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This paper presents a dynamic and critical buckling analysis of hollow steel box-
section beams infilled with a porous polymer concrete composite core, modeled using
a refined quasi-3D beam theory. The study investigates the effects of porosity in the
polymer concrete core on the mechanical behavior of the beam. The governing equa-
tions are derived using the Differential Quadrature Finite Element Method (DQFEM)
combined with Lagrange’s principle. Results show that hollow steel-only beams ex-
hibit the highest natural frequencies, while adding a composite core slightly reduces
frequencies due to increased mass. Introducing porosity further lowers the frequencies,
with a uniform porosity distribution (UDP) achieving better performance than non-
uniform distributions. Increasing the slenderness ratio enhances natural frequencies
across all configurations. For critical buckling loads, a solid (non-porous) core pro-
vides the highest capacity, while porosity reduces the load-bearing capacity compared
to the solid core; however, UDP outperforms non-uniform distributions. Non-uniform
porosity patterns demonstrate advantages in preserving structural integrity under cer-
tain conditions. The effects of slenderness ratio and boundary conditions are also
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examined, highlighting their influence on dynamic and stability responses. The model
is validated through comparisons with numerical and experimental results from the
literature, demonstrating high accuracy. These findings provide valuable insights into
the dynamic and buckling behavior of porous composite beams and offer practical
guidelines for designing porous material-based structures in engineering applications.

1. Introduction

The study of composite beams has become increasingly significant due to
their extensive applications in modern engineering structures, including bridges,
aerospace systems, and machine tools [1]. Steel-polymer concrete beams, particu-
larly those with porous cores, have emerged as a promising solution for improving
structural performance due to their lightweight, high-energy dissipation, and tun-
able mechanical properties [2, 3]. The introduction of porosity into the concrete
core offers additional advantages, such as reduced weight and enhanced energy
absorption, but also adds complexity to their dynamic and stability behavior [4, 5].
Thus, accurately modeling and analyzing the effects of porosity have become a
critical focus of research in structural mechanics [6, 7]. Advanced beam theories,
such as the quasi-3D beam theory and higher-order deformation theories, have
proven instrumental in capturing the effects of porosity and shear deformation be-
haviors in composite beams [8, 9]. Furthermore, these theories, when combined
with numerical methods, allow for the detailed analysis of porous composite beams
with various porosity distributions and slenderness ratios [10, 11].

The Differential Quadrature Finite Element Method (DQFEM) has been rec-
ognized as an efficient numerical tool for solving complex structural problems
[12], including the vibration and stability analysis of porous and composite beams
[13, 14]. This method, in combination with Lagrange’s principle, has been success-
fully applied to derive governing equations for beams with porous and functionally
graded materials [15, 16]. Additionally, experimental and numerical investigations
have validated the effectiveness of these methods, highlighting their accuracy in
predicting natural frequencies and buckling loads [17, 18].

Porous materials, particularly functionally graded porous cores, offer unique
opportunities for tailoring material properties to meet specific design requirements
[19–21]. However, the mechanical behavior of porous materials is highly dependent
on the porosity distribution and structural dimensions, requiring detailed paramet-
ric studies to optimize their performance [6, 22, 23]. Recent research has also
emphasized the importance of incorporating thermal and viscoelastic effects in the
analysis of porous beams [24], further enhancing the accuracy of their dynamic and
stability assessments [9, 25]. Composite beams are often reinforced with nanopar-
ticles or graphene-based materials to enhance their dynamic and stability charac-
teristics. Weĳia et al. [26] investigated the dynamic response of sandwich beams
with a functionally graded porous core subjected to pulse loads, demonstrating
that porosity and graphene oxide powder significantly influence beam deflections.
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Hung et al. [27] studied the analysis of free vibration in a sandwich beam featur-
ing a porous functionally graded material (FGM) core under thermal conditions,
employing a mesh-free methodology. Similarly, Assie et al. [28] explored the vi-
brational behavior of deep beams with viscoelastic cores, revealing that porosity
and material damping play crucial roles in reducing dynamic amplitudes. Khafaji
et al. [29] conducted a free vibration behavior study of sandwich beams, which
consist of a porous functionally graded material (FGM) core sandwiched between
two isotropic face layers, under the influence of thermal effects. The integration
of nanoparticles in porous beams has also been a focus of research. Karegar et
al. [30] examined the dynamic bending behavior of laminated porous concrete
beams reinforced with nanoparticles, showing that increasing nanoparticle content
can substantially reduce displacement. Stability studies have further contributed
to understanding the mechanical behavior of FGP beams. Fortas et al. [31] ana-
lyzed buckling behavior using a finite element approach, emphasizing the impact
of graphene reinforcement and porosity distributions on critical buckling loads.
Additionally, Atmane et al. [32] studied FG beams on variable elastic foundations,
highlighting the influence of porosity and gradient index on vibration responses.

Recent advances in the analysis of functionally graded materials (FGMs) have
increasingly incorporated fractional calculus and nonlocal theories to capture scale-
dependent behaviors in nano- and microscale structures. For instance, Arefi [33]
developed nonlocal piezoelasticity relations for FG nanoplates under electric po-
tential while accounting for thickness stretching effects. Rahimi [34] introduced a
conformable fractional nonlocal model to study the nonlinear vibration of FGM
nanobeams, highlighting the impact of fractional-order stress gradients. Chan [35]
employed nonlocal strain gradient theory to analyze the buckling and vibration of
FG sandwich cylindrical panels in thermal environments. Stempin [36] extended
space-fractional beam models to Timoshenko formulations, validating their predic-
tions experimentally. Additionally, Zenkour [37] investigated bending and buckling
behaviors of FG plates on elastic foundations under hygrothermal conditions using
advanced shear deformation theories.

