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Effectiveness of Continuous Surface Mining Systems:  
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in Western Macedonia, Greece

The South Field Mine, situated in Western Macedonia, Greece, has used continuous surface mining 
systems: bucket wheel excavators (BWEs), belt conveyors, and stackers for over four decades of unin-
terrupted operation. This paper, using the principles of the Lessons-Learned process, tries to identify, 
document, analyse, and disseminate valuable knowledge and experience acquired in this mine, focusing 
on the performance indicators and downtimes of BWEs. Quantitative analysis methods were employed 
to analyse data and detect trends and factors for productive time losses. During a rather crucial period 
for the mine, due to decarbonisation and energy transition policies, the performance of BWEs exhibited 
a decline. On the other hand, availability and utilisation remained relatively stable. Mechanical failures 
and annual maintenance appeared to be the primary causes of downtimes. Non-operating time, connected 
with the lack of personnel, also had a great impact on operational efficiency. According to the linear 
regression model, this downtime has the greatest influence on the availability of the BWEs. In conclu-
sion, this research implies the importance of the incorporation of new technologies for monitoring and 
producing daily and monthly records of the mine activities, which can enhance the overall effectiveness 
of a continuous mining system.
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1.	I ntroduction

The gradual depletion of mineral-rich deposits, coupled with the increasing demand for 
minerals, mainly those essential for digital and energy transitions, and the influence of decar-
bonisation policies have made productivity enhancement and cost reduction top priorities for 
the mining industry. To address these challenges, mining companies have relied on exploration 
and productivity improvement. Over the past 150 years, the industry has successfully increased 
productivity by manufacturing larger equipment and expanding mining operations. However, 
since 2000, signs of a slowdown have emerged [1]. 

The concept of intelligent mining has gained traction as a means to enhance productivity 
while meeting the climate change goals outlined in the Paris Agreement [2]. A key driver of this 
transformation is Mining 4.0, a technological platform based on Industry 4.0 technologies, such 
as the Internet of Things (IoT), big data, Artificial Intelligence (Al), and Machine Learning (ML). 
Mining 4.0 aims to modernise the industry by improving productivity, safety, and environmental 
sustainability [3].

The digital technologies implemented in mining operations and processing can be catego-
rised into four groups:

(a)	 Automation and remote operation: Autonomous Load-Haul-Dump (LHD) systems [2] 
and Haul-Truck (AHSs) systems [4] boost production and help reduce machine down-
time, maintenance costs, and fuel consumption, consequently lowering greenhouse gas 
emissions. Other examples include autonomous drill systems [2], automatic controlled 
belt conveyors [5], and Unmanned Aerial Vehicles (UAVs) and remote sensing tech-
nologies applied in surveys to enhance productivity and improve mine planning [6].

(b)	I oT: Real-time monitoring and control systems such as smart sensors that enable real-
time data capture from equipment, actuators, and cloud-based data engines support 
decision-making, optimise operations, data storage and analysis, and improve produc-
tivity and safety [7]. IoT applications in communication, video surveillance, and health 
management have also reduced injuries and fatalities [2].

(c)	 AI and ML: Both technologies will play an increasingly critical role in intelligent au-
tomation, enabling autonomous systems to adapt to dynamic environments, optimise 
processes, and make informed decisions, including decisions about human safety [4]. 
These technologies are also used for predictive maintenance, operational optimisation, 
blasting optimisation, and fuel efficiency. Combined with remote sensing data, they are 
also used in mineral exploration and drilling [2].

(d)	 Digital Twinning: This concept refers to developing a digital model of the physical 
operation. This is possible using the geological and engineering information of the site, 
but more importantly, using the real-time data generated from the sensors connected 
across the operation. With the digital twin of a mine, it is possible to perform simula-
tions and predict potential failures or downturns in equipment performance [7].

Furthermore, numerous studies have focused on the performance of mining equipment. Many 
researchers highlight the role of systematic equipment performance measurement, particularly 
Overall Equipment Performance (OEE), in improving equipment utilisation and efficiency [8]. 
In this context, the Mine Production Index (MPi), a modified version of OEE, has been proposed 
to provide a more realistic assessment of mining equipment effectiveness. Tested in a Swedish mine 
equipped with five shovels, MPi provided higher and more realistic values than traditional OEE [9]. 
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Based on Lean Manufacturing principles, a tailored Total Productive Maintenance (TPM) 
approach was implemented in copper mines, focusing on three key pillars: improving the work 
environment, autonomous and planned maintenance, and developing standards [10]. Additionally, 
a TPM strategy combined with an OEE model has been applied to assess equipment efficiency 
in an underground mine [11]. 

