spheroidal graphite analysis. The shape of graphite 
precipitates contributes to an optimal balance between ductility 
and strength, making this material highly attractive for modern 
engineering applications [6,7]. 

The key step in effectively recognizing the microstructure of 
cast iron in images is to select appropriate descriptors. Descriptors 
are the most important part of the image analysis process, because 
they allow the extraction of important information from images 
and their representation in the form of numerical data. In the case 
of cast iron microstructure, there are many features that can be 
important for recognition and analysis [8]. It is important to select 
descriptors that are able to capture these features effectively and 
reliably. In order to find interesting features of the images for 
vermicular cast iron, local feature descriptors were used. The 
literature analysis shows that they are insensitive to image 
changes. Therefore, the size or the way of lighting should not 
affect the searched characteristic feature. The focus was on two 
popular descriptors in the field of image processing, such as SIFT 
and HOG. The decision was made based on the work [9] where it 
was indicated that SITF (Descriptor Scale Invariant Feature 
Transform) works well in identifying similar images or their 
fragments, is insensitive to changes in contrast or brightness. The 
descriptor analyzes the orientation of the gradient calculated in 
the extrema of the Laplacian function with Gauss. At the key 
point for the image, a vector of local features is calculated. The 
first step is to search for extrema in scale and space. For this 
purpose, a convolution function is used, which uses the image 
brightness function and the Gaussian function, taking the scale as 
an argument. Increasing the scale value leads to a greater blurring 
of the image. In this way, the images are repeatedly blurred. Their 
groups form octaves. Between octaves, the image resolution is 
reduced by a factor of two. The DoG function of the difference 
for two scale values is used to detect key points. Potential key 
points, or extrema, are selected by comparing neighboring pixels 
in successive scales. To confirm whether a given extremum is 
indeed a key point, the Taylor formula is applied, performing 
differentiation and transformations, which allows to determine the 
exact location of the local extremum. Finally, only points with 
sufficiently high contrast that do not lie on the same line are 
retained. In this process, the Hessian (H) and the curvature 
coefficient are used. Rotation resistance is obtained by calculating 
the gradient and rotation for the neighborhood of the key point. 
The last part of the SIFT descriptor consists of a vector of 128 
values of the orientation histogram, obtained by analyzing the 
gradient coefficient in a 16x16 neighborhood of the keypoint. The 
gradients are weighted with a Gaussian filter with a scale equal to 
half the image scale. The vector is then normalized to ensure 

robustness to changes in the object's brightness and contrast. 
Using the SIFT descriptor requires a significant amount of 
computation to be able to calculate even the keypoints 
themselves. The pool of existing descriptors is relatively large, 
because it gives 255128 possible feature values, which comes 
down to creating complex algorithms that could compare images. 
Due to its high computational cost, this descriptor is not the best 
choice for large databases, especially in systems where time is a 
key factor. 

 
 

2. SIFT Implementation and Results 
 

The application verifying the assumptions was written in 
Python. OpenCV libraries were imported to use the SIFT method 
and Numpy, which allows for manipulation of microstructure 
images. After reading the microstructure image from the file, a 
SIFT algorithm object is created, which finds key points and their 
corresponding descriptors in the microstructure image. The 
function from the OpenCV library is used for this purpose: 
cv2.SIFT_create(). The microstructure image is reduced, and then 
key points are plotted on it using red dots. Then, for each point, 
the orientation (green line indicating the direction) and the blur 
scale (blue circles) are marked (Figure 2, subpoints b, d). 
Orientation helps find the direction of the “greatest uniqueness” 
of a given area, and the blur scale determines how large a given 
structure is around the selected feature point. Finally, the image 
with the changes plotted is displayed. 