These studies collectively enhance the understanding of porous FG struc-
tures for advanced applications. In this study, a refined quasi 3D beam theory is
employed to model the dynamic and critical buckling behavior of porous steel-
polymer concrete beams. The governing equations are derived using DQFEM and
Lagrange’s principle, considering the effects of porosity, slenderness ratios, and
boundary conditions. Validation is performed by comparing the results with analyt-
ical, numerical, and experimental findings available in the literature, ensuring the
reliability of the proposed approach. This research aims to provide valuable insights
into the behavior of porous composite beams and contributes to the optimization
of porous material-based structural systems for engineering applications.

The paper is organized as follows: the next section presents the theoretical
formulation and models, including the steel-polymer porous concrete beam model,
quasi-3D beam theory, and the DQFEM. The third section presents the numerical
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results, analyzing the effects of beam porosity, slenderness, and boundary con-
ditions on the dynamic behavior and stability. Finally, the conclusions and main
results are summarized in the last section.

2. Formulation and theories

2.1. Porous steel-polymer concrete beam model

The concept of the steel-polymer concrete beam combines the synergistic
properties of steel and polymer concrete to achieve enhanced mechanical perfor-
mance, including stiffness, vibration energy dissipation, and dynamic adaptability.
The beam structure includes a steel profile of length 𝐿 with a square cross-section
of ℎ×𝑏 and 𝑒𝑠 wall thickness, filled with polymer concrete (Fig.1). The polymer
concrete core is composed of epoxy resin and mineral fillers of varying grain sizes,
including ash, fine sand, medium gravel, and coarse gravel, ensuring optimized
density and strength distribution [38]. By controlling the arrangement and degree
of filling, the dynamic properties of such composite beams can be tailored to meet
specific structural requirements.

Fig. 1. Composite box beam model

The inclusion of porosity in the polymer concrete is explored to enhance the
beam’s lightweight and damping properties. The porosity distribution is modeled
across the thickness of the beam using three distinct approaches: (a) Uniform
Distribution of Porosity (UDP), (b) Symmetrical Non-Uniform Distribution of
Porosity (NUDP1), and (c) Asymmetrical Non-Uniform Distribution of Porosity
(NUDP2) (Fig. 2). In the UDP model, material properties such as Young’s modulus

(a) (UDP) (b) (NUDP1) (c) (NUDP2)

Fig. 2. Porosity distributions patterns in the thickness direction: (a) Uniform distribution pattern
(UDP), (b) non-uniform distribution pattern 1 (NUDP1), and (c) non-uniform distribution pattern 2

(NUDP2)
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and density remain constant throughout the thickness. In the NUDP1 model, these
properties peak at the extreme surfaces and decrease towards the mid-axis. In
contrast, the NUDP2 model features maximum values at the lower surface, tapering
off towards the upper surface. These distributions significantly influence the beam’s
mechanical and dynamic properties, including its natural frequencies and critical
buckling loads.

The distribution of the properties of the material of the porous beam takes the
form according to the following equations [19, 39]:

UDP :

{
𝐸 = 𝐸1(1 − 𝑒0𝜁),
𝜌 = 𝜌1

√︁
(1 − 𝑒0𝜁),

(1)

NUDP1 :


𝐸 (𝑧) = 𝐸1

(
1 − 𝑒0 cos

(
𝜋𝑧

(ℎ − 2𝑒𝑝)

))
,

𝜌(𝑧) = 𝜌1

(
1 − 𝑒𝑚 cos

(
𝜋𝑧

(ℎ − 2𝑒𝑝)

))
,

(2)

NUDP2 :


𝐸 (𝑧) = 𝐸1

(
1 − 𝑒0 cos

(
𝜋𝑧

2(ℎ − 2𝑒𝑝)
+ 𝜋

4

))
,

𝜌(𝑧) = 𝜌1

(
1 − 𝑒𝑚 cos

(
𝜋𝑧

2(ℎ − 2𝑒𝑝)
+ 𝜋

4

))
,

(3)

with:

𝑒0 = 1 − 𝐸2
𝐸1
, 0 ⩽ 𝑒0 < 1,

𝑒𝑚 = 1 −
√︁
(1 − 𝑒0), (4)

𝜁 =
1
𝑒0

− 1
𝑒0

(
2
𝜋

√︁
1 − 𝑒0 −

2
𝜋
+ 1

)2
.

Hence, 𝜌1 and 𝐸1 are minimum values of masse density and Young’s modulus, re-
spectively. 𝐸2 and 𝜌2 are maximum Young module values and density, respectively.
𝑒0 and 𝑒𝑚 are the porosity and mass porosity coefficients, respectively.

2.2. Quasi-3D beam model of a steel-polymer concrete beam

Based on the high order quasi-3D beam theory [6, 40], the displacement field
at any arbitrary location on the beam is assumed to be stated as follows in the
current work:

𝑢1(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
d𝑤𝑏 (𝑥, 𝑡)

d𝑥
+ 𝑓1(𝑧)

d𝑤𝑠 (𝑥, 𝑡)
d𝑥

,

𝑢3(𝑥, 𝑧, 𝑡) = 𝑤𝑏 (𝑥, 𝑡) + 𝑤𝑠 (𝑥, 𝑡) + 𝑓2(𝑧)𝑤𝑧 (𝑥, 𝑡).
(5)



6 H. ASSEM, A. SAIMI, I. BENSAID, A. CHEIKH, M. DAHMANE, H. AIT ATMANE

This theory posits that the transverse displacement is categorized into three distinct
components: 𝑤𝑏, 𝑤𝑠 and 𝑤𝑧 . Here, 𝑢 represents the axial displacement along
the 𝑥-axis, while 𝑤𝑏, 𝑤𝑠 and 𝑤𝑧 correspond to the bending, shear, and normal
displacement components, respectively, of the transverse displacement for points
situated along the beam’s neutral axis.

