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Open Pit Mine Integrating YOLO Optimization Model and Triangulation  
Network Stope Data Extraction Method

To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper 
introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated 
with a triangulated network. An attention mechanism is incorporated to improve the capture of channel, 
spatial, and global multi-scale features, enabling the model to effectively consider both global context and 
boundary details of open-pit stopes while enhancing its ability to distinguish positive samples through 
an optimized loss function. Following dataset training and validation, the average accuracy for stope 
identification and segmentation using the Mine-YOLO model has improved by 0.15 and 0.079 respec-
tively compared to the baseline model. The Mine-YOLO framework is employed to extract stope areas 
from DEM data; subsequently, indices such as stope area, volume, and mining depth are automatically 
calculated via a constructed triangulation network. The average errors in extracted stope area, volume, 
and mining depth are found to be 0.058, 0.047, and 0.002 respectively – demonstrating that the proposed 
methodology possesses high accuracy and significant practical application value.
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1.	I ntroduction

Open-pit mining occupies a major position in mineral mining, with higher efficiency and 
output compared with underground mining, and has become the economic pillar of a country 
and a region. However, due to the long-term and dynamic nature of open-pit mining, as well as 
the continuous updating of mining technology and equipment, and driven by economic interests, 
bad behaviors such as theft, illegal mining and disorderly mining of mineral resources occur from 
time to time, the high-intensity mining of mineral resources in mining cities has brought new 
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environmental challenges and regulatory difficulties. Therefore, in open pit mining, regular and 
continuous access to open pit stope information is of great significance for miners to formulate 
and modify production plans, for environmental supervision departments to evaluate the impact 
of mining on the environment, and for resource management departments to monitor mining 
dynamics and prevent ultra-deep and ultra-range mining [1]. The traditional method of obtain-
ing information in open pit mine needs field survey and costs manpower and material resources. 
With the rapid development of remote sensing technology, and due to the complex terrain of 
open-pit mines, remote sensing, as a non-invasive monitoring method, is the most widely used 
and effective among many open-pit monitoring methods [2]. In particular, the application of UAV 
aerial survey technology provides a new means for accurate and efficient acquisition of open-pit 
mine data [3]. The images taken by the open-pit mine UAV and the DEM data generated by the 
subsequent photogrammetric processing provide data support for this task [4].

However, the original remote sensing images of open pit mines were all identified and ex-
tracted by experts using visual interpretation, which is subjective and costly. Later, more and more 
researchers tried to find methods for automatic or semi-automatic classification and extraction 
of remote sensing images [5-7]. Balaniuk et al. (2020) used CNN model and sentinel-2 satellite 
data to identify tailings DAMS in mining areas [8]. Xie et al. (2020) used GaoFen-2 satellite 
images to create semantic segmentation data sets for open pit mines through manual annotation, 
and proposed a pixel-level semantic segmentation model based on U-Net [9]. Chen et al. (2021) 
proposed an improved U-Net+ multi-layer feature association deep learning network to reduce 
feature loss in open-pit mines by ensuring the maximum value of feature mappings in each layer of 
the network [10]. However, due to the complex pattern performance and irregular spatial distribu-
tion of open pit mines, the segmentation integrity of pixel-level segmentation model is not good 
in complex scenes such as open pit mines. Xie et al. (2021) introduced DUSegNet, a new network 
used to segment open pit mines. It has the advantages of SegNet, UNet and D-LinkNet at the same 
time, showing better segmentation ability of solid objects on GaoFen-2 images [11]. Liu et al. 
(2023) proposed an end-to-end small object detection and driveable area segmentation framework 
for open surface mining, aiming at the dense density and blurred boundaries of small objects on 
unstructured roads in mining scenarios. This framework combined lightweight attention modules to 
enhance the attention to the space and channel dimensions of small objects without slowing down 
the reasoning speed [12]. Men et al. (2024) proposed a gleaning-injection-sensing network (GIPNet) 
to save information from multi-scale feature fusion, improve the ability to identify and locate the 
boundaries of open-pit mining areas, and improve mining efficiency [13]; Guo Dongliang et al 
proposed to improve the lightweight PAM-M-YOLO model for image detection of coal gangue in 
mining areas [14]. Ruan Shunling et al. (2024) explored a new method to detect negative obstacles 
in roads of opencore mines. In this method, BiFPN feature fusion module is used to improve the 
detection weight ratio of small negative obstacles, and dual attention mechanism of space and 
channel is introduced to enhance the feature extraction and fusion ability of the edge of negative 
obstacles, so as to improve the detection accuracy of small-scale negative obstacles on roads [15].