 

 
Fig. 1. Orientation Histogram with Frame 

 
Figure 1 shows the orientation histogram for the first keypoint 

with a bounding box defining the area in the image where this 
descriptor was calculated. The values of the width and height of 
the box are around 4.93, which indicates that the analyzed area is 
small. The center position of the box is (4.73, 736.31), which 
defines where the SIFT algorithm located the first keypoint. 
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Fig. 2. Microstructure images A (a) and C (c) with plotted 

changes (b, d): key points (red circles), orientation (green line 
indicating the direction) and blur scale (blue circles) 

 
Figure 2 shows two images of microstructures with the 

corresponding result images after passing the microstructures to 
the SIFT descriptor calculation program. The marked key points 
are important from the analysis point of view, they have a 
particular feature that is important for the structure being studied. 
The orientation indicates the direction of the preferred orientation 
of the structures in the material, this is important when the 
material properties change depending on the direction. The blur 
scale indicates how far from a given key point or structure area 
the influence of a given phenomenon can be expected. 
 
 
2.1. HOG algorithm 

 
After enabling libraries (cv2, skimage.feature with HOG 

function) and loading the microstructure image using the hog 
function, descriptors are calculated (code fragment 1). The 
appropriate parameters are selected: 

  

 
Code Fragment 1: Calling the Built-in HOG Function with the 

Parameters Used 
 
In code snippet 1, the orientations parameter corresponds to 

the number of gradient directions in one block, pixels_per_cell 
specifies the number of pixels in one cell, cells_per_block the 
number of cells in one block, and visualize=True returns the HOG 
visualization image along with descriptors. How scikit-image 
HOG works:  

Global Normalization (optional):  
Reduce the impact of lighting effects with global 

normalization, for example through gamma compression. Image 
Gradients (First Row): Calculate image gradients in x and y 
directions, capturing contour, silhouette, and texture information. 
Gradient Directions (Second Row): Create local histograms of 
gradient directions for each cell, resulting in an "orientation 

histogram". The orientations=8 parameter specifies how many 
directions to divide the gradient angle range in one cell. 

Local Normalization (Third Order):  
Normalization of gradients in local groups of cells - blocks 

which improves robustness to lighting, shadow and contrast 
variables. The parameters pixels_per_cell=(16, 16) and 
cells_per_block=(1, 1) define the number of pixels in one cell and 
the number of cells in one block, respectively. Collecting HOG 
Descriptors (Final Step): Collecting HOG descriptors from all 
blocks in a dense, overlapping grid of blocks to create a joint 
feature vector for window classification.   

 

Fig. 3. Images of microstructures (a, c) with HOG descriptors (b, 
d) calculated for them 

 
Figure 3 shows the results of the program calculating the 

HOG descriptor for two microstructure images (a, c). The 
resulting images (b, d) show distinct precipitates of vermicular 
cast iron. They are darker in color and have a worm-like shape, 
which makes them clearly visible against the background of other 
microstructures. 

 
 

2.2. Application of image processing 
techniques for edge analysis and detection 
 

The use of gradient proved to be an effective solution for 
detecting vermicular cast iron, which distinguishes it from other 
microstructures. For this reason, the image intensity gradient was 
used in the contour search algorithm.  

Method 1  
The first program uses image analysis, focusing on low light 

areas around the largest closed contours. After loading the image, 
it is converted to grayscale using the built-in OpenCV cvtColor 
function. Then, the image is smoothed using a Gaussian filter to 
reduce noise. The next step is edge detection using the Canny 
operator. After that, a morphological closure operation is applied 
to connect the separated edge regions. Then, contours are found 
again and filtered to leave only those that are closed (have more 
than 4 points). Closed contours are sorted by their area in 
descending order. Finally, only 10% of the largest contours are 
selected from the sorted ones. Then, the low light areas inside the 
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contours are analyzed: masks of low light areas inside the selected 
contours are created and contours in low light areas are found. 
The last step is to leave only 0.5% of the largest contours and 
draw them on the output image. 

Convert to Grayscale:  
After loading the image, the image is converted to grayscale 

using the cvtColor function from the OpenCV library [10]. It 
takes two arguments: the image and cv2.COLOR_BGR2GRAY, a 
constant defining the grayscale conversion code. The function 
converts the input image from one color space to another.  

