
10.24425/acs.2025.155399
Archives of Control Sciences

Volume 35(LXXI), 2025
No. 2, pages 351–373

𝐻∞ positive filter-based control for positive
linear systems

Montassar EZZINEo , Mohamed DAROUACHo ,
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This paper deals with the design of a positive functional 𝐻∞ filter-based controller for
positive linear systems subject to bounded energy disturbances. We propose a new approach to
numerically compute the controller, which is obtained via a function of the state to be estimated
with the same order as the controller. The positive filter-based controller is obtained into two
steps. First, we search for positive state feedback gain for the design of a control law such that
the closed-loop is positive, stable and ensures an 𝐻∞ performance requirement. This design of
state-feedback gain is solved via constrained Linear Matrix Inequalities (LMIs). Then, we search
in a second step for a positive functional filter-based controller permitting to reconstruct this
control law, and so to estimate only a functional of the state useful for control purposes. The filter
is positive, that is, it ensures the nonnegativity of the estimated states. The proposed procedure
is based on the positivity of an augmented system composed of dynamics of both considered
system and proposed filter-based controller and also, on the unbiasedness of the estimation error
by solving a Sylvester equation. Then we derive conditions for the establishment of such filter-
based controller in terms of an optimization problem, that can be solved via constrained LMIs.
An algorithm that summarizes the different steps of the designed positive controller for positive
linear systems is given. Finally, a numerical example is given to illustrate the effectiveness of
the proposed method.
Key words: positive systems, positive functional 𝐻∞ filters, linear systems, filter-based con-
troller, LMI, optimization problem
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1. Introduction

For many systems arising in practice, we have the constraint that their variables
must be positive. For example, level of liquids in tanks, absolute temperature
and concentration of substances in chemical processes. These examples belong
to an important class of dynamical systems whose states are nonnegative for
any nonnegative initial condition and any nonnegative input. In the literature,
such systems are referred to be positive (see [3, 4, 17, 22, 27] or other items in
the references). In view of these widespread applications, it is very important
and necessary to investigate the study and design problems for positive linear
systems (see [14,19] and other items in the references). Note that positive systems
differ from linear standard systems by the existence of positivity constraints. In
fact, for example, if a system is controllable, the poles of the system can be
placed arbitrarily, whereas for positive one this feature may not be true owing the
positivity constraints on systems matrices.

On the other hand, in practice, many control processes require the availability
on the components of the system state vector for the purpose of monitoring for
example. This problem has motivated a great deal of work for observers’design
for linear systems (see [5,23,26] and other items in the references) when the states
are not measurable or not available. Mainly, the problem of functional observer
design is equivalent to finding an observer, that estimates a linear combination of
the states of a system using the input and output measurements. Such an estimator
has the same order as the linear combination to be estimated. Note that, it has
been the object of numerous studies for non-positive systems where the aim is
only to minimize the estimation error (make the estimation error converge to
zero) (see e.g. [5,6,9]). For positive systems, in addition to minimizing this error,
positive observers must also guarantee the nonnegativity of the state estimates
(see [7, 10–12]). This makes the positive observer design significantly more
challenging (see [21, 25] and other items in the references).

Notice that, to ensure stability and optimal performance, it is imperative to
consider the positivity constraint when controlling positive systems. Failure to do
so may lead the mathematical model of these systems to venture into infeasible
regions that are beyond the reach of the real system. Consequently, this can result
in a loss of stability or performance when implementing the controller in the actual
plant. Observer-based control is usually used when all the states of a system are
not accessible (see [13, 28–30]). It is interesting to recall that feedback principle
is an important concept in control theory especially for positive systems: based on
algebraic approaches in [2,8], via quadratic programming problem in [20], based
on Linear Matrix Inequality (LMI) in [16], using analytical methods in [18] and
via linear programming (LP) in e.g. [1]. Indeed, many different control strategies
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are based on the assumption that all internal states of the control object are
available for feedback. In most cases, however, only a few parts of the states or
some functions of the states can be measured. Then the need for techniques which
make it possible not only to estimate states, but also to derive control laws that
guarantee stability and positivity when using the estimated states instead of the
true ones, is crucial. Despite the recent advances to the best of our knowledge,
little attention has been paid on positive functional 𝐻∞ filter-based controller
design for positive linear systems subject to bounded energy disturbances, which
motivates the present work. This is an important problem finding its way into
multiple engineering applications such as in fault detection and it is an important
research topic since these kinds of controllers are very important in practice as
they possess real physical meaning. This is another motivation for the present
work.