The shear shape function 𝑓1(𝑧) employed in this framework by equation (6)
is derived from a third-order polynomial shear deformation beam theory, as estab-
lished by [41] for both: equation (6) and 𝑓2(𝑧) = 1 − 𝑓 ′1 (𝑧). This function governs
how the transverse shear strain is distributed along the thickness of the beam and
captures the parabolic distribution of shear stresses through the beam thickness,
eliminating the need for shear correction factors. Its formulation is critical to ac-
count for transverse shear deformation while satisfying physical and mathematical
conditions with more realistic prediction of shear effects.

𝑓1(𝑧) =
4ℎ
5

sinh
(

5𝑧
4ℎ

)
+ 𝑧

(
− cosh

(
5
8

)
+ 3

20
cos

(
5
8

))
. (6)

The formula for strain energy, according to these theories, is as follows:

𝑈 =
1
2

𝐿∫
0

∫
𝐴

(
𝜎𝑖 𝑗𝜀𝑖 𝑗

)
d𝐴d𝑥. (7)

Hence 𝜎𝑖 𝑗 and 𝜀𝑖 𝑗 represents the stress tensor and the strain tensor respectively
which are defined by the following equations:

𝜀𝑥𝑥 =
d𝑢
d𝑥

=
d𝑢
d𝑥

− 𝑧 d2𝑤𝑏

d𝑥2 − 𝑓1
d2𝑤𝑠

d𝑥2 ,

𝜀𝑧𝑧 =
d𝑤
d𝑧

=
d 𝑓2
d𝑧

𝑤𝑧 , (8)

𝜀𝑥𝑧 =
1
2

(
d𝑢
d𝑧

+ d𝑤
d𝑥

)
=

1
2
𝑓2

(
d𝑤𝑠

d𝑥
+ d𝑤𝑧

d𝑥

)
,

𝜎𝑥𝑥 = (𝜆 + 2𝜇) 𝜀𝑥𝑥 + 𝜆𝜀𝑧𝑧 ,
𝜎𝑥𝑧 = 2𝜇𝛾𝑥𝑧 , (9)

𝜎𝑧𝑧 = (𝜆 + 2𝜇) 𝜀𝑧𝑧 + 𝜆𝜀𝑥𝑥 ,

where:
𝜇 =

𝐸

2(1 + 𝜈) , (10)

𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) . (11)
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Hence 𝜇 and 𝜆 are the Lame constants, and 𝜈 is the Poisson’s ratio. The substitution
of equations (8)-(9) in equation (7) gives:

𝑈 =
1
2

𝑙∫
0

[
𝐼1

(
d𝑢
d𝑥

)2
− 2𝐼2

d𝑢
d𝑥

d2𝑤𝑏

d𝑥2 − 2𝐼3
d𝑢
d𝑥

d2𝑤𝑠

d𝑥2

+ 2𝐼4
d2𝑤𝑏

d𝑥2
d2𝑤𝑠

d𝑥2 + 𝐼5
(

d2𝑤𝑏

d𝑥2

)2

+ 𝐼6
(

d2𝑤𝑠

d𝑥2

)2

+ 𝐼7𝑤2
𝑧 + 2𝐼8

d𝑢
d𝑥
𝑤𝑧 − 2𝐼9

d2𝑤𝑏

d𝑥2 𝑤𝑧

− 2𝐼10
d2𝑤𝑠

d𝑥2 𝑤𝑧 + 𝐼11

((
d𝑤𝑠

d𝑥

)2
+

(
d𝑤𝑧

d𝑥

)2
+ 2

d𝑤𝑠

d𝑥
d𝑤𝑧

d𝑥

)]
d𝑥,

(12)

with:

{
𝐼1,2,3,4,5,6,7

}
= 𝛼1

(
𝑏

ℎ
2∫

− ℎ
2

F(𝑧) d𝑧

)
+ 𝛽1

(
(𝑏 − 2𝑒𝑠)

ℎ
2 −𝑒𝑠∫

− ℎ
2 +𝑒𝑠

F(𝑧) d𝑧

)
, (13a)

𝛼1 = 𝜆𝑠 + 2𝜇𝑠, (13b)

𝛽1 = (𝜆𝑐 − 𝜆𝑠) + 2(𝜇𝑐 − 𝜇𝑠), (13c)

F(𝑧) =
(
1, 𝑧, 𝑓1, 𝑧 𝑓1, 𝑧2, 𝑓 2

1 ,

(
d 𝑓2
d𝑧

)2
)
, (13d)

{
𝐼8,9,10

}
= 𝛼2

(
𝑏

ℎ
2∫

− ℎ
2

G(𝑧) d𝑧

)
+ 𝛽2

(
(𝑏 − 2𝑒𝑠)

ℎ
2 −𝑒𝑠∫

− ℎ
2 +𝑒𝑠

G(𝑧) d𝑧

)
, (14a)

𝛼2 = 𝜆𝑠, (14b)

𝛽2 = 𝜆𝑐 − 𝜆𝑠, (14c)

G(𝑧) = d 𝑓2
d𝑧

(1, 𝑧, 𝑓1) , (14d)

{𝐼11} = 𝜇𝑠

(
𝑏

ℎ
2∫

− ℎ
2

𝑓 2
2 d𝑧

)
+ (𝜇𝑐 − 𝜇𝑠)

(
(𝑏 − 2𝑒𝑠)

ℎ
2 −𝑒𝑠∫

− ℎ
2 +𝑒𝑠

𝑓 2
2 d𝑧

)
. (15)
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The kinetic energy can be written as:

𝑇 =
1
2

𝑙∫
0

[
𝐽1

(
¤𝑢2 + ¤𝑤2

𝑏 + ¤𝑤2
𝑠 + 2 ¤𝑤𝑏 ¤𝑤𝑠

)
− 2𝐽2 ¤𝑢

d ¤𝑤𝑏

d𝑥

+ 2𝐽3 ¤𝑢
d ¤𝑤𝑠

d𝑥
− 2𝐽4

d ¤𝑤𝑏

d𝑥
d ¤𝑤𝑠

d𝑥
+ 𝐽5

(
d ¤𝑤𝑏

d𝑥

)2
+ 𝐽6

(
d ¤𝑤𝑠

d𝑥

)2

+ 𝐽7 ¤𝑤2
𝑧 + 2𝐽8 ( ¤𝑤𝑏 ¤𝑤𝑧 + ¤𝑤𝑠 ¤𝑤𝑧)

]
d𝑥 .