The following conversion occurs:: 
 

 
Formula 1: Transformation occurring when calling the 

cvtColor function from the OpenCV library to convert an image 
to shades of gray, source: [11] 

 
where R is red, G is green, and B is blue.  
Their values are multiplied by the appropriate coefficients to 

obtain the color gray (formula 1). Conversion to grayscale can 
facilitate image analysis, reduce data complexity, increase 
performance, and enable better compatibility with some image 
processing algorithms.  

Image Smoothing:  
The Gaussian filter was used to smooth the image and reduce 

noise. The GaussianBlur function from the OpenCV library (code 
fragment 2) was used for this purpose, which uses the Gaussian 
kernel [12]. The function accepts the following parameters: 

 

 
Code Fragment 2: Passing arguments to a built-in GaussianBlur 

function 
 
where: gray is the input image (3, 3) is the kernel size, 0 

corresponds to the standard deviation value.  
Filter kernel is the area that is moved over the image to 

perform the operation, in this case it is 3 pixels by 3 pixels (code 
fragment 2). A larger area size leads to more intensive smoothing, 
but can also introduce more blur. The standard deviation is 
responsible for the blurring of the image, increasing its value 
increases the blurring.  

Operator Canny:  
The Canny operator is used to detect edges on the previously 

smoothed image. The algorithm removes noise using a 5x5 
Gaussian filter and finds edges using the image intensity gradient. 
The smoothed image is filtered by formula 2 in both horizontal 
and vertical directions to obtain the first derivative in the 
horizontal (Gx) and vertical (Gy) directions. By analyzing the 
collected information from both these images, the gradient of the 
edges and their direction can be determined for each pixel using 
the following formulas: 

 

 
Formula 2: Calculating the direction and gradient of edges in the 

Canny edge detection algorithm 

The gradient direction is always perpendicular to the edge. It 
is rounded to one of four angles representing the vertical, 
horizontal and two diagonal directions. After obtaining the 
gradient magnitude and direction, a full scan of the image is 
performed to remove pixels that are not edges by checking if the 
pixel is a local maximum in its neighborhood in the gradient 
direction. Then, a decision is made which of them are the most 
important, creating a binary image with clear edges, using two 
threshold values: minVal and maxVal (code fragment 3). All 
edges with intensity gradients above maxVal are definitely edges, 
and those below minVal are definitely not edges, so they are 
discarded. Those that are between these two thresholds are 
classified as edges or non-edges depending on their connectivity. 
If they are connected to pixels of another edge, they are 
considered as part of the edge. Otherwise, they are also discarded. 
This step also removes small pixel noises assuming that the edges 
are long lines. This way we get clear edges on the image.  

The arguments passed to the function in the program are: 
 

 
Code Fragment 3 Passing arguments to a built-in Canny function 

(OpenCV library) 
 

where: blurred is the smoothed image passed to edge 
detection, thereshold1 is the first thresholding threshold that 
determines when edges are considered weak, and thereshold2 is 
the second thresholding threshold that determines when edges are 
considered strong.  

Morphological Closing Operation:  
Closing consists of two steps: dilation and expansion. Then 

we move on to erosion and reduction. The effect of this operation 
is filling small holes inside the objects [13]. The morphological 
closing operation was used to connect the separated edge areas. 
The ones function from the numpy library was used to create a 
5x5 kernel, which is an array filled with 1. The morfologyEx 
function from the OpenCV library is used for closing, in which 
the image with edges, MORPH_CLOSE - a constant representing 
the closing operation and the previously created kernel are passed.  

Finding Contours:  
The contours in the image are found using the findContours 

function from the OpenCV library (code snippet 4). The 
parameters of the function include the source image, a method to 
approximate the contours (in this case, the outer contours), and a 
method to represent the contour, where the contours will be 
narrowed and only their significant points will be preserved [14].  