Notice that in this paper the only information we have on the disturbances is to
be of bounded energy, which is of practical interest. Our purpose is to minimize
the influence of such disturbances on the estimation error using 𝐻∞ technique
(see [15]). As far as the authors’ knowledge, the proposed approach is original.

Motivated by these facts, we consider in this paper a new problem of de-
signing positive functional 𝐻∞ filter-based controller for positive linear standard
systems subject to bounded energy disturbances. We propose a new approach
to address numerically the computation of the solution, where the order of the
filter-based controller is equal to the state feedback that is found to fulfill the
control purpose. The positive filter-based controller is obtained into two steps.
First, we search for positive state feedback gain for the design of a control law
such that the closed-loop is positive, stable and ensures an 𝐻∞ performance,
using constrained LMI technique. Then, we search in a second step for a positive
observer-based controller permitting to reconstruct this control law, and so to
estimate only a function of the state useful for control purposes. The proposed
procedure is based on the positivity of an augmented system composed of dy-
namics of both considered system and proposed filter-based controller and, on
the unbiasedness of the estimation error by the resolution of a Sylvester equation.
Then existence conditions of such filter-based controller are formulated in terms
of an optimization problem. An algorithm that summarizes the different steps
of the proposed controller based on positive functional filters for positive linear
systems design is given. Finally, a numerical example and simulation results are
given to illustrate the effectiveness of the proposed design method.

Recall that the most interest of our approach, is the use of a functional filter
(not a full order one) which estimates the desired control law, without estimating
all the state of the system contrary to full order filter-based control approach.
The interesting is the reduction of the order of the controller since the designed
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functional filter is of the same order as the functional to be estimated, i.e. the
dimension of the control input 𝑢(𝑡).

Notations: We shall use throughout the paper the following notations. ℜ
denotes the set of real numbers, ℜ𝑛

+ denotes the nonnegative orthant of the 𝑛-
dimensional real space ℜ𝑛 and ℜ𝑚×𝑛 is the set of 𝑚 × 𝑛 matrices for which all
entries belong to ℜ. For a matrix 𝐴 ∈ ℜ𝑛×𝑚, 𝑎𝑖 𝑗 denotes the element located
at the ith row (𝑖 ¬ 𝑛) and jth column ( 𝑗 ¬ 𝑚). A matrix 𝐴 is said to be
nonnegative, denoted by 𝐴 ≻ 0, if ∀(𝑖, 𝑗), 𝑎𝑖 𝑗 ­ 0. It is said to be positive,
if ∀(𝑖, 𝑗), 𝑎𝑖 𝑗 ­ 0, ∃(𝑖, 𝑗), 𝑎𝑖 𝑗 > 0. (Note that definitions of nonnegative and
positive matrices are equivalent, except when a nonnegative matrix is identically
zero which is the degenerate case and is of no interest. So, we consider that these
two definitions are equivalent in general cases). A matrix 𝐴 is said to be negative,
denoted by 𝐴 ≺ 0, if ∀(𝑖, 𝑗), 𝑎𝑖 𝑗 ¬ 0. 𝐴 > 0 (respectively, 𝐴 < 0) means that the
matrix 𝐴 is positive definite (respectively, negative definite), 𝐴 ­ 0 (respectively,
𝐴 ¬ 0) means that the matrix 𝐴 is positive semidefinite (respectively, negative
semidefinite). For a real matrix 𝐴, 𝐴𝑇 denotes the transpose. 𝐴− denotes any
generalized inverse of matrix 𝐴, i.e. verifies 𝐴𝐴−𝐴 = 𝐴. 𝜆𝑖 (𝐴) designs the ith
eigenvalue of matrix 𝐴. 𝑅𝑒(𝜆𝑖 (𝐴)) designs the real part of 𝜆𝑖 (𝐴). 𝐴 is Hurwitz
matrix if all real parts of its eigenvalues are in the left half plane. diag (𝑣)
denotes the diagonal matrix formed from the vector 𝑣. Ones (𝑛) denotes an 𝑛 × 1
vector of ones. 𝐼 and 0 are the identity matrix and the zero matrix of appropriate
dimensions. 𝑣 ≻ 0 denotes a vector 𝑣 such that for all its coordinates it holds,
∀𝑖, 𝑣𝑖 ­ 0.