(16)

Hence the mass moments of inertia:

{
𝐽1,2,3,4,5,6,7,8

}
= 𝛼3

(
𝑏

ℎ
2∫

− ℎ
2

H(𝑧) d𝑧

)
+ 𝛽3

(
(𝑏 − 2𝑒𝑠)

ℎ
2 −𝑒𝑠∫

− ℎ
2 +𝑒𝑠

H(𝑧) d𝑧

)
, (17a)

𝛼3 = 𝜌𝑠, (17b)
𝛽3 = 𝜌𝑐 − 𝜌𝑠, (17c)

H(𝑧) =
(
1, 𝑧, 𝑓1, 𝑧 𝑓1, 𝑧2, 𝑓 2

1 , 𝑓
2
2 , 𝑓2

)
. (17d)

With the subscripts 𝑠 and 𝑐 refer to for steel box and inner composite concrete,
respectively.

The potential energy associated with the beam under an externally applied
axial load is expressed as follows:

𝑉 = −1
2

𝐿∫
0

𝑁𝑐𝑟

[(
d𝑤𝑏

d𝑥

)2
+

(
d𝑤𝑠

d𝑥

)2
+ 2

d𝑤𝑏

d𝑥
d𝑤𝑠

d𝑥

]
d𝑥. (18)

2.3. DQFEM formulation

To represent our beam, we assume the shape functions take the form described
in equation (19) [42]:

𝑢 [𝑥] =
𝑁∑︁
𝑖=1

𝐿𝑖 (𝑥)𝑢̄𝑖 ,

𝑤𝑏 [𝑥] =
𝑁∑︁
𝑖=1

𝐿𝑖 (𝑥)𝑤̄𝑏𝑖 ,

𝑤𝑠 [𝑥] =
𝑁∑︁
𝑖=1

𝐿𝑖 (𝑥)𝑤̄𝑠𝑖 ,

𝑤𝑧 [𝑥] =
𝑁∑︁
𝑖=1

𝐿𝑖 (𝑥)𝑤̄𝑧𝑖 .

(19)
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This formulation employs 𝐿𝑖 to denote the Lagrange polynomial, while 𝑢̄𝑖 =
𝑢(𝑥𝑖), 𝑤̄𝑏𝑖 = 𝑤𝑏 (𝑥𝑖), 𝑤̄𝑠𝑖 = 𝑤𝑠 (𝑥𝑖) and 𝑤̄𝑧𝑖 = 𝑤𝑧 (𝑥𝑖) represent the nodal displace-
ments at the Gauss-Lobatto quadrature points within the differential quadrature
(DQ) finite element framework of the beam. The 𝑛-th order derivative of a field
variable 𝑓 (𝑥) at a discrete point 𝑥𝑖 is approximated as follows:

𝜕𝑛 𝑓 (𝑥, 𝑡)
𝜕𝑥𝑛

����
𝑥𝑖

=

𝑁∑︁
𝑗=1

𝐴
(𝑛)
𝑖 𝑗

𝑓 (𝑥 𝑗 , 𝑡) (𝑖 = 1, 2, 3, . . . .., 𝑁) . (20)

In this context, 𝐴(𝑛)
𝑖 𝑗

denotes the weighting coefficient associated with the 𝑛-th
order derivative approximation. 𝐴(𝑛)

𝑖 𝑗
is derived as follows: if 𝑛 = 1, so

𝐴
(1)
𝑖 𝑗

=
𝑀 (𝑥𝑖)(

𝑥𝑖 − 𝑥 𝑗
)
𝑀

(
𝑥 𝑗

) 𝑖 ≠ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁 ,

𝐴
(1)
𝑖𝑖

= −
𝑛∑︁

𝑗=1, 𝑗≠𝑖
𝐴
(1)
𝑖 𝑗

𝑖 = 1, 2, . . . , 𝑁 ,

(21)

where:

𝑀 (𝑥𝑖) =
𝑁∏

𝑘=1,𝑘≠𝑖
(𝑥𝑖 − 𝑥𝑘) , 𝑀

(
𝑥 𝑗

)
=

𝑁∏
𝑘=1,𝑘≠𝑖

(
𝑥 𝑗 − 𝑥𝑘

)
. (22)

The Gaussian-Lobatto quadrature rule with a degree of precision (2𝑛 − 3) for
the function 𝑓 (𝑥) defined in the interval [−1, 1] is:

1∫
−1

𝑓 (𝑥)d𝑥 =
𝑁∑︁
𝑗=1
𝐶 𝑗 𝑓

(
𝑥 𝑗

)
, (23)

𝐶1 = 𝐶𝑁 =
2

𝑁 (𝑁 − 1) ,

𝐶 𝑗 =
2

𝑁 (𝑁 − 1)
(
𝑃𝑁−1

(
𝑥 𝑗

) )2 , ( 𝑗 ≠ 1, 𝑁) .
(24)

𝑥 𝑗 corresponds to the ( 𝑗−1)th root of the first derivative of the Legendre polynomial
𝑃𝑁−1 (𝑥). To achieve fast convergence and high accuracy, a denser distribution of
points near the boundaries is essential. Therefore, the sampling points are chosen
based on the distribution of nodes in the Gauss–Lobatto grid and solved via Newton-
Raphson iteration method:

𝑥 𝑗 = − cos
(
𝑗 − 1
𝑁 − 1

𝜋

)
. (25)
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The relation between 𝑢 and 𝑢̄, 𝑤 and 𝑤̄ is defined using rule DQ [13]:

𝑢 = 𝑄𝑢̄, 𝑤𝑏,𝑠,𝑧 = 𝑄𝑤̄𝑏,𝑠,𝑧 , (26)

where

𝑄 =



1 0 0 · · · 0 0
𝐴
(1)
1,1 𝐴

(1)
1,2 𝐴

(1)
1,3 · · · 𝐴

(1)
1,𝑁−1 𝐴

(1)
1,𝑁

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
𝐴
(1)
𝑁,1 𝐴

(1)
𝑁,2 𝐴

(1)
𝑁,3 · · · 𝐴

(1)
𝑁,𝑁−1 𝐴

(1)
𝑁,𝑁


. (27)

Utilizing the DQFEM, by substituting equations (19)-(27) into equations (12),
(16), (18) and employing Lagrange’s principle, we derive the subsequent system
of equations.