Previous studies based on deep learning provide a direction for the rapid identification and 
extraction of open-pit mines, but in most cases, lightweight models reduce the amount of compu-
tation and also reduce the ability of feature extraction. As a result, the extraction area boundary 
is larger or smaller than the target boundary, and the extraction boundary is not clear. In order 
to obtain accurate data of open pit stope, it is necessary to accurately extract the open pit stope 
boundary and improve the unity of global and local attention of the model. This paper proposes 
a quantitative data extraction method of open pit stope to cope with the increasingly accurate 
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and rapid monitoring of open pit. Explore an improved Mine-YOLO lightweight network model 
based on YOLOv8 network model. Add GAM (Global Attention Mechanism) [16] module that 
enhances capture channels and spatial features, and EAM (Efficient Multi-Scale Attention) [17,18] 
module that dynamically adaptively captures different scale features. The model can not only 
capture the global information of each channel at different scales, but also pay more attention to 
the identified target. Focaler-IoU loss function [19] is introduced. Focaler-IoU adjusts the weights 
of positive samples and negative samples to make the model pay more attention to the positive 
samples [20] that are difficult to classify, and accurately extract remote sensing images of open-pit 
mines. Quantitative monitoring indicators for open pit mines were established, including mining 
depth, mining area and mining volume. DEM data generated by low altitude remote sensing data 
generated by unmanned aerial vehicle based on the mask extracted from open pit Mine based on 
the improved Mine-YOLO network model was applied to obtain geographical coordinates and 
elevation data of open pit mines and buildings by affine matrix to obtain mining depth information. 
Using elevation coordinates to generate TIN triangulation network, more accurate mining area and 
mining volume information can be obtained to achieve quantitative monitoring of open pit mines, 
and provide favorable support for dynamic supervision and efficient production of open pit mines.

2.	C onstruction of stope data set in open pit mine

2.1.	D ata source

The research data are from the production mining areas in Xiangyang City and Suizhou 
City in the west of Hubei Province, China (Fig. 1). Xiangyang City is close to Jianghan Plain 
in the south, while there are some hilly areas in the north. Suizhou City has relatively flat terrain, 
mainly a part of Jianghan Plain, with relatively gentle terrain and the Han River flowing through 

Fig. 1. Research Area
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both places, with a lower elevation of 30 to 100 meters. The strata in Xiangyang and Suizhou are 
mainly sedimentary layers of ancient central China platform and Jianghan Plain. The geologi-
cal structure is relatively simple, and the minerals are mainly limestone, marble, sand and other 
minerals. Therefore, the mineral resources in the territory are mostly open-pit mining, which has 
a good support for the extraction and research of stope data in open-pit mines.

2.2.	 Method of data set construction in open pit

The research data in this paper comes from the dynamic monitoring project of open pit 
mines in Xiangyang City, and the data are UAV positive image data from 2022 to 2024, which 
mainly includes TIF image data of 39 open pit mines such as Dongjiazhuang, Hongwawuzhuang, 
Liyuanling, Longtanggou, Niuwei, Nanchong, Tangwangchong and Wangjiazhai. There are a total 
of 855 available DEM (Digital Elevation Model) image data of open pit mine. Due to the small 
amount of original available data, 3,100 available image data are obtained by geometric trans-
formation processing of original image data such as rotation, cutting and image inversion. Some 
images are shown in Fig. 2. These transformations modify the spatial properties, orientation, and 
scale of the image, allowing the model to view the data from different angles and perspectives. 
Of these, 2170 were used for the training task of the model, 620 were used for the verification 
task of the model, and 310 were used for the testing task of the model.