A new methodology called Overall Mining Equipment Effectiveness (OMEE) has been 
developed to evaluate the efficiency of mining equipment, identify operational weaknesses, and 
estimate equipment life cycles and maintenance needs. OMEE has been applied in two open-pit 
coal mines in Spain, based on data collected over 10 years [12]. With the rise of Mining 4.0, the 
mining industry is steadily moving towards predictive maintenance to correct potential faults 
and increase equipment reliability. ML is a powerful tool in reliability and fault analysis. With 
the integration of deep learning into AI, intelligent diagnosis is expected to enhance further pre-
dictive capabilities. Future developments should combine data-driven AI methods with failure 
mechanisms and prior knowledge to improve diagnostic accuracy [13]. However, statistical 
techniques, geostatistical models, production scheduling, truck dispatching models, and system 
control methods will continue to play a role in mines that are not yet ready to adopt innovative 
digital technologies [6]. 

The present study focuses on continuous mining systems. Although less flexible than loader-
truck setups, they offer significant advantages in achieving high production rates and, under certain 
conditions, can attain high efficiency levels. A notable example of statistical analysis in this area 
is the study of failure rates and maintenance performance of an SchRs 800.15/1.5 bucket-wheel 
excavator that operates in a Serbian lignite mine is presented in [14]. 

The surface lignite mines of Western Macedonia are now in their seventh decade of opera-
tion. The accumulated knowledge and experience from operating continuous extraction systems 
and addressing various challenges, such as the multi-layered structure of the deposit and the 
presence of hard rocks in the overburden, are noteworthy [15]. Following the EU decarbonisation 
and energy transition policy, the mines are expected to cease operations in the next few years.

Preserving the knowledge and lessons learned from these operations is very important; it is 
perhaps as important as implementing land reclamation and addressing the social and economic 
impacts due to mine closure. This research examines the evaluation of the effectiveness of continu-
ous surface mining systems, focusing on the performance indicators and the downtime analysis 
of the bucket wheel excavators. Based on the principles of the lesson-learned process, it uses 
quantitative analysis methods and tries to provide the mining industry with valuable conclusions 
for future operational efficiency improvement.

2.	T he study area

Lignite had been a major source of electricity production in Greece for several decades 
before the expansion of renewable energy sources and the decarbonization efforts led to a sustain-
ability strategy. The Western Macedonia region was the primary location for lignite extraction 
in Greece, hosting the country’s largest lignite-fired power plants with a total installed capacity 
of about 4,300MW.

South Field Mine (Fig. 1) is the largest mine of Western Macedonia Lignite Centre (WMLC), 
in terms of acreage, total excavation volumes, and lignite production. Since 1979, when the 
mine operation began, the total excavations have exceeded 2.6×109 fm3 and the production of 
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lignite has reached 265 million tonnes (Fig. 2). Nowadays, it covers an area of 72 km2, with an 
active excavation area of 8 km2. It is a surface mine developed in two discrete pits, the so-called 
Sector 6 and Sector 7, currently with five and four horizontal benches, respectively. In the past, 
the South Field mine had a different layout, with a single pit consisting of ten main benches and 
some small ones for getting access to the deeper parts of the lignite deposit. 

Fig. 1. Map of the West Macedonia Lignite Centre and South Field Mine 
(Source: https://globalenergymonitor.org/projects/global-coal-mine-tracker/tracker-map/)

Fig. 2. Annual fluctuation of total excavations and lignite Production in South Field Mine from the beginning 
of its operation until 2022

https://globalenergymonitor.org/projects/global-coal-mine-tracker/tracker-map/
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The deposit consists of multiple, thin lignite layers separated by calcareous and clayey waste 
beds. Due to this complexity and the need to achieve high production rates, selective mining 
techniques are applied using continuous mining equipment. Eleven bucket-wheel excavators 
(TABLE 1), seven spreaders, and 96 km of belt conveyors have been installed in the mine [16]. 