[𝐾]11 [𝐾]12 [𝐾]13 [𝐾]14

[𝐾]22 [𝐾]23 [𝐾]24

[𝐾]33 [𝐾]34

sym [𝐾]44


−𝜔2


[𝑀]11 [𝑀]12 [𝑀]13 [0]

[𝑀]22 [𝑀]23 [𝑀]24

[𝑀]33 [𝑀]34

sym [𝑀]44




𝑢

𝑤𝑏

𝑤𝑠

𝑤𝑧


= {0} .

(28)
The mass matrix elements:

[𝑀]11 =
[
𝐽1𝑄

𝑇𝐶̄ 𝑄
]

[𝑀]12 = −
[
𝐽2𝑄

𝑇𝐶̄ 𝐴̄(1)𝑄
]

[𝑀]13 = −
[
𝐽3𝑄

𝑇𝐶̄ 𝐴̄(1)𝑄
]

[𝑀]22 =

[
𝐽1𝑄

𝑇𝐶̄𝐺𝑏 + 𝐽5𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
[𝑀]23 =

[
𝐽1𝑄

𝑇𝐶̄𝐺𝑠 + 𝐽4𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
(29)

[𝑀]24 =
[
𝐽8𝑄

𝑇𝐶̄𝑄
]

[𝑀]33 =

[
𝐽1𝑄

𝑇𝐺𝑠 + 𝐽6𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
[𝑀]34 =

[
𝐽8𝑄

𝑇𝐶̄𝑄
]

[𝑀]44 =
[
𝐽7𝑄

𝑇𝐶̄𝑄
]
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The strain matrix elements:

[𝐾]11 =

[
𝐼1𝑄

𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄
]

[𝐾]12 = −
[
𝐼2𝑄

𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(2)𝑄
]

[𝐾]13 = −
[
𝐼3𝑄

𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(2)𝑄
]

[𝐾]14 =

[
𝐼8𝑄

𝑇 𝐴̄(1)𝑇 𝐶̄𝑄
]

[𝐾]22 =

[
𝐼5𝑄

𝑇 𝐴̄(2)𝑇 𝐶̄ 𝐴̄(2)𝑄
]
− 𝑁𝑐𝑟

[
𝑄𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
(30)

[𝐾]23 =

[
𝐼4𝑄

𝑇 𝐴̄(2)𝑇 𝐶̄ 𝐴̄(2)𝑄
]
− 𝑁𝑐𝑟

[
𝑄𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
[𝐾]24 = −

[
𝐼9𝑄

𝑇 𝐴̄(2)𝑇 𝐶̄𝑄
]

[𝐾]33 =

[
𝐼6𝑄

𝑇 𝐴̄(2)𝑇 𝐶̄ 𝐴̄(2)𝑄 + 𝐼11𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
− 𝑁𝑐𝑟

[
𝑄𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
[𝐾]34 =

[
𝐼10𝑄

𝑇 𝐴̄(2)𝑇 𝐶̄𝑄 + 𝐼11𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
[𝐾]44 =

[
𝐽7𝑄

𝑇𝐶̄𝑄 + 𝐼11𝑄
𝑇 𝐴̄(1)𝑇 𝐶̄ 𝐴̄(1)𝑄

]
The interval [−1, 1] is the only valid range for all kinds of node distributions in

differentiation and quadrature. Therefore, the differential and quadrature matrices
need to be adjusted as follows in order to put them into practice:

𝐶̄ =
𝑙𝑒

2
𝐶, 𝐴̄(1) =

2
𝑙𝑒
𝐴(1) , 𝐴̄(2) =

4
𝑙𝑒

2 𝐴
(2) . (31)

𝑙𝑒 designate the beam element length.

3. Discussion of results

A beam with box shape section inner porous composite material and metal as
outer material shown in Fig. 1 is studied in this section. The material properties
for the outer material (steel): Young’s modulus 𝐸steel = 210 GPa, a mass density
𝜌steel = 7812 Kg/m3, Poisson’s ratio 𝜈steel = 0.28. The inner material used in this
study is a composite polymer concrete [38]: Young’s modulus 𝐸concrete = 17.2 GPa,
a mass density 𝜌concrete = 2200 Kg/m3, Poisson’s ratio 𝜈concrete = 0.20. In order
to examine the current models, a comparative search is first carried out with the
literature (Table 1), for a beam made from a steel profile measuring 𝐿 = 1000 mm
in length, featuring a square cross-section with dimensions of thickness ℎ = 70
mm, and a width 𝑏 = 70 mm and a wall thickness of 𝑒𝑠 = 3 mm, which is internally
filled with polymer concrete.

Table 1 show the natural frequencies of the composite beam predicted by
the DQFEM-Q3D model closely match experimental results (⩽ 1.5% deviation),
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validating its accuracy. In contrast, classical beam theories show limitations: Timo-
shenko beam thoery (TBT) underestimates higher-mode frequencies (e.g., Mode 5:
3471 Hz vs. experimental 3589 Hz), while Euler Bernoulli beam theory (EBT) over-
estimates them significantly (e.g., Mode 5: 3957 Hz, 10.3% error). The literature’s
FEM model also overestimates higher modes (e.g., Mode 4: 2833 Hz vs. exper-
imental 2572 Hz). These results confirm that the quasi-3D theory via DQFEM,
which accounts for shear and material complexity, outperforms simplified models,
making it ideal for dynamic analysis of composite beams.