Fig. 2. Data Image Introduction

The heterogeneity of remote sensing image collection in open-pit mines is due to the differ-
ence of data collection time and the diversity of collection environment. In order to eliminate the 
influence of color deviation on the performance of YOLO neural network model, some images 
after geometric transformation also need to be processed by color transformation. As shown in 
Fig. 3 below, In this paper, the brightness, saturation and contrast of images are mainly processed.

3.	C omprehensive approach framework

Based on YOLOv8 network, this paper adds an attention network that enhances the capture 
of channel, spatial and global multi-scale features to enable the model to take into account the 
global and boundary details of open-pit stopes, improve the loss function to increase the model’s 
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ability to distinguish positive samples, and make use of the original UAV images regularly 
obtained by regulatory authorities on open-pit mines within the jurisdiction. After processing, 
open pit DEM image is generated, and the generated image is enhanced with cropping and im-
age color processing. The processed image is made into an improved Mine-YOLO for open pit 
stope label training, and the parameters of the training model with better accuracy are obtained, 
and the optimal model is used to identify and extract the open pit DEM image stope area. Based 

Fig. 4. Method route for obtaining quantitative data of open pit Mine based on Mine-YOLO

Fig. 3. Image transformation(cropping, color enhancement, etc.)
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on the affine matrix of processing image storage, the stope area coordinate set is obtained, and 
a TIN (Triangulated Irregular Network) triangulation network is generated to obtain the stope 
area, mining volume and mining depth of the open-pit stope. The specific method flow is shown 
in the following figure (Fig. 4).

4.	 Mine-YOLO model optimization

4.1.	C omprehensive architecture of the Mine-YOLO model

Based on YOLOv8 model network, this paper establishes a Mine-YOLO network model 
suitable for pit identification and extraction in complex environment. Since it is necessary to 
extract the surface stope boundary details to improve the accuracy of subsequent data, EMA 
(Efficient Multi-Scale Attention) multi-scale attention enhancement module is added to improve 
the model’s identification and segmentation accuracy of mine stope boundary details. Moreover, 
GAM (Global Attention Mechanism) is added to retain stope feature data from the global scale 
to improve the accuracy of stope target identification. Replace the original loss function with 
Focaler-IoU (Focaler-Intersection over Union) to increase the gradient contribution of correct 
open-pit Mine samples to the training process. The improved Mine-YOLO model network struc-
ture is shown in the following figure (Fig. 5).

Fig. 5. Network structure of Mine-YOLO model (Red for the added attention module)
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4.2.	E MA Attention Module

In various computer vision tasks, channel or spatial attention mechanisms are significantly 
effective in generating more recognizable feature representations. However, modeling cross-
channel relationships through channel dimensionality reduction may have side effects on extracting 
deep vision representations. Ouyang et al. proposed a novel efficient multi-scale attention (EMA) 
module. A new quad-space learning method is proposed, and a multi-scale parallel subnetwork 
is designed to deal with subfeature sets. EMA captures information at different levels by calcu-
lating attention at different scales. This method enables the model to focus on both global and 
local features of open-pit stopes at the same time, improving the stope capture ability in complex 
environments. The following figure (Fig. 6) describes the structure of EMA in detail. X Avg Pool 
indicates a one-dimensional horizontal global Pool, and Y Avg Pool indicates a one-dimensional 
vertical global pool.