Table 1

South Field Mine’s Bucket Wheel Excavators that were operating in the period 2010-2020

Name Manufacturer Type Capacity (m3/h)
BWE1 KRUPP Schrs3700/2,5.30 7586/11100
BWE2 TAKRAF SRs2000/5.32 4170/6050
BWE3 TAKRAF SRs2000/5.33 4170/6050
BWE4 TAKRAF SRs2000/5.34 4170/6050
BWE5 TAKRAF SRs2000/5.34 4170/6050
BWE6 TAKRAF SRs 2000/6.33 3970/5760
BWE7 TAKRAF SRs 2000/6.33 3970/5760
BWE8 KRUPP Schrs 2300/5.32 4188/6072
BWE9 ETEKA/KRUPP Schrs 1760/5.32 4207/6100

Additionally, due to the complex stratigraphy and tectonics of the deposit, comparing the 
operational performance of the South Field Mine with other lignite mines is risky and may lead 
to incorrect conclusions if not analysed by mining experts. However, earlier publications report 
that the productivity per employee at the Southern Field Mine is comparable to that of the Ger-
man Garzweiler mine, while it lags behind the Inden and Hambach mines [17]. Overall, the 
productivity of the lignite mines in Western Macedonia is among the highest, alongside those of 
German and Polish mines [18]. Yet, in terms of cost per ton of lignite and even worse, cost per 
Gcal of lignite, Greek mines are among the most expensive in Europe due to their high stripping 
ratio and the low calorific value of the lignite produced [19].

3.	 Material and methods

3.1.	T he Lessons-Learned Process

This study implemented a Lessons-Learned process to identify, document, analyse, and 
disseminate the knowledge acquired in the WMLC lignite mines regarding the operational ef-
ficiency of continuous mining systems. 

The Lessons-Learned process is a common practice in project management and organisa-
tional learning. It systematically involves identifying, documenting, and sharing insights from 
positive and negative experiences. This allows an organisation to learn from the past and apply 
those lessons to improve future projects and operations.

According to the Guide to the Project Management Body of Knowledge [17], Lessons-
Learned represent the knowledge gained during a project that shows how project events have 
been or should be dealt with in the future to improve future performance. Collecting these lessons 
and the conclusions from the positive and negative experiences of the past helps to enhance the 
protocols and principles of a project. The goal is to iterate and capitalise on the positives while 
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avoiding the negatives. The basic principles of this method are presented in Fig. 3. Essentially, the 
idea is to learn from past mistakes and successes to enhance future projects and endeavours. The 
literature highlights how failing to learn from past mistakes often leads to their repetition [18-20].

Identify Document Analyze Store Retrieve 

Identify 
comments and 

recommendations 
that could be 

valuable for future 
projects

Document  
and share findings

Analyse 
and organise 
for application 

of results

Store in a repository Retrieve for use 
on current projects

Fig. 3. Basic principles of the Lessons-Learned method

In the framework of the present study, the relevant information was sourced from the data 
stored in the belt conveyors’ control tower software and the mining company’s monthly operat-
ing reports. Next, various statistical methods presented in the following section were applied to 
analyse the input data and determine the causal factors of productive operational time losses, such 
as the failures that reduced equipment availability and the operating conditions that prevented 
equipment from achieving its theoretical capacity. Finally, the results of this analysis were re-
ported and disseminated through lectures attended by the personnel of the mining company and 
students of the Department of Mineral Resources Engineering, University of Western Macedonia.

3.2.	 Quantitative data analysis

Quantitative analysis is a powerful research method that utilises numerical data to establish 
relationships between variables. It is widely used across natural and social sciences as it allows 
researchers to test theories and make predictions based on quantifiable evidence [21]. Research-
ers can use a variety of statistical techniques to analyse quantitative data, ranging from basic 
descriptive statistics to complex multivariate analyses. One of the key advantages of quantitative 
research is its ability to generate objective, generalizable findings. Proper data analysis is crucial, 
as improper techniques can lead to misleading or inaccurate results. Quantitative methods can 
investigate phenomena through the collection of numerical data and the application of mathemati-
cal models and statistical techniques for analysis [22].

Quantitative data analysis typically involves statistical methods to find patterns, trends, and 
relationships. Some common steps and methods include [23]:

•	 Descriptive Statistics: This is often the first step, summarising data using measures like 
mean, median, mode, standard deviation, etc.