Table 1. Natural frequencies (Hz) comparison with literatures

Mode shape
[38] Present DQFEM

Experimental FEM (TBT) Q3D TBT EBT
1 339 338 340 337 352
2 899 915 905 880 962
3 1669 1755 1659 1618 1863
4 2572 2833 2595 2495 3027
5 3589 4124 3605 3471 3957

To facilitate ease of use in the parametric study, the nondimensional parameters
outlined below are employed for all results presented in tables and figures. The
frequency parameter (𝜔̄):

𝜔̄ =
𝜔𝐿2

ℎ

√︂
𝜌𝑠

𝐸𝑠

, (32)

The critical buckling load parameter (𝑁̄𝑐𝑟 ):

𝑁̄𝑐𝑟 =
12𝑁𝑐𝑟𝐿

2

𝐸𝑠𝑏ℎ
3 . (33)

3.1. Free vibration analysis

The results presented in Table 2 and illustrated in Fig. 3 highlight the structural
performance of clamped-clamped box-section beams with different core configu-
rations, specifically focusing on frequencies. The steel box beam without a core
shows the highest frequencies due to its rigid and homogeneous structure, while the
addition of a solid core reduces the frequencies slightly because of the increased
mass, despite the added stiffness. When porosity is introduced, the frequencies
further decrease, with uniform porosity distribution (UDP) showing slightly better
performance compared to non-uniform distributions (NUDP1 and NUDP2), where
NUDP2 generally exhibits the lowest frequencies due to its less consistent stiffness
distribution. As the aspect ratio (𝐿/ℎ) increases, the natural frequencies consis-
tently rise across all configurations due to the geometric dependence of stiffness.
Overall, while porous cores introduce weight savings, the choice of porosity pattern
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significantly influences the mechanical performance, with uniform distributions of-
fering the best balance between reduced weight and structural stability.

Table 2. Frequencies parameter of a clamped-clamped box-section beam with various composite
polymer concrete core porosity patterns. 𝑒0 = 0.2

𝐿/ℎ Steel-only box beam Solid core 𝑒0 = 0 UPD NUDP1 NUDP2

10
𝜔̄1 7.9245 5.6643 5.7088 5.7309 5.714
𝜔̄2 20.1008 14.5787 14.6753 14.7247 14.6876
𝜔̄3 34.436 25.4698 25.5932 25.6606 24.8918

15
𝜔̄1 8.3578 5.9077 5.9599 5.9854 5.9657
𝜔̄2 22.0465 15.7237 15.8514 15.9144 15.8661
𝜔̄3 39.9546 28.9075 29.1065 29.2072 29.1313

30
𝜔̄1 8.6529 6.0675 6.1253 6.1533 6.1316
𝜔̄2 23.5565 16.5648 16.7189 16.7938 16.7357
𝜔̄3 45.0679 31.8608 32.1434 32.2815 32.1748

Fig. 3. Frequency parameters 𝜔̄1 according to length/thickness ratio
for various porosity distributions (𝑒0 = 0.5)

The results in Table 3, supported by Fig. 4, highlight the relationship between
porosity index (𝑒0), porosity distribution patterns (UDP, NUDP1, NUDP2), and
boundary conditions on the dynamic performance of a steel box-section beam with
a composite polymer concrete core. These results provide critical insights into the
behavior of the structure under various configurations.

As shown in Table 3 and Fig. 4, the frequency parameters slightly increase
with the porosity index (𝑒0) across all boundary conditions. This trend is consistent
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Table 3. Frequencies parameters of box-section beam with various core porosity patterns and
boundary conditions 𝐿/ℎ = 15

𝑒0

NNF
UPD NUDP1 NUDP2

𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄1 𝜔̄2 𝜔̄3
Simply supported beam

0 2.673 10.409 22.477 2.673 10.409 22.477 2.673 10.409 22.477
0.2 2.699 10.503 22.661 2.711 10.548 22.751 2.702 10.513 22.682
0.4 2.733 10.627 22.909 2.760 10.727 23.107 2.740 10.653 22.963
0.6 2.780 10.804 23.264 2.826 10.972 23.602 2.795 10.855 23.375
0.8 2.857 11.090 23.845 2.928 11.355 24.385 2.885 11.187 24.066

steel-only 3.813 14.733 31.489 3.813 14.733 31.489 3.813 14.733 31.489
Clamped-clamped beam

0 5.907 15.723 28.907 5.907 15.723 28.907 5.907 15.723 28.9075
0.2 5.959 15.851 29.106 5.985 15.914 29.207 5.965 15.866 29.131
0.4 6.029 16.023 29.381 6.085 16.163 29.607 6.044 16.061 29.449
0.6 6.128 16.271 29.785 6.224 16.508 30.176 6.157 16.348 29.929
0.8 6.289 16.676 30.460 6.440 17.057 31.106 6.345 16.830 30.760

steel-only 8.357 22.046 39.954 8.357 22.046 39.954 8.357 22.046 39.954
Clamped-free beam