Fig. 6. EMA module network structure in Mine-YOLO

For any given input feature graph X ∈ Rc×h×w, EMA divides X into g sub-feature groups, each 
of which learns different semantics. This grouping approach not only enhances feature learning 
in the semantic region, but also compresses noise. EMA uses three parallel paths to extract the 
attention weights of the grouped feature maps. Two paths are 1×1 branches, and the third path 
is 3×3 branches. One-dimensional global averaging pooling is used in the 1×1 branch to encode 
channel information in two spatial directions respectively. The 3×3 branch captures multi-scale 
feature representations by 3×3 convolution. Specifically, the output of the 1×1 branch encodes 
global spatial information by two-dimensional global averaging pooling, while the output of the 
3×3 branch is directly converted into the corresponding dimensional shape. These outputs are then 
aggregated through the matrix dot product operation to generate the first spatial attention map. 
Ultimately, the output feature maps within each group are aggregated by the Sigmoid function of 
the two generated spatial attention weight values, capturing pixel-level pairing relationships and 
highlighting the global context of all pixels, allowing the EMA to not only encode information 
across channels to adjust the importance of different channels, but also to retain precise spatial 
structure information into the channels. For each scale, attention is calculated separately. The 
final output of the EMA is the same size as the input, which makes the EMA well embedded in 
the YOLO model.
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4.3.	GA M attention module

GAM adopts the architecture of channel attention and spatial attention, and proposes a global 
attraction mechanism, which can enlarge the global dimensional interaction characteristics while 
reducing the information dispersion. GAM can better acquire the interaction between channel 
and space, capture important inter-dimensional information, and amplify the cross-latitude 
interaction. The following figure (Fig. 7) shows the network structure of GAM. Given input 
feature F1 ∈ R (c×h×w), intermediate feature F2 and output feature F3 are defined by the following 
formulas 5 and 6:

	 F2 = Mc (F1) ⊗ F1	 (1)

	 F3 = Ms (F2) ⊗ F2	 (2)

Mc and Ms are channel attention and spatial attention respectively. ⊗ represents multiplication 
of elements.The channel attention submodule in GAM Attention uses 3D arrangement to retain 
three dimensional information, amplifying cross-dimensional channel-space dependencies through 
a two-layer MLP (Multi-Layer perception). Its spatial attention submodule uses two convolutional 
layers for spatial information fusion without pooling layer, so GAM uses packet convolution for 
channel fusion to reduce the huge number of parameters brought by spatial attention submodule.

Fig. 7. GAM attention module network structure

4.4.	 Loss function improvement

YOLO series loss functions have been continuously improved, from Intersection over Union 
(IoU) to CIoU (Complet-IoU), many details have been optimized and improved. YOLOv8 adopts 
CIoU loss function [21]. At the same time, the central-point based Anchor-Free method is intro-
duced, and DFL(Distribution Focal Loss) is added to match Anchor-Free, so that the network can 
focus on the target location and the adjacent distribution area more quickly. However, since CIoU 
itself is not sensitive to the change of the target shape, CIoU is not sensitive to the change of the 
target shape. Moreover, due to the complexity and variety of open pit mines, the unbalance of 
label samples increases, resulting in poor effect of using CIoU in the open pit stope identification 
and extraction model. Therefore, the Focaler-IoU loss function is introduced in this paper. By 
adjusting the weights of positive and negative samples, Focaler-IoU makes the model pay more 
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attention to positive samples that are difficult to classify. Thus, the weight of negative samples 
that are relatively easy to classify is reduced, and the ability of the model to identify rare target 
categories is improved [22]. The calculation expression of Focaler-IoU is as follows:
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	 LFocaler – IoU = 1 – IoU focaler	 (4)

In the formula, LFocaler – IoU is the defined focaler-iOU, IoU focaler  is the reconstructed loss 
calculation formula, IoU  is the original IoU value, d and u are the adjustment values, so that 
the model can pay attention to different regression samples by adjusting the values of d and u.

5.	E xtraction of stope index of open pit mine

5.1.	P it index of open pit mine

According to the requirements of open-pit mine monitoring, stope information extraction is 
the fundamental task of this paper. According to the requirements, the quantitative data indicators 
of the stope shown in the following table (TABLE 1) are established. The open pit mining mineral 
resources in the study area are stone, marble and sand for construction. According to the DEM 
data of open pit Mine obtained by UAV, through the analysis of image data, combined with the 
improved Mine-YOLO model for identification and segmentation processing, DEM images of 
open pit stope area are obtained, and TIN triangle network is automatically established. Rapid 
acquisition of stope area, elevation volume, mining depth quantitative data.