2. Preliminaries

In the first part of this section, we give basic results on positive linear standard
systems. Then, we recall by Lemma 2, another result that will be essential in
the proposed design, namely in the state-feedback gain synthesis and filter-based
controller design. For that, let us consider the following continuous linear systems
of the form:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), (1a)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), (1b)

where 𝑥(𝑡) ∈ ℜ𝑛, 𝑢(𝑡) ∈ ℜ𝑝 and 𝑦(𝑡) ∈ ℜ𝑚 are the system state, (exogenous)
input and the external output respectively. 𝐴, 𝐵, 𝐶 and 𝐷 are system matrices
with compatible dimensions.

The following Definition 1 and Lemma 1 are a slight generalization of the
well known definition of positive systems (see [14, 19]).
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Definition 1. A linear system is said to be positive (internally positive: Metzlerian
system) if its state and output are both nonnegative (𝑥(𝑡) ∈ ℜ𝑛

+, 𝑦(𝑡) ∈ ℜ𝑚
+ ∀𝑡 ­ 0)

for any nonnegative input and nonnegative initial state.
Definition 2. [24] A square real matrix M is called a Metzler matrix if its
off-diagonal elements are nonnegative, i.e. 𝑚𝑖 𝑗 ­ 0, 𝑖 ≠ 𝑗 .

Lemma 1. System (1) is positive if and only if 𝐴 is a Metzler matrix and 𝐵 ∈ ℜ𝑛×𝑝
+ ,

𝐶 ∈ ℜ𝑚×𝑛
+ and 𝐷 ∈ ℜ𝑚×𝑝

+ are nonnegative matrices: (𝐵 ≻ 0, 𝐶 ≻ 0 and 𝐷).
Lemma 2. [15] For the continuous linear systems (1), consider a continuous-
time transfer function 𝑇 (𝑠) of (not necessarily minimal) realization 𝑇 (𝑠) = 𝐷 +
𝐶 (𝑠𝐼 − 𝐴)−1𝐵. The following statements are equivalent, for a given 𝛾 > 0:

• The relation below is satisfied:

∥𝐷 + 𝐶 (𝑠𝐼 − 𝐴)−1𝐵∥∞ < 𝛾 (2)

and 𝐴 is stable in the continuous-time sense.
• There exists a symmetric positive definite solution 𝑋 to the LMI:

©­­«
𝐴𝑇𝑋 + 𝑋𝐴 𝑋𝐵 𝐶𝑇

𝐵𝑇𝑋 −𝛾𝐼 𝐷𝑇

𝐶 𝐷 −𝛾𝐼

ª®®¬ < 0. (3)

3. Problem statement

Let us consider the following linear multivariable continuous-time system
described by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷1𝑤(𝑡), (4a)
𝑧(𝑡) = 𝐹1𝑥(𝑡), (4b)
𝑦(𝑡) = 𝐶𝑥(𝑡), (4c)

where 𝑥(𝑡) ∈ ℜ𝑛 is the state vector, 𝑢(𝑡) ∈ ℜ𝑝, 𝑝 ¬ 𝑛 is the input, 𝑤(𝑡) ∈ ℜ𝑞1

represents the disturbance vector which is assumed to be of bounded energy,
𝑦(𝑡) ∈ ℜ𝑚, 𝑚 ¬ 𝑛 is the output vector and 𝑧(𝑡) ∈ ℜ𝑚𝑧 , 𝑚𝑧 ¬ 𝑛 is the con-
trolled outputs. 𝐴, 𝐵, 𝐷1, 𝐹1 and 𝐶 are known constant matrices of appropriate
dimensions.

Further, it is assumed through the paper that:
Assumption 1.

1) 𝑟𝑎𝑛𝑘 𝐹1 = 𝑚𝑧, 𝑚𝑧 ¬ 𝑛,

2) 𝑟𝑎𝑛𝑘 𝐶 = 𝑚, 𝑚 ¬ 𝑛.
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Remark 1. Assumption (1) is not restrictive and means that the measurements
are independent; we can always by some transformation obtain this case. The
same remark can be applied to the functional to be estimated.

Let us now assume that the considered linear system defined in (4) is positive,
for any nonnegative input (𝑢(𝑡) and 𝑤(𝑡)) and nonnegative initial state. From
Lemma 1, we have 𝐴 is a Metzler matrix and 𝐵 ≻ 0, 𝐷1 ≻ 0, 𝐹1 ≻ 0 and 𝐶 ≻ 0.

Our aim is to design a positive functional 𝐻∞ filter-based controller with the
following structure

¤𝜑(𝑡) = 𝑁𝜑(𝑡) + 𝐽𝑦(𝑡) + 𝐻𝑢(𝑡), (5a)

𝑢̂(𝑡) = 𝜑(𝑡) + 𝐸𝑦(𝑡), (5b)

where 𝜑(𝑡) ∈ ℜ𝑝 is the filter state, 𝑢̂(𝑡) is the output of the filter and matrices 𝑁 ,
𝐽, 𝐻 and 𝐸 are to be designed.