0 0.958 5.853 15.770 0.958 5.853 15.770 0.958 5.853 15.770
0.2 0.967 5.906 15.901 0.972 5.932 15.964 0.968 5.912 15.915
0.4 0.980 5.977 16.077 0.989 6.033 16.217 0.982 5.991 16.115
0.6 0.997 6.077 16.32 1.013 6.172 16.567 1.002 6.106 16.406
0.8 1.025 6.239 16.739 1.050 6.389 17.120 1.033 6.294 16.892

steel-only 1.368 8.292 22.111 1.368 8.292 22.111 1.368 8.292 22.111

for all porosity patterns (UDP, NUDP1, NUDP2). The slight increase is due to the
dominance of the reduction in core mass over the reduction in stiffness, leading
to an improvement in the stiffness-to-mass ratio. This effect is particularly evident
in clamped-clamped beams (Fig. 4a), which exhibit the highest frequency values
compared to simply supported (Fig. 4b) and clamped-free beams (Fig. 4c). This
outcome reflects the ability of fully fixed boundary conditions to enhance the over-
all rigidity of the beam, amplifying the dynamic response. Among the porosity
patterns, NUDP1 consistently yields the highest frequency parameters across all
boundary conditions. This indicates that a strategically non-uniform distribution
of porosity enhances stiffness retention while reducing mass effectively. In com-
parison, UDP shows the lowest frequency values due to its uniform distribution,
which does not optimize the stiffness-to-mass ratio as efficiently. The steel-only
box beam demonstrates significantly higher frequency parameters compared to the
composite beams. However, the difference narrows as (𝑒0) increases, indicating
that at higher porosity levels, the reduction in core density diminishes the impact
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(a) (b)

(c)

Fig. 4. Frequency parameters 𝜔̄1 for various porosity distributions based on porosity coefficient
(𝐿/ℎ = 15), (a): clamped-clamped, (b): simply supported-simply supported, (c): clamped-free

of the composite material on dynamic behavior. This suggests that for lightweight
applications requiring higher frequencies, optimizing the porosity distribution is
essential.

3.2. Buckling analysis

The results presented in Table 4 and illustrated in Fig. 5 highlight the structural
performance of clamped-clamped box-section beams with different core configu-
rations, specifically focusing on critical buckling loads. Regarding critical buckling
loads, the steel-only beam performs the worst, while the addition of a solid core
significantly enhances the load-bearing capacity, demonstrating the core’s contribu-
tion to resisting buckling. The introduction of porosity reduces the critical buckling
loads compared to the solid core but still outperforms the steel-only configuration.
UDP generally provides higher buckling loads than NUDP1 and NUDP2, con-
firming that a uniform porosity distribution maintains better structural integrity.
The effect of increasing the aspect ratio is also notable for buckling loads, as all
configurations see substantial improvements in their critical loads with larger 𝐿/ℎ
values.
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Table 4. Critical buckling parameter of a clamped-clamped box-section beam with porous
composite polymer concrete core and steel outer layer. 𝑒0 = 0.2

𝐿/ℎ Steel-only box beam Solid core 𝑒0 = 0 UPD NUDP1 NUDP2

10
𝑁̄𝑐𝑟1 2.2112 3.0279 2.9367 2.9528 2.9408
𝑁̄𝑐𝑟2 2.2164 3.0300 2.9368 2.9528 2.9409
𝑁̄𝑐𝑟3 2.2302 3.0554 2.9612 2.9774 2.9654

15
𝑁̄𝑐𝑟1 5.3810 7.3613 7.1312 7.1703 7.1412
𝑁̄𝑐𝑟2 5.4086 7.3725 7.1478 7.1873 7.1580
𝑁̄𝑐𝑟3 5.6170 7.4762 7.2642 7.3049 7.2745

30
𝑁̄𝑐𝑟1 11.8146 14.1205 13.8224 13.9498 13.8506
𝑁̄𝑐𝑟2 23.9438 28.7424 28.1251 28.3793 28.1817
𝑁̄𝑐𝑟3 31.1480 41.0561 40.1257 40.3641 40.1850

Fig. 5. Critical Buckling parameters 𝑁̄𝑐𝑟1 according to length/thickness ratio
for various porosity distributions (𝑒0 = 0.5)

The results in Table 5, supported by Fig. 6, highlight the relationship between
porosity index (𝑒0), porosity distribution patterns (UDP, NUDP1, NUDP2), and
boundary conditions on the stability performance of a steel box-section beam with
a composite polymer concrete core. The critical buckling parameters in Table 5
and Fig. 6 show a contrasting trend compared to frequency parameters. As (𝑒0)
increases, the critical buckling loads decrease significantly across all boundary
conditions and porosity patterns. This behavior reflects the substantial reduction
in stiffness caused by increased porosity, which compromises the beam’s ability
to resist compressive loads. The reduction is most pronounced in clamped-free
beams (Fig. 6c), where the lack of support at one end further amplifies the ef-
fect of stiffness loss. Clamped-clamped beams (Fig. 6a) exhibit the highest critical
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Table 5. Critical buckling parameters of box-section beam with various core porosity patterns and
boundary conditions 𝐿/ℎ = 15

𝑒0

NNF
UPD NUDP1 NUDP2

𝑁̄𝑐𝑟1 𝑁̄𝑐𝑟2 𝑁̄𝑐𝑟3 𝑁̄𝑐𝑟1 𝑁̄𝑐𝑟2 𝑁̄𝑐𝑟3 𝑁̄𝑐𝑟1 𝑁̄𝑐𝑟2 𝑁̄𝑐𝑟3
Simply supported beam

0 3.527 6.773 6.785 3.527 6.773 6.785 3.527 6.773 6.785
0.2 3.453 6.564 6.574 3.485 6.600 6.610 3.460 6.573 6.583
0.4 3.375 6.337 6.346 3.442 6.422 6.431 3.393 6.365 6.374
0.6 3.290 6.085 6.092 3.399 6.239 6.246 3.326 6.147 6.154
0.8 3.194 5.786 5.789 3.356 6.051 6.056 3.258 5.919 5.923

steel-only 2.952 4.940 4.951 2.952 4.940 4.951 2.952 4.940 4.951
Clamped-clamped beam