•	 Inferential Statistics: This is used to draw conclusions and make inferences. Examples 
include hypotheses and estimates to make comparisons and predictions and draw conclu-
sions.

There’s a wide range of software available for quantitative data analysis, each with its own 
strengths and target audiences. In the framework of this study, SPSS, DATAtab, and Microsoft 
Power BI software packages were used to conduct the quantitative data analysis. Power BI ena-

https://docs.google.com/document/d/1bOdiAAIdynMHn47uAY3TwqKq0vzwIYkp/edit#bookmark=id.5diy27r9jt50
https://docs.google.com/document/d/1bOdiAAIdynMHn47uAY3TwqKq0vzwIYkp/edit#bookmark=id.5diy27r9jt50
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bled the creation of interactive data visualisations to enhance interpretability. Applying these 
tools, combined with a solid understanding of the underlying statistical concepts, was crucial to 
deriving meaningful and reliable insights from the data.

The analysis began with data preparation and cleaning, ensuring the dataset was suitable 
for further study. This involved handling missing values, removing outliers, and transforming 
variables. Next, univariate and multivariate analyses were conducted to investigate the relation-
ships between the key variables of interest. Techniques such as correlation analysis, regression 
modelling, and factor analysis were employed to uncover the underlying patterns and structures 
within the data [24].

3.3. Bucket Wheel Excavators Performance Indicators

The Public Power Corporation of Greece uses the following indicators/ factors for the evalu-
ation of the performance of the bucket wheel excavators:

Availability (%): It is calculated by the following ratio:
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  	 (1)

Utilisation (%): It is a factor representing the efficient operation of the mine. It is related 
to the selection of the BWEs, which depends on criteria associated with their technical charac-
teristics and their capacity, as well as with the nature of the excavated material. It is calculated 
by the following ratio:
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Performance (fm3/h): It is calculated separately for each BWE by the following ratio:
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where fm3 are the cubic meters of the in-situ rock volume (i.e. before excavation). 

3.4.	A nalysis of Downtimes 

In the framework of this study, the downtimes are distinguished in the groups and sub-
groups presented in Fig. 4, following the same classification incorporated in the software applied 
by all the WMLC lignite mines [25]. Scheduled downtimes consist mainly of the BWE’s daily 
and annual maintenance. Unscheduled downtimes are classified into four different sub-groups:

•	 Failures: They are classified as mechanical, electrical, or related to mining operations or 
conveyor belts.

•	 Non-operating time: It includes holidays, strikes, and lack of personnel or personnel 
replacement.
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•	 Delays: This period mainly involves conducting auxiliary operations at the mine, which 
are classified as downtime. Examples of delays are the changes in digging level, changes 
in BWE operating face, BWE movements and manoeuvring, contouring of bench floor, 
and reloading of excavated material.

•	 Idle time: Period when the BWE is ready to operate but remains inactive due to a lack of 
subject, insufficient space for reloading, difficulties in transferring lignite or overburden.
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 Mine Layout 
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Fig. 4. Downtime Classification

4.	R esults

4.1.	D escriptive statistics

Between 2010-2020, the continuous mining equipment of South Field Mine exhibited 
a maximum Performance of 1,965 fm3/h in 2012 and a minimum one of 1,085 fm3/h in 2020, 
corresponding to a considerable decrease of 81.16%. In the same period, Availability fluctu-
ated from 27.26% to 36.07%, and Utilization gradually decreased from 10.9% in 2010 to 4.1% 
in 2020. In Fig. 5, Availability, Utilization, and Performance fluctuations are presented separately 
for overburden and lignite-bearing strata. At the beginning of the examined period, the three in-
dicators exhibited higher values in lignite strata, with the most remarkable being the Utilization 
value of 15.1% in lignite strata in 2012, the highest value of the examined period. During this 
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year, the highest deviation in Performance between lignite strata (2,160 fm3/h) and overburden 
strata (1,696 fm3/h) was also recorded. In 2017, Performance values were almost equal, and after 
this year, higher Performance was noted for equipment operating in the overburden formations.

Fig. 6 demonstrates the annual fluctuation of the three examined indicators for each of the 
nine BWEs (TABLE 1) that operated in South Field Mine from 2010 to 2020. The highest Per-
formance, Availability, and Utilization values were achieved by BWE1 in 2012, BWE4 in 2019, 
and BWE8 in 2011, respectively.