Table 1

Monitoring Index of Open-pit Mine

Monitoring category Monitoring index Description

Mine stope data

area The total area of an open pit mine where mining 
is actually carried out

volume Total volume above the subbid price of the area 
where mining is actually carried out in an open pit mine

Mining depth Mining process, vertical distance from the surface  
to the lowest level of mining operation

5.2.	TIN  triangulation network is established

In this paper, the generated TIN triangulation network is used to obtain accurate stope in-
dex data of open pit. The mask of open pit stope extracted based on the improved Mine-YOLO 
model is applied to the DEM image to extract the elevation point set in this area, and the projec-
tion coordinates of corresponding elevation points are obtained by affine matrix. Based on the 
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obtained regional coordinate point set, Delaunay triangulation based on boundary constraints was 
performed to generate TIN triangulation network, which prepared the data for the subsequent 
automatic calculation of regional area, volume and mining depth. TIN triangulation generation 
process is shown in the following figure (Fig. 8). Delaunay triangulation is a classical triangula-
tion method in computational geometry, which is mainly used to connect a set of discrete points 
into a non-overlapping triangular mesh. The generated triangle does not contain other points in 
the outer circle, and the inner circle radius is maximized as much as possible, so that the triangle 
shape is more regular and stable, the generated triangle minimum Angle is maximized, the triangle 
aspect ratio is reduced, and the mesh quality is improved. However, in general, the triangula-
tion network will increase the subsequent area and volume. In order to make the triangulation 
network generated by the triangulation network more accurate in the subsequent calculation, 
boundary constraints are added to these discrete points [23]. The generation diagram is shown 
in the constraint-based triangulation process in Fig. 8

Fig. 8. Generate the TIN triangulation network

5.3.	C alculation of maximum mining depth of stope

In open pit mining, stope depth is a key parameter, which is used to measure the mining 
depth of the deposit and the change of the surface during mining. The calculation of maximum 
mining depth is of great significance for mining planning, resource assessment and environmental 
impact assessment. Since the coordinate point set of stope area is known, the interpolation method 
is used to compare the current stope surface with the datum surface, and the mining depth is cal-
culated through the elevation difference between the two, that is, the maximum mining depth 
value of the vertical distance from the lowest point to the surface in the stope area is calculated. 
The calculation algorithm is as follows:

	 h = H – min(hlist)	 (5)

Where H is the average surface elevation, hlist is the elevation array of the stope area, and min 
is the algorithm for obtaining the minimum elevation in the stope area.

5.4.	 Stope surface area calculation

The Delaunay triangulation network consists of a series of triangles whose surface area is 
the sum of the areas of all triangles in the region. Arbitrary triangular three vertices A, B, C, three 
coordinates (xA, yA, zA), respectively (xB, yB, zB) and (xC, yC, zC), trilateral side use of coordinate 
calculation.
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Let the three sides be a, b and c. The calculation formula is as follows:

	      2 2 2
B C B C B Ca x x y y z z       	 (6)

	      2 2 2 A C A C A Cb x x y y z z       	 (7)

	      2 2 2 B A B A B Ac x x y y z z       	 (8)

Then its area according to Helen’s formula is as follows:

	     S p p a p b p c     	 (9)

Where p = 1/2(a + b + c) . The surface area of the Delaunay triangulation network is the sum of 
all triangle areas in the region as SSurface:

	 1
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5.5.	 Stope volume calculation

Considering that the calculated mine volume elevation is always lower than the mining 
face, the volume of the space body is calculated using the following geometric volume calcula-
tion formula according to the spatial position relationship of the triangle. Triangular projection 
prism volume calculation:

	 3
projection A B CS z z z

V
 

 	 (11)

Where Sprojection is the projected area of a triangle on the projection plane. By calculating the 
volume corresponding to a triangular mesh, you can add up the entire Delaunay triangulation 
volume as follows

	 1
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

  	 (12)

The projection calculation of the corresponding volume of a triangle in the TIN triangulation 
network is shown in the figure below (Fig. 9).