0 7.361 7.373 7.476 7.361 7.373 7.476 7.361 7.373 7.476
0.2 7.131 7.148 7.264 7.170 7.187 7.305 7.141 7.158 7.275
0.4 6.882 6.903 7.035 6.974 6.996 7.129 6.912 6.934 7.065
0.6 6.604 6.630 6.780 6.773 6.799 6.949 6.673 6.698 6.847
0.8 6.276 6.306 6.477 6.567 6.596 6.763 6.422 6.451 6.617

steel-only 5.381 5.409 5.617 5.381 5.409 5.617 5.381 5.409 5.617
Clamped-free beam

0 0.880 3.377 7.207 0.880 3.377 7.207 0.880 3.377 7.207
0.2 0.861 3.265 6.999 0.869 3.285 7.038 0.863 3.270 7.009
0.4 0.842 3.143 6.774 0.859 3.190 6.866 0.846 3.158 6.803
0.6 0.821 3.006 6.524 0.848 3.092 6.688 0.829 3.040 6.588
0.8 0.797 2.843 6.228 0.838 2.990 6.506 0.811 2.915 6.363

steel-only 0.738 2.382 5.378 0.738 2.382 5.378 0.738 2.382 5.378

buckling loads, showcasing their superior stability due to the increased constraints.
Simply supported beams (Fig. 6b) show intermediate buckling performance, while
clamped-free beams consistently display the lowest resistance to buckling, mak-
ing them the most sensitive to porosity-related stiffness loss. Among the porosity
patterns, NUDP1 again demonstrates superior performance, maintaining higher
critical buckling loads compared to UDP and NUDP2 at all (𝑒0) levels. This
highlights the advantage of non-uniform porosity distributions in mitigating the
adverse effects of stiffness reduction by strategically reinforcing critical regions of
the beam. The steel-only box beam exhibits lower critical buckling loads compared
to composite beams at all porosity levels. This outcome underscores the effective-
ness of the polymer concrete core in distributing compressive stresses, even as
porosity increases. The composite structure’s ability to outperform the steel-only
beam in stability applications demonstrates the value of combining lightweight
core materials with optimized porosity for enhanced structural integrity.
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(a) (b)

(c)

Fig. 6. Critical Buckling parameters 𝑁̄𝑐𝑟1 for various porosity distributions based on porosity
coefficient (𝐿/ℎ = 15), (a): clamped-clamped, (b): simply supported-simply supported,

(c): clamped-free

4. Conclusions

This study provides a comprehensive analysis of the vibration and buckling
performance of porous composite steel-polymer concrete box-section beams using
a refined quasi-3D beam theory combined with the Differential Quadrature Finite
Element Method (DQFEM). The investigation highlights the influence of porosity
index, porosity distribution patterns, and boundary conditions on the structural
performance, offering valuable insights for the design of lightweight, efficient, and
stable structures. The key findings are summarized as follows:

• The introduction of porosity in the polymer concrete core slightly increases
the frequencies parameters 𝜔̄ due to the dominant effect of reduced mass
over reduced stiffness, enhancing the stiffness-to-mass ratio.

• Clamped-clamped beams exhibit the highest natural frequencies across all
configurations, demonstrating the beneficial impact of fully constrained
boundary conditions on the dynamic response.

• Among porosity distribution patterns, NUDP1 consistently demonstrates the
highest frequency parameters and critical buckling loads, highlighting that
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strategically non-uniform porosity not only enhances stiffness retention and
dynamic performance but also mitigates stiffness reduction while improving
load-bearing capacity more effectively than UDP or NUDP2.

• Steel-only box beams achieve higher frequency values than composite beams
due to their rigid and homogeneous structure. However, as the porosity
index increases, the difference in frequency values narrows, underscoring
the potential of porous composite beams for lightweight applications.

• Critical buckling loads 𝑁̄𝑐𝑟 decrease significantly with increasing porosity
index due to the associated reduction in stiffness, which compromises the
beam’s resistance to compressive loads.

• Clamped-clamped beams achieve the highest buckling loads due to their
superior stability, while clamped-free beams display the lowest resistance to
buckling, making them most sensitive to stiffness loss caused by porosity.

• Composite beams with a porous polymer concrete core outperform steel-
only beams in critical buckling loads across all configurations, emphasizing
the value of combining lightweight core materials with optimized porosity
distributions to enhance stability.

• Increasing the slenderness ratio consistently improves both natural frequen-
cies and critical buckling loads for all porosity configurations and boundary
conditions, demonstrating the geometric influence on the beam’s stiffness
and stability.

• The results highlight that while porous polymer concrete cores reduce the
overall weight of the structure, careful optimization of porosity distribution
is critical to maintaining or enhancing structural performance.

• Uniform porosity distributions (UDP) provide a balance between dynamic
and stability performance, while non-uniform patterns (NUDP1) offer su-
perior stiffness and load-bearing capacity, making them more suitable for
high-performance engineering applications.

In conclusion, this study demonstrates the feasibility of using porous composite
steel-polymer concrete beams for lightweight and stable structural applications.
By leveraging advanced modeling techniques such as quasi-3D beam theory and
DQFEM, and optimizing porosity distribution patterns, engineers can design effi-
cient structures that balance dynamic performance, weight reduction, and stability.
These findings offer practical guidelines for implementing porous material-based
designs in aerospace, automotive, and civil engineering fields.

However, some limitations should be acknowledged. The analysis assumes
ideal material behavior without accounting for potential imperfections, damage,
or long-term degradation in real-world conditions. Additionally, thermal effects,
moisture ingress, and manufacturing-induced variability were not considered in
the current modeling framework. Experimental validation was beyond the scope
of this study, and the numerical results would benefit from corroboration through
laboratory testing.



20 H. ASSEM, A. SAIMI, I. BENSAID, A. CHEIKH, M. DAHMANE, H. AIT ATMANE

Future research could extend this work by incorporating thermo-mechanical
coupling, investigating fatigue and durability under cyclic loading, and exploring
more complex geometries and loading conditions. Moreover, optimization stud-
ies integrating multi-objective design criteria could further enhance the practical
applicability of porous composite beams in advanced engineering structures.
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