Fig. 5. Fluctuation of annual average Performance, Availability, and Utilisation of continuous mining  
equipment installed in the overburden and lignite-bearing strata of South Field Mine in the period 2010-2020

Fig. 6. Annual fluctuation of Performance, Availability, and Utilisation of the nine BWE of South Field Mine 
in the period 2010-2020
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The fluctuation of the annual average productive operating time of South Field Mine’s con-
tinuous mining equipment between 2010-2020 is presented in Fig. 7. This includes the relevant 
fluctuations of the five downtime groups and sub-groups presented in Fig. 4. Productive operating 
time fluctuated from 26.8% (2015 & 2020) to 40.6% (2012). Failures were the main reason for 
downtimes (Fig. 8), with values that fluctuating between 20.77% (2020) and 33.27% (2012), fol-
lowed by non-operating time, with values fluctuating between 7.83% (2011) and 23.03% (2020) 
and scheduled downtimes, with values fluctuating between 10.83% (2010) and 24.39% (2018). 
Idle Time and Delays showed a smooth variation and low values.

Fig. 7. Annual fluctuation of Downtimes and Productive Operating Time of South Field Mine 
in the period 2010-2020

Fig. 8. Distribution of calendar time of South Field Mine in productive operating time and various groups 
of downtime causes for the period 2010-2020
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Focusing on the distribution of downtime in groups and sub-groups, it is obvious from Fig. 9 
that the main reason for non-operating time is the lack of personnel, which reaches percentages 
as high as 81.64%. The lack of personnel results from the WMLC strategy to gradually reduce 
the participation of lignite in electricity production, which ultimately aims to reach a zero-lignite 
share by 2028. Thus, WMLC implements voluntary redundancy programs and has limited the 
hiring of seasonal staff to a minimum. It is worth noticing that the total staff of the South Field 
Mine in 2010 approached 1,400 employees, while in 2020 it fell below 1,000, with about 35% 
of them being seasonal. 

Furthermore, the most common failures are mechanical (32.32%), followed by those due to 
mining operations (23.42%), electrical (22.03%), and conveyor belt problems (21.63%). Scheduled 
downtime was mainly due to the annual maintenance (56.68%). Finally, the major cause of the 
non-productive operative time was the change in digging level (30.07%), an unavoidable operat-
ing scheme in multi-layered deposits that must be exploited with selective mining techniques. 
Reloading of previously excavated materials, contouring of bench floor, BWE movement and 
manoeuvring, and change of BWE operating face fluctuated at lower levels.

Finally, by examining the distribution of downtimes and productive operating time per BWE 
in the same period (Fig. 10), it was found that BWE8 exhibited the highest percentage of produc-
tive operating time (39.3%), and the lowest percentage of failures (22.6%). On the contrary, the 
highest percentage of failures was exhibited from BWE6, which operated in the overburdened 
strata. The maximum percentage (20.2%) in scheduled downtimes was exhibited by BWE3 and 
the minimum by BWE7 (10.6%). Failures and scheduled downtimes appeared to have a posi-
tive correlation. The last observation perhaps contradicts what would be expected, namely that 
an increase in scheduled maintenance time, such as the duration of BWEs’ annual maintenance, 
would reduce the number and total duration of failures.

Fig. 9. Distribution of the downtime of South Field Mine’s continuous mining equipment  
in different groups and sub-groups of causes for the period 2010-2020
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Fig. 10. Distribution of Downtimes and Productive Operating Time per BWE of South Field Mine  
in the period 2010-2020

4.2.	I nferential Statistics

4.2.1.	 Hypothesis testing with parametric and non-parametric tests

The test results presented below show that Utilisation and to a lesser extent Performance 
depend on BWE while Availability does not seem to vary significantly between the nine machines. 
As far as Performance is concerned, since it is expressed as fm3/h and not as a percentage, it was 
expected to be increased in BWE1, which has the highest theoretical capacity. In any case, the 
correlations observed do not appear to be linked to machine manufacturers. 

A discussion on hypothesis testing is included below:
•	 Availability by BWE 
	 A one-way analysis of variance showed a significant difference between the independent 

variable of “BWE” and the dependent variable “Availability” (F = 2.069, p = 0.047). Thus, 
the null hypothesis that there is no difference between the 9 categories of the independent 
variable “BWE” concerning the dependent variable “Availability” was rejected (Fig. 11).