We consider, in this paper, the usual 𝐻∞ performance index given by:

𝐽𝑧𝑤 =

∞∫
0

(𝑧𝑇 𝑧 − 𝛾2𝑤𝑇𝑤)d𝑡 (6)

for a given, minimum performance index 𝛾 > 0.
Then, the problem to be investigated can be stated as follows:

Objective 1. Our main purpose is to build for the positive linear system (4)
subject to positive bounded energy disturbances, a reduced order positive linear
functional 𝐻∞ filter-based controller into two steps:
𝑖) First, we search for a positive state feedback gain 𝐾 ≻ 0 for the design of

a control law 𝑢 satisfying 𝑙𝑖𝑚𝑡→∞𝑢 − 𝐾𝑥 = 0, such that the closed-loop
of subsystem (4a)-(4b) is positive, stable and satisfies the 𝐻∞ performance
requirement; 𝐽𝑧𝑤 < 0 for a given 𝛾 > 0.

𝑖𝑖) Then, we search in a second step for a positive filter-based controller per-
mitting to reconstruct this control law 𝑢, so to estimate only a functional
of the state useful for control purposes, such that the estimation error
𝑒(𝑡) = 𝑢̂(𝑡)−𝐾𝑥(𝑡) is stable and converges asymptotically to zero as 𝑡 → ∞
by minimizing the influence of disturbances 𝑤(𝑡) on 𝑒(𝑡), i.e.

∥𝑒∥2

∥𝑤∥2
< 𝛾1

for a given 𝛾1 > 0.
Notice the order of this controller is equal to the dimension of the function to

be estimated.

Definition 3. The functional filter defined in (5) is called an 𝐻∞ positive linear
functional filter-based controller of system (4) if the output of the filter 𝑢̂(𝑡) ∈ ℜ𝑝

+
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for all 𝑡 ­ 0 and converges asymptotically to the functional 𝐾𝑥(𝑡) as 𝑡 → ∞ by
minimizing the effect of disturbances 𝑤(𝑡) on the estimation error 𝑒(𝑡).

4. Positive filter-based controller

Here, we propose to solve the positive filter-based control problem into the
two steps given in Objective 1.

4.1. Positive state-feedback synthesis

Let us assume that the state variable 𝑥(𝑡) can be directly measured. We propose
in this part to design a state feedback control law of the following form:

𝑢(𝑡) = 𝐾𝑥(𝑡) (7)

such that the closed-loop system given by:

¤𝑥(𝑡) = (𝐴 + 𝐵𝐾)𝑥(𝑡) + 𝐷1𝑤(𝑡), (8a)

𝑧(𝑡) = 𝐹1𝑥(𝑡) (8b)

is positive, stable and satisfies the 𝐻∞ performance requirement, where 𝐾 ≻ 0
is the state feedback gain. Using Lemma 1 and Definition 1, one can state the
following lemma:

Lemma 3. System (8) is positive if and only if (𝐴 + 𝐵𝐾) is a Metzler matrix and
𝐷1 ∈ ℜ𝑛×𝑞1 , 𝐹1 ∈ ℜ𝑚𝑧×𝑛 are nonnegative matrices: (𝐷1 ≻ 0 and 𝐹1 ≻ 0).

Then, the problem reduces to find conditions satisfying:
1) 𝐴 + 𝐵𝐾 is a Metzler matrix, with 𝐷1 ≻ 0 and 𝐹1 ≻ 0.
2) 𝐴 + 𝐵𝐾 is a Hurwitz matrix.
3) The closed-loop system (8) satisfies the 𝐻∞ performance requirement.
So, we are in position to state the main result of this section.

Theorem 1. By considering the positive linear system (4), where 𝐴 = [𝑎𝑖 𝑗 ] ∈
ℜ𝑛×𝑛 and 𝐵 = [𝑏𝑖 𝑗 ] ∈ ℜ𝑛×𝑝. A controller of the form in (7) satisfying that
the closed-loop system given by (8) is positive, stable and satisfies the 𝐻∞
performance 𝐽𝑧𝑤 < 0 for a given 𝛾 > 0, if there exists a nonnegative vector
𝑣 = [𝑣1, ..., 𝑣𝑛]𝑇 ∈ ℜ𝑛