6.	E xperimental results and analysis

6.1.	E xperimental environment and training parameters

The experimental environment of this experiment is shown in the following table (TABLE 2). 
The improved YOLO model training was mainly completed under the server of the 64-bit Win-
dow 10 operating system.
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Table 2

Experimental environment hardware and software configuration

Parameters Configuration
CPU Intel(R) Xeon(R) Gold 6348 2.59GHz
RAM 256 GB 3200 MHz
GPU NVIDIA GeForce RTX 3090 24G

cuDNN 8.9.7
CUDA 12.4

Deep learning framework Pytorch-2.2.1+python-3.9

In the experiment, a specially annotated surface mine image data set was used. The data 
set includes high-resolution aerial images of multiple stopes. In order to ensure the generaliza-
tion ability of the model, the data set was randomly divided into training set (70%), verification 
set (20%) and test set (10%), and the number of model training iterations was set to 250 times. 
Specific experimental parameters are shown in the following table (TABLE 3).

Table 3

Experimental parameter setting

Parameters Description Configuration
Epochs The number of training cycles 250
batch The number of images per batch 10
imgsz Enter the size of the image 640

workers Number of worker threads for data loading 8
lr0 Initial learning rate 0.01

momentum Learning momentum 0.937
box Box loss gain 7.5
dfl Class loss gain 0.5
cls dfl loss gain 1.2

Fig. 9. TIN triangulation network volume calculation
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6.2.	R esults and analysis of Mine-YOLO model

6.2.1.	 Model evaluation index

In order to verify the performance of the model in the two tasks of mining area, water body, 
vegetation restoration area and mining building segmentation and mine slope and collapse rec-
ognition, commonly used evaluation indicators for the two tasks were selected: Accuracy PD and 
PS, recall rate RD and RS, average accuracy mAPD and mAPS, where D is the evaluation index 
of target identification task and S is the evaluation index of segmentation task. The evaluation 
index formula is as follows:

	
TPP

TP FP



	 (13)
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
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N 
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In the formula, TP represents the number of positive sample prediction correct, FN repre-
sents the number of positive sample prediction errors, and FP represents the number of negative 
sample prediction errors.

6.2.2.	Model ablation experiment

In this paper, we systematically remove or modify the relevant modules of the model and 
study their effects on the performance of the model, which helps us to understand the importance 
of each part and its role. We took the standard YOLOv8n model as the baseline model, added each 
attention mechanism and loss function in the YOLO model, conducted experiments and recorded 
the performance results in target monitoring and semantic segmentation when the overlap threshold 
of the recognition box was 50%, as shown in TABLE 4. The training data has been explained 
above. It can be seen from the data that when no improvement module is included, the detection 
accuracy of 0.762 and the segmentation accuracy of 0.725 are relatively low. Only the addition 
of Focaler-IoU module has improved the accuracy, recall rate and average accuracy, indicating 
that Focaler-IoU module has effectively enhanced the model’s ability to distinguish positive and 
negative samples, especially the improvement of detection accuracy from 0.762 to 0.777. The 
addition of only the EMA module significantly improves accuracy. The EMA module helps to 
improve the stability of the model, making it perform better when processing information. When 
only GAM module is added, the recall rates of detection and segmentation are 0.843 and 0.783 
respectively, which are significantly improved, indicating that GAM module has a good effect 
on capturing global features and spatial information, especially in the recall rate. Combined with 
Focaler-IoU and EMA, the detection accuracy has been greatly improved, with the accuracy, recall 
rate and average accuracy reaching 0.838, 0.858 and 0.873, but the improvement in segmentation 
is not significant, indicating that the enhancement effect of these two modules on detection tasks 
is better than that of segmentation tasks. The combination of Focaler-IoU and GAM improves 
the detection accuracy, especially the segmentation accuracy, indicating that the combined use 
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of the two modules helps to improve the overall segmentation performance. The combination of 
EMA and GAM performed well on both detection and segmentation tasks with average detec-
tion and segmentation accuracy of 0.872 and 0.852, indicating that the combination of the two 
can complement each other in capturing global information and optimizing time series features, 
thereby improving the performance of the overall model. However, when all modules are added, 
the accuracy, recall rate, and average accuracy are 0.905, 0.863, and 0.942, and the segmentation 
accuracy, recall rate, and average accuracy are 0.842, 0.803, and 0.865. The synergy of all mod-
ules has greatly improved the performance of the model in all aspects, especially the accuracy 
of the detection task has been significantly improved. The analysis of experiments in each group 
shows that each module has a positive impact on the performance improvement of the model, 
Focaler-IoU is more inclined to improve the detection accuracy, EMA is helpful for the stability 
of the model and time series processing, and GAM is outstanding in the global feature capture. 
When all modules are combined, the model achieves the best performance, indicating that these 
modules can complement each other and jointly improve the overall performance of the model 
in surface mine stope data extraction.