	T he Bonferroni post-hoc test was used to compare the groups in pairs to determine which 
was significantly different. Despite the significant difference determined by the ANOVA 
test, no pairwise group comparison was significant in the Bonferroni post-hoc test, i.e. 
all p-values were greater than 0.05.

•	 Utilisation by BWE
	 A one-way analysis of variance showed a significant difference between the independent 

variable “BWE” and the dependent variable “Utilisation” (F = 5.245, p = <0.001). Thus, 
the null hypothesis that no difference exists between the 9 categories of the independent 
variable “BWE” concerning the dependent variable “Utilisation” was rejected (Fig. 12).
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	T he Bonferroni post-hoc test revealed that the pairwise group comparisons of BWE2-
BWE7, BWE2-BWE8, BWE3-BWE7, BWE3-BWE8, BWE5-BWE9, BWE7-BWE9 and 
BWE8-BWE9 have a p-value less than 0.05. Thus, based on the available data, it can be 
assumed that these groups are significantly different.

Sum of Squares Df Mean Square F p
BWE 350.9 8 43.9 5.245 <0.001

Residual 727.6 87 8.4
Total 1078.5 95

Fig. 12. Boxplot of Degree of Utilisation by BWE and ANOVA Results

Sum of Squares Df Mean Square F p
BWE 952.4 8 119.1 2.069 0.047

Residual 5005.9 87 57.5
Total 5958.3 95

Fig. 11. Boxplot of Availability by BWE and ANOVA Results
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•	 Performance by BWE
	 A Kruskal-Wallis test showed a significant difference between the categories of the inde-

pendent variable “BWE” concerning the dependent variable “Performance” (p = <0.001). 
Thus, the null hypothesis that no difference exists between the 9 categories of the inde-
pendent variable “BWE” in the dependent variable “Performance” was rejected (Fig. 13).

	T he Dunn-Bonferroni test revealed that the pairwise group comparisons of BWE1- BWE2, 
BWE1-BWE3, BWE1-BWE6, BWE1-BWE9, BWE3-BWE5 and BWE3-BWE7 have 
an adjusted p-value less than 0.05. Thus, based on the available data, it can be assumed 
that these pairs were significantly different.

Chi2 df p
Performance 40.417 8 <0.001

Fig. 13. Boxplot of Performance by BWE and Kruskal-Wallis Test Results

•	 Productive Operating Time by BWE
	 A one-way analysis of variance showed a significant difference between the independ-

ent variable “BWE” and the dependent variable “Productive Operating Time” (F = 2.55, 
p = 0.015). Thus, the null hypothesis that no difference exists between the 9 categories 
of the independent variable of BWE concerning the dependent variable “Productive 
Operating Time” was rejected (Fig. 14).

	T he Bonferroni Post hoc test showed that the pairwise group comparison of BWE1-BWE9 
has a p-value less than 0.05. Thus, based on the available data, it can be assumed that the 
two groups are significantly different.

•	 Failures by BWE
	 A one-way analysis of variance showed a significant difference between the categori-

cal variable “BWE” and the variable “Failures” (F = 3.978, p = <0.001). Thus, the null 
hypothesis that no difference exists between the 9 categories of the independent variable 
of “BWE” concerning the dependent variable “Failures” was rejected (Fig. 15).

	T he Bonferroni post hoc test revealed that the pairwise group comparisons of BWE3-
BWE7, BWE6-BWE7, and BWE6-BWE8 have a p-value less than 0.05. Thus, based on 
the available data, it can be assumed that these groups were each significantly different.
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Sum of Squares df Mean Square F p
BWE 1644.8 8 205.6 2.55 0.015

Residual 7013.8 87 80.6
Total 8658.6 95

Fig. 14. Boxplot of Productive operating time by BWE and ANOVA results

Sum of Squares Df Mean Square F p
BWE 1741.6 8 217.7 3.978 <0.001

Residual 4761.5 87 54.7
Total 6503 95

Fig. 15. Boxplot of Failures by BWE and ANOVA results

Moreover, the test results showed that the BWEs operated in the lignite-producing benches 
showed higher Availability, Utilisation, and Performance values than the machines operated in 
the benches of overburden. This reflects the serious problems arising due to the existence of hard 
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rock formations in the overburden, despite the use of blasting and conventional diesel equipment 
to remove them before the excavation of these specific mine faces by the BWEs. This effect was 
so significant that it surpassed the adverse conditions formed in the lignite-producing benches due 
to the multilayer nature of the deposit and the unavoidable implementation of selective mining 
techniques that significantly reduced the Utilisation of the machines. 