Used parameters: 
  

Code Fragment 4: Calling a Built-in Function to Find Contours 
with Passed Arguments (OpenCV Library) 

 
Filter, sort and select 10% of contours:  
Only those that are closed (have more than 4 points) will 

remain. Closed contours are sorted by their area in descending 
order. Only the 10% largest contours among those sorted will be 
selected.  

Analysis of Areas with Low Light Intensity:  
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Masks of low-intensity areas inside the selected contours are 
created. The low_intensity_areas image is initialized as a black 
image of the same size as the original image. Then, for each 
contour in largest_contours, a low_intensity_mask is created 
based on the low-intensity area inside that contour. This mask is 
then summed with the low_intensity_areas image using a logical 
AND operation (cv2.bitwise_and), allowing only the lowintensity 
areas to be included in the resulting image [15]. The whole 
process is repeated for all contours, ending with a 
low_intensity_areas image containing the low-intensity areas 
inside the largest contours.  

Finding Contours in Low Light Areas:  
Contours in low light areas are found using the previously 

described findContours function.  
Filtering Outlines in Low Light Areas and Drawing:  
What remains are the largest 0.5% of contours that are drawn 

in the resulting image. 
 

 
Fig. 4. Microstructure images (a, c) and the resulting images (b, d) 

generated for them with contours marked 
 

Figure 4 shows the results of the program finding contours for 
two images of microstructures (a, c). In the resulting images (b, 
d), the areas of low light intensity were marked with a red 
contour. Using this method, it was possible to outline several 
microstructure precipitates, including vermicular cast iron. 
Elements with a high gradient were marked. In the further part of 
the paper, two methods will be presented to improve the 
performance of this program so as to ignore other microstructures. 

 
Method 2 – Pink Squares  
The next method focuses on "painting" the areas outside the 

ferrite precipitates. Modifications have been added to the previous 
code. The changes appear after drawing the contours on the 
image. A mask is created for the areas with contours. A 
thresholding operation is used to be able to adjust the image 
transformation in such a way that pixels with brightness above a 
certain threshold are set to the maximum value (255), and the rest 
to the minimum value (0). The mask has white pixels in the place 
of the contours, and the remaining pixels are black. Then, using 
the bitwise_not function from the OpenCV library, a bitwise 
negation of the mask is performed, which inverts the colors to the 

opposite. Areas that are not black are painted in pink (Figure 5, 
subpoints b, c). 

 

 
Fig. 5. Microstructure images (a) with plotted changes with a 

threshold value of 20 (b) and 30 (c) 
 

Figure 5 consists of 3 elements: the input image of the 
microstructure (a) and two output images that differ from each 
other due to the differently selected thresholds (b, c). Depending 
on the selected parameter values, the method works more or less 
precisely. 

 
Method 3 – Searching Inside Closed Contours 
Another idea for modifying the first program is to analyze the 

image for low intensity areas, but only inside closed contours, this 
way fragments located outside the ferrite areas should be ignored.  

The modified program works similarly to its original, with the 
main changes:  

• Thresholding using the Otsu algorithm.. 
 

 
Code Fragment 5 Calling the built-in function for image 

binarization with arguments (OpenCV library) 
 

In code snippet 5, a grayscale image is converted to a binary 
image using Otsu's algorithm, where pixels are divided into white 
(255) and black (0) depending on a dynamically determined 
threshold. Otsu's algorithm analyzes the histogram of the image, 
looking for a binarization threshold that minimizes the intraclass 
variance (spread of pixels within classes) while maximizing the 
interclass variance (differences between classes) [16]. The result 
is an optimal threshold that effectively separates the background 
from objects in the image, enabling automatic binarization. This 
approach eliminates the need for manual threshold selection and 
is particularly effective in situations where the contrast or 
illumination of the image is a variable feature.  
• Contours are filtered by analyzing the areas with the highest 

gradient: a list w is created, in which contours are filtered.  
• Areas with the highest gradient (threshold above 0.8) 