Table 4

Comparison of ablation experiments of the models

Experiment Focaler-IoU EMA GAM PD RD mAPD @ 0.5 PS RS mAPS @ 0.5

1 × × × 0.762 0.685 0.792 0.725 0.754 0.786
2 √ × × 0.777 0.698 0.833 0.753 0.783 0.818
3 × √ × 0.789 0.817 0.858 0.764 0.797 0.834
4 × × √ 0.783 0.843 0.824 0.783 0.743 0.783
5 √ √ × 0.838 0.858 0.873 0.778 0.793 0.815
6 √ × √ 0.816 0.843 0.838 0.753 0.828 0.788
7 × √ √ 0.844 0.858 0.872 0.821 0.797 0.852
8 √ √ √ 0.905 0.863 0.942 0.842 0.803 0.865

6.2.3.	Model comparison experiment

In order to further evaluate the recognition and segmentation performance of MINE-YOLO 
model in Mine stope, the experiment conducted a comparison experiment between MinE-YOLO 
model and other models of Mask R-CNN and YOLO series, and the experimental results were shown 
in TABLE 5. It can be seen from the table that model parameters are not direct factors affecting model 

Table 5

Experimental Comparison of Different Models

Model #param PD RD mAPD @ 0.5 PS RS mAPS @ 0.5

YOLOv8n 3.1M 0.762 0.685 0.792 0.725 0.754 0.786
YOLOv8x 68.3M 0.845 0.732 0.811 0.823 0.785 0.804
YOLOv7n 36.5M 0.803 0.828 0.835 0.734 0.768 0.713
YOLOv5n 1.8M 0.688 0.754 0.653 0.618 0.647 0.638
YOLOv5x 86.8M 0.823 0.772 0.817 0.769 0.676 0.759

Mask R-CNN 42.5M 0.856 0.893 0.843 0.837 0.762 0.854
Mine-YOLO 46.5M 0.905 0.863 0.942 0.842 0.803 0.865
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performance. Mine-YOLO and MaskR-CNN are smaller than YOLOv5x in terms of parameters, but 
the evaluation results show that the former model is much better than the latter. It can be seen that 
Mine-YOLO adds a spatial attention mechanism, which makes it have better recognition effect in 
complex and undulating terrain scenes such as mines. When the recognition box overlap threshold 
is 50%, the average accuracy of Mine-YOLO in target recognition reaches 0.942, and the average 
accuracy of Mine-YOLO in scene segmentation reaches 0.865. The model effect of YOLOv5n in 
the mine scene was poor, with the average accuracy of target recognition only 0.653 and the average 
accuracy of scene segmentation only 0.638. It can also be seen from the chart that Mask R-CNN 
performs well, and some related studies can be conducted based on Mask R-CNN in the future.

The Mine-YOLO model and other deep learning models were used to train and test the 
stope data set of open-pit mines. Part of the visualization results are shown in the figure below 
(Fig. 10). By comparing the reference value with the model recognition segmentation area, it can 
be seen that the Mine-YOLO model has a better recognition segmentation effect with less error 
extraction and missing extraction. In the processing of the boundary area, the improved YOLO 
model shows a higher detail capture ability and can clearly segment the complex stope boundary. 
In different terrain and environment, MinE-YOLO model shows high robustness and stability, 
and can adapt to various complex Mine terrain.

Fig. 10. Comparison of results of different models in identifying stope areas of open pit mines  
(The red mark is error extraction, and the blue mark is missing extraction)

6.3.	E xtraction results and analysis of stope information  
in open pit mine

As the data set of mining industry is strictly confidential, this paper obtains monitoring 
data of some mines based on the Xiangyang open-pit Mine dynamic monitoring project. In this 
section, the application effect of the improved Mine-YOLO model in open-pit mine monitoring 
is comprehensively displayed. The panoramic diagram of the applied mine is shown in Fig. 11. 
TIN triangulation network was established to obtain index data by extracting regions. These ex-
traction results are shown in the table below (TABLE 6), indicating that the Mine-YOLO model 
proposed in this paper is feasible for monitoring open-pit mines.
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Fig. 11. Part of the monitoring mine panorama diagram. a. red tiled house; b. Longtan Ditch; c. Cow’s tail

The following table (TABLE 6) shows the results obtained from the stope data of some open 
pit mines, and the stope data of three periods of the Mine are extracted, where E is the extracted 
value based on Mine-YOLO, and T is the calculated value based on the traditional ArcGIS of 
the mine. The error analysis diagram based on TABLE 6 (Fig. 12) shows that, based on the er-
ror analysis, The stope data obtained after the mining objects or scene targets extracted based 
on MinE-YOLO model have little difference with the traditional measured value. The average 

Fig. 12. Visualization of extraction error analysis of stope information index in some mines

Table 6

Results of Timing Extraction of Stope Information in Open-pit Mines

Mine Date Stope area /m2 Stope volume /m3 Mining depth /m

a

E T E T E T
2022.08 479 454 466 253 14 990 096 14 506 500 212.5 212.2
2023.08 489 230 467 800 12 022 578 12 453 500 203.6 203.4
2023.12 485 322 469 287 11 890 552 11 003 600 197.2 197.2

b
2022.08 168 341 165 445 8 503 314 8 649 732 396.4 396.5
2023.04 169 212 166 521 7 544 540 7 523 549 384.2 384.2
2023.08 166 801 167 480 6 688 480 6 623 547 376.5 376.2

c
2022.08 253 208 211 018 11 566 816 9 978 245 109.5 110.3
2023.04 228 319 215 514 9 983 984 9 768 521 101.5 100.4
2023.08 248 341 221 842 9 864 360 9 088 532 93.9 93.9
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error between area extraction and traditional measured value in open-pit Mine stope area is only 
0.058, and the average error between volume extraction and traditional measured value is 0.049. 
The minimum monitoring error of mining depth index is 0.002. From the error analysis, it can 
be seen that the application of this method in practice is feasible.

7.	C onclusion
This paper discusses the mining stope information extraction method based on Mine-YOLO, 

and specifically summarizes the contributions of this paper as follows:
1)	 An improved model Mine-YOLO is proposed, which adds the attention mechanism and 

replaces the lost Focaler-IoU function, so that the model is more sensitive to channel and 
spatial information and can obtain different levels of feature information, improving the 
recognition and extraction effect of the model in the complex scene of open-pit mines;

2)	 The target recognition accuracy of Mine-YOLO model in open pit mining reaches 0.905, 
the recall rate is 0.863, and the average accuracy is 0.942 when the recognition box 
overlap threshold is 50%. In the image segmentation task, the accuracy of the model is 
0.842, the recall rate is 0.803, and the average accuracy is 0.865 when the recognition 
frame overlap threshold is 50%.

3)	 A method is proposed to accurately obtain quantitative monitoring data of mine area, 
volume and mining depth by using model to extract image area and generate TIN tri-
angle network. Moreover, the method in this paper has high accuracy and small error 
in actually obtaining mine monitoring indicators. The average error of extracting area 
of mining area and volume of mining area is 0.058 and 0.047 respectively. The average 
error of extraction depth is 0.002.

To sum up, the Mine-YOLO model used in this paper can effectively provide technical support 
for stope identification and extraction in open pit mines. At the same time, triangulation network 
technology is used to achieve accurate acquisition of open-pit mine data, which provides the 
direction for realizing the accuracy, timing and dynamic automatic monitoring of open-pit mine.
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Data sets generated and analyzed in the course of the current study are available upon reasonable 
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