A discussion on strata-related parameters is included below:
•	 Availability by Strata
	T he results of the descriptive statistics showed that the overburdened strata had lower 

values for the dependent variable “Availability” (M = 30.361, SD = 7.4) than the lignite 
strata (Fig. 16). A two-tailed t-test for independent samples (equal variances assumed) 
showed that the difference between overburden and lignite strata concerning the depend-
ent variable “Availability” was statistically significant, t(94) = –2.314, p = 0.023, 95% 
confidence interval (–6.85, –0.523). Thus, the null hypothesis was rejected. Cohen’s 
d value of 0.476 represents a small effect.

t df p Cohen’s d
Availability Equal variances –2.314 94 0.023 0.476

Unequal 
variances –2.285 83.676 0.025 0.47

Fig. 16. Boxplot of Availability by Strata and results of t-test for independent samples

•	 Utilisation by Strata
	 A two-tailed t-test for independent samples (equal variances not assumed) showed that 

the difference between overburden and lignite strata concerning the dependent variable 
“Utilization” was statistically significant t(63.058) = –5.635, p = <0.001, 95% confidence 
interval (–4.808, –2.29). Also, Cohen’s d value of 1.159 represents a significant effect 
(Fig. 17).

•	 Performance by Strata
	 A Mann-Whitney U-test was conducted to compare the values of “Performance” between 

overburden and lignite strata. For the given data, a Mann-Whitney U-Test showed that 
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the difference between overburden and lignite strata concerning the dependent variable 
“Performance” was statistically significant, U = 789, n1 = 54, n2 = 42, p = 0.011. Thus, 
the null hypothesis was rejected. There is a difference between the overburden and lignite 
groups concerning the dependent variable of “Performance”. The effect size r was 0.26, 
which is a small effect (Fig. 18).

t df p Cohen’s d
Utilization Equal variances –5.984 94 <0.001 1.231

Unequal variances –5.635 63.058 <0.001 1.159

Fig. 17. Boxplot of Utilisation by Strata and results of t-test for independent samples

U z asymptotic p exact p r
Performance 789 –2.548 0.011 0.011 0.26

Fig. 18. Boxplot of Performance by Strata and results of Mann-Whitney U-Test
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4.2.2.	 Correlation of BWE failures and operating years

The result of the Pearson correlation showed that there was a moderate, negative correlation 
between years of operation and failures. The correlation between years of operation and failures 
was statistically significant r(94) = –0.477, p = <0.001 (Fig. 19). This correlation was unexpected 
since the increased age of a machine is usually connected with a shorter time between failures 
and a longer duration of repair and maintenance periods. This negative correlation shows that, 
for machines of the size and complexity of BWEs, systematic preventive maintenance, refurbish-
ment, and technological upgrading of crucial sub-systems, such as electronics and automation, 
can maintain a machine at high levels of Availability and Performance.

r p
Years of operation vs Failures –0.477 <0.001

Fig. 19. Correlation of BWEs failures and years of operation and results of the Pearson Correlation Analysis

4.2.3.	 Linear Regression

A multiple linear regression analysis was performed to examine how Availability is af-
fected by the following variables: non-operating time, scheduled downtime, failures, idle time, 
delays-non-productive operating time, and productive operating time (TABLE 2). The regression 
model showed that these variables explained 75.46% of the Availability variance (TABLE 3). 
The following regression model was obtained:

	 Availability = 73.441 – 0.719 Non-Operating Time – 0.714 Scheduled  
	 Downtime – 0.648 Failures – 1.202 Idle Time – 0.463 Delays +  
	 + 0.166 Productive Operating Time

An ANOVA test showed that the effect was significantly different from zero (F = 45.615, 
p = <0.001, R2 = 0.755).
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The standardised coefficient beta was independent of the measured variable and was always 
between –1 and 1. The larger the amount of beta, the greater the contribution of the respective 
independent variable to explain the dependent variable “Availability”. According to this model, 
the variable “non-operating time” has the greatest influence on the variable “Availability”.