surrounded by white pixels are selected and displayed  
• The number of final areas is not fixed, but is adjusted 

depending on the sum of areas.  
The areas of all contours are summed up and a threshold is 

created below which the number of contours will not be adjusted. 
If the sum of areas is greater than the threshold, the number of 
contours to draw will be equal to the quotient of the sum of areas 
and the area threshold. Otherwise, if the sum of areas does not 
exceed the threshold, the number of contours to draw will be 
equal to the number of filtered contours. Such a mechanism was 
introduced in order to flexibly adjust the number of lines drawn 
depending on the microstructure features. If there are many small 
areas in the image, the algorithm will be more restrictive and thus 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 5 ,  I s s u e  2 / 2 0 2 5 ,  1 7 3 - 1 8 2  179 

fewer contours will be drawn. In the case of several large areas, a 
greater number of contours will be drawn. 

 

 
Fig. 6. Images of three microstructures (a, c, e) and their 

corresponding images generated by method 3 (b, d, f) 
 

Analysis of Figure 6 leads to two conclusions. First: the 
program results seem to be the most precise for method number 3. 
Second: the largest number of contours is correctly marked, but 
not in every case (Figure 6d). Using this approach requires 
selecting parameters for specific cases, despite attempts to 
automate their selection. To obtain satisfactory results for all three 
methods, the parameters must be selected appropriately, 
depending on the image, which is why a different approach to 
recognizing vermicular cast iron in images will be used later. 

 
 

2.3. Creating and training a neural network 
model 
 

Keras and TensorFlow [17] were used to create the neural 
network. Keras is a deep learning programming interface written 
in Python, operating on the TensorFlow machine learning 
platform. It was created to enable fast analysis. The programs 
were written in Python using the TensorFlow library and its Keras 
module to implement a deep neural network. These programs are 
designed for image classification, specifically for distinguishing 
between two classes: "is" and "isn't". A database of images was 
created for the needs of the neural networks. 

 

 
Fig. 7. Database prepared for training and validation of the 

artificial neural network 
 

Figure 7 shows a database that was specially created for 
training and validation of neural networks. It consists of 262 
elements, which contains individual segments of vermicular cast 
iron and images of entire melts. The database was divided into 
training and validation, which contain folders jest and nie_ma. 
190 elements were used for training, and 72 elements for 
validation. Four versions of the program were created to create 
and train neural network models, the basic structure of which is 
similar. ImageDataGenerator was used to prepare training and 
validation data. Batches of tensor data are generated, which 
contain images, and in some cases, real-time data augmentation is 
also used [18]. Data augmentation is the process of introducing 
various random modifications to images to artificially increase the 
training set. In this way, the diversity of training data is increased 
and the overall ability of the model to generalize to new data is 
improved. The Sequential model was used. It is a simple model in 
Keras that allows building neural networks in a sequential 
manner, i.e. one layer after another [19].  

Layers in models (each model has a different structure): 
Convolutional layers (Conv2D), Pooling layers (MaxPooling2D), 
Flatten and Dense.  
• The Conv2D layer applies filters to the image, extracting 

features and creating a new output tensor. These filters are 
small "windows" that slide over the image [20].  

• The MaxPooling2D layer reduces the size of spatial data by 
selecting the maximum values in a window of a specified 
size for each input channel. It is often used to reduce the 
dimensions of the data while preserving the important 
features [21].  

• The Flatten layer in a neural network transforms complex, 
multidimensional image data into a one-dimensional list so 
that it can be processed by fully connected layers [22].  

• The Dense layer [23] in a neural network is a standard block 
that transforms the input data by multiplying it by a weight 
matrix, adding a load vector, and applying an activation 
function. The units parameter specifies the number of 
neurons in the layer, and activation allows for setting the 
activation function, for example ReLU.  