+ and 𝑌 = [𝑦𝑖 𝑗 ] ∈ ℜ𝑝×𝑛
+ such that the following LMI

©­­«
Υ 𝐷1 𝑉𝐹𝑇1

(𝐷1)𝑇 −𝛾𝐼 0
𝐹1𝑉 0 −𝛾𝐼

ª®®¬ < 0 (9)
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under the inequality

𝑎𝑖 𝑗𝑣 𝑗 +
𝑝∑︁
𝑧=1

𝑏𝑖𝑧𝑦𝑧 𝑗 ≻ 0, 1 ¬ 𝑖 ≠ 𝑗 ¬ 𝑛 (10)

is satisfied,
where 𝑉 = diag(𝑣) and Υ = 𝑉𝐴𝑇 + 𝑌𝑇𝐵𝑇 + 𝐴𝑉 + 𝐵𝑌 .
Under the above conditions, the desired state-feedback gain𝐾 = [𝑘𝑖 𝑗 ] ∈ ℜ𝑝×𝑛

can be computed by:

𝐾 = 𝑌 𝑉−1. (11)
Proof. The closed-loop system given by (8) is:

1) Stable and satisfies the 𝐻∞ performance 𝐽𝑧𝑤 < 0 for a given 𝛾 > 0 if, from
Lemma 2, relation (3) holds. Then, for a symmetric positive definite matrix
𝑋 , premultiplying and postmultiplying equation (3) by©­«
𝑋−1 0 0
0 𝐼 0
0 0 𝐼

ª®¬ we obtain the following inequality, for 𝐷 = 0:

©­­«
𝑋−1𝐴𝑇 + 𝐴𝑋−1 𝐵 𝑋−1𝐶𝑇

𝐵𝑇 −𝛾𝐼 0
𝐶𝑋−1 0 −𝛾𝐼

ª®®¬ < 0 (12)

which is equivalent to (9), with 𝐴 = 𝐴 + 𝐵𝐾 , 𝐵 = 𝐷1, 𝐶 = 𝐹1 (compare
system (8) to (1)) and by defining 𝑉 = 𝑋−1 and 𝑌 = 𝐾𝑉 .

2) Positive if 𝐴+𝐵𝐾 is a Metzler matrix, with 𝐷1 ≻ 0 and 𝐹1 ≻ 0 (see Lemma
3). Matrices 𝐷1 and 𝐹1 are nonnegative since the considered initial system
(4) is positive. It is easy to see that 𝐴 + 𝐵𝐾 is a Metzler matrix implies that
for 𝑖 ≠ 𝑗

𝑎𝑖 𝑗 +
𝑝∑︁
𝑧=1

𝑏𝑖𝑧𝑘𝑧 𝑗 ≻ 0, 1 ¬ 𝑖 ≠ 𝑗 ¬ 𝑛 (13)

which coincides with relation (10), by defining 𝑘𝑧 𝑗 = 𝑦𝑧 𝑗𝑣−1
𝑗

. This completes
the proof.

Remark 2. Note that, Theorem 1 presents a simple approach to solve numerically
the computation of the state feedback gain problem. In fact, conditions (9)–(10),
that permit to find the desired state feedback gain and so the desired state feedback
control law (7) guaranteeing the closed-loop system to be positive, stable and
satisfying the 𝐻∞ performance, are all LMIs. So, they can be solved by using
standard numerical software.
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Once the state feedback gain obtained, recall that all the states are not ac-
cessible. Then, we propose a functional filter-based controller to reconstruct the
obtained control law, as mentioned in second step of given Objective 1.

4.2. Positive filter-based controller existence conditions

Before providing the second result of the paper, let us compute the estimation
error:

𝑒(𝑡) = 𝑢̂(𝑡) − 𝐾𝑥(𝑡) (14a)
= 𝜑(𝑡) + (𝐸𝐶 − 𝐾)𝑥(𝑡). (14b)

So, its dynamics can be written as

¤𝑒(𝑡) = ¤𝜑(𝑡) + (𝐸𝐶 − 𝐾) ¤𝑥(𝑡) (15a)
= 𝑁𝑒(𝑡) + (𝐻 + 𝐸𝐶𝐵 − 𝐾𝐵)𝑢(𝑡) + (𝑁𝐾 − 𝑁𝐸𝐶 + 𝐽𝐶 + 𝐸𝐶𝐴 − 𝐾𝐴)𝑥(𝑡)
+ (𝐸𝐶𝐷1 − 𝐾𝐷1)𝑤(𝑡). (15b)

Furthermore, to guarantee the positivity of the designed filter-based controller, we
propose to compute the following augmented system consisting of the dynamics
of (