Table 2

Regression coefficients

Unstandardised 
Coefficients

Standardised 
Coefficients Standard 

error t p

95% confidence 
interval for B

Model B Beta lower 
bound

upper 
bound

(Constant) 73.441 7.098 10.34 <0.001 59.336 87.546
Non-Operating Time –0.719 –1.031 0.082 –8.74 <0.001 –0.883 –0.556
Scheduled Downtime –0.714 –0.855 0.074 –9.61 <0.001 –0.861 –0.566

Failures –0.648 –0.655 0.103 –6.30 <0.001 –0.852 –0.444
Idle Time –1.202 –0.283 0.24 –5.01 <0.001 –1.678 –0.725

Delays –0.463 –0.137 0.205 –2.26 0.026 –0.871 –0.056
Productive operating 

time 0.166 0.2 0.057 2.90 0.005 0.052 0.28

Table 3

Model Summary

R R2 Adjusted R2 Standard error of the estimate
0.869 0.755 0.738 4.053

5.	D iscussion and conclusions

The period 2010-2020 held many challenges for the South Field Mine due to the changes in 
the Public Power Corporation business strategy brought about by the energy transition strategy 
and the gradual withdrawal of Greece’s lignite-fired power plants. While the number of personnel 
began to decrease and investments were limited, high targets were set for mine productivity and 
equipment performance to keep the total cost of lignite-based kilowatt-hours as low as possible 
despite the enormous cost increase due to the European emissions trading scheme.

This development is reflected in the results of the present study. The downward trend of 
total excavations and lignite production was also evidenced in the Performance of the BWEs. 
The maximum annual average BWE Performance was exhibited in 2012. Since then, a gradual 
reduction has been observed up to 2020. On the other hand, Availability and Utilisation were 
not affected to the same extent as Performance. Availability exhibited a considerable recovery 
in 2016, 2018, and 2019, while Utilisation showed a smooth decrease without sharp fluctuations 
during the examined period. 

The downtime analysis showed that the primary causes were mechanical failures and 
scheduled annual maintenance. In addition, the correlation analysis showed that the BWEs that 
remained out of operation for long annual maintenance periods exhibited high downtime percent-
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ages due to failures. The statistical analysis also showed that this fact was not related to the age 
of the equipment. It is worth noticing that the year of manufacture of South Field Mine’s BWEs 
varies from 1978 to 1989.

The overall operating efficiency of continuous mining equipment was also impacted by 
the increase in non-operating time resulting from the lack of personnel. Although annual lignite 
demand decreased significantly during the examined period, the production targets were impos-
sible to achieve without continuing the exploitation of all mine benches and all excavation faces. 
For this reason, no BWE stopped operating, and the mine management made significant efforts 
to keep safe distances (advancement) between the machines by transferring personnel from one 
BWE to another. In addition, the retirement of experienced technical staff affected many sectors 
of the operating procedure.

The inferential statistics with hypothesis testing revealed significant differences in perfor-
mance indicators across different BWEs and different strata types. They pointed out the higher 
Utilisation percentages and Performance values of BWEs operated in lignite strata, except BWE1, 
which has significantly higher theoretical capacity than all the other BWEs. Moreover, the sta-
tistical tests confirmed that BWEs operated in benches where hard rock formations appeared 
and exhibited increased downtime due to failures. In future research work, it would be useful 
to conduct a comparative analysis of the performance values of continuous mining equipment 
installed in South Field Mine and other mines of WMLC, where hard rock formations do not 
exist but the type and age of BWEs are similar.

Nevertheless, the Lessons-Learned approach attempted in this paper could not be applied 
without the data, especially the data derived from the downtime recording software installed 
in the belt conveyors control tower of the South Field Mine [26]. Thus, the following conclu-
sions can be drawn: 

•	 It is impossible to obtain the engineering and technical knowledge incorporated into 
a production system without first identifying and documenting it. 

•	 Lessons-learned procedures must be implemented on time, long before starting a pro-
ductive activity during the closure phase. The South Field Mine has already suffered the 
consequences of knowledge losses due to the early retirement of personnel as part of 
the energy transition. 
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