The sigmoid activation function was used for the binary 
classification task. It returns values between 0 and 1, where for 
small values (<-5) it approaches zero, and for large values (>5) it 
approaches one. It is often used to transform results into 
probability intervals [24]. The adam optimizer was used, which is 
based on adaptive estimation of first and second order moments. 
It works efficiently and has low memory consumption. The loss 
function was assumed to be binary_crossentropy used in binary 
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classification tasks. It measures the difference between the actual 
and predicted values for a problem where each sample can belong 
to one of two classes. The fit function is used to train the model 
on the training and validation data. For a specified number of 
epochs (for all versions 10), the model is trained on the provided 
training data (x and y). The arguments of this method allow to 
adjust the training process, such as the number of epochs, batch 
size, or use of validation data. The image size is the same and is 
150x150 pixels, and accuracy is used as a metric. The differences 
in the programs include the choice of model architecture, 
activation functions, data augmentation, and use of existing 
architecture (in the program 4 VGG16). 

Version 1:  
ImageDataGenerator from Keras library was used for 

dynamic real-time image processing during model training. 
Parameter rescale=1./255 normalizes image pixel values to the 
range [0, 1].  

The construction of the neural network model includes 5 
layers.  
• Conv2D: Convolutional layer with 32 filters of size (3, 3), 

ReLU activation function and input shape (img_height, 
img_width, 3), where 3 is the number of channels (RGB).  

• MaxPooling2D: Max pooling layer of size (2, 2).  
• Flatten: A layer that flattens the data into a one-dimensional 

vector before moving on to fully connected layers.  
• Dense(64, activation='relu'): Fully connected layer with 64 

neurons and ReLU activation function.  
• Dense(1, activation='sigmoid'): Output layer with one 

neuron and sigmoid activation function.  
Version 2: 

• ImageDataGenerator was used with the same normalization 
parameter as in version 1.  

• Changed the activation function to hyperbolic tangent (tanh) 
in the convolutional (Conv2D) and fully connected (Dense) 
layers of size 64. The tanh activation function replaces the 
standard ReLU function, which may impact the model's 
ability to capture nonlinear dependencies in the data by 
using a hyperbolic tangent activation function.  

Version 3:  
ImageDataGenerator was used to augment the training data 

through various transformations such as rotation, translation, 
skewing, zooming, and horizontal flipping. The neural network 
model contains three convolutional layers with ReLU activation 
function, MaxPooling layers for dimensionality reduction, Flatten 
layer for flattening the data, and two fully connected layers with 
ReLU and sigmoid activation function. Additionally, a Dropout 
layer was used to regularize the model by randomly excluding 
neurons during training.  

Version 4:  
ImageDataGenerator was used with the same normalization 

parameter as in version 1.  
The VGG16 model from Keras library was used, omitting the 

Dense layers on top of the model (no top). Then, the weights of 
all layers of the base model were frozen to preserve the learned 
features. Custom layers were added, including Flatten to flatten 
the data, a 128-size Dense layer with a ReLU activation function, 
a Dropout layer for regularization, and an output layer with one 
neuron and a sigmoid activation function to solve the binary 
classification problem 

3. Results for different versions 
 
Version 1: 

 
Fig. 8. Program results for version 1 

 
The analysis of the results presented in Figure 8 leads to the 

following conclusions:  
The Validation Loss parameter initially decreases, but in some 

epochs it increases, which indicates possible overfitting of the 
model, especially if the difference between the Training Loss 
parameter and the Validation Loss parameter increases. The 
Validation Accuracy parameter remains at the level of 55-68%, 
which may indicate some difficulties in generalizing the model on 
the validation data. The model achieves high efficiency on the 
training data, but may be less efficient in generalizing to new 
data, which may indicate overfitting. Augmenting the data or 
subjecting the model to adjustments (e.g. dropout) can help 
improve the generalization ability. 

 
Version 2: 

 
Fig. 9. Program results for 2 versions 

 
The analysis of the results presented in Figure 9 leads to the 

following conclusions:  
The Training Loss parameter is relatively constant and does 

not decrease significantly, suggesting that the model has difficulty 
adapting to the training data. The Training Accuracy parameter 
remains at 50.53%, indicating no improvement in classification on 
the training data. The Validation Loss parameter also remains 
relatively constant and does not show any significant change. The 
Validation Accuracy parameter remains at 44.44%, indicating that 
the model is unable to correctly classify on the validation data. It 
should be noted that the model in Version_2 does not demonstrate 
training efficiency or the ability to generalize to new data. 
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Version 3: 

 
Fig. 10. Results of the program for version 3 

 
Analysis of the results presented in Figure 10 leads to the 

following conclusions:  
The Training Loss parameter systematically decreases, which 

indicates the effective adaptation of the model to the training data. 
The Training Accuracy parameter increases, reaching 85.26% in 
the eighth epoch, which indicates that the model effectively 
classifies the training data. The Validation Loss and Validation 
Accuracy parameters show some variability, but generally remain 
at a satisfactory level. The Validation Accuracy parameter reaches 
75.00% in the seventh epoch, which indicates the model's ability 
to generalize to the validation data. The model in Version_3 
seems to cope better with both training and validation data 
compared to previous versions.  

Further adjustments to hyperparameters or model refinements 
may be considered to further improve the results. 

 
Version 4: 

 
Fig. 11. Program results for 4 versions 

 
Data analysis in Figure 11 leads to the following conclusions:  
The Training Loss parameter systematically decreases, which 

indicates the model is effectively adapting to the training data. 
The Training Accuracy parameter increases, reaching an 
impressive 99.47% in the tenth epoch, which indicates that the 
model is very good at classifying the training data. The Validation 
Loss parameter also decreases, which indicates the model's ability 
to generalize. The Validation Accuracy parameter remains at a 
level above 79%, which indicates the model's effectiveness in 
classifying the validation data. The model in Version_4 achieves 
very high effectiveness on the training data, which may suggest 
that the model may be too well-fitted to the training data 
(overfitting). The results on the validation data (79.17%) are 
satisfactory.  

In summary, Version 2 is the least effective in both training 
and generalization. Version 4 may be too well-fitted to the 
training data, which suggests the possibility of further analysis 
and optimization.. 

 

4. Conclusions 
 
Selected solutions and their modifications were presented. 

Such a process allowed for drawing conclusions and a deeper 
understanding of the features of the problem that was undertaken. 
The use of descriptors did not provide an unambiguous solution to 
the problem, but helped to understand that calculating the gradient 
can be an important factor in identifying vermicular cast iron 
precipitates. It is also possible to collect descriptors from different 
areas of the image into one feature vector, which is a compact 
representation of key information. On this basis, it is possible to 
train the classifier, allowing the model to recognize unique 
features in a given context, in order to be able to identify objects 
in the photo. The use of image processing techniques for analysis 
and edge detection showed that selecting the appropriate 
parameters for each case leads to correct solutions, but with a 
database containing more diverse elements it can be burdensome. 
In the last approach - the use of artificial neural networks, thanks 
to this, it was also possible to achieve satisfactory results. In this 
case, the larger the database used for training and validation, the 
more effective adaptation of the model to training data and the 
ability to effectively generalize to new data would be possible. In 
cases where the database contains only a few hundred elements, it 
is a good practice to use data augmentation, which allows 
improving the results obtained using the generalization model. 

The conducted study analyzed the potential use of selected 
artificial intelligence algorithms for evaluating the microstructure 
of vermicular cast iron. The obtained results indicate that image 
processing techniques and gradient analysis can serve as effective 
tools for identifying graphite precipitates; however, their 
effectiveness depends on the parameters of the applied methods 
and the characteristics of the analyzed dataset. The analysis 
highlights the potential of the applied models, but expanding the 
training dataset and further optimizing the network architecture 
are necessary to enhance their generalization ability and 
effectiveness in real industrial conditions. Future research should 
focus on further testing the developed methods on real industrial 
data and their integration with quality control systems in foundry 
processes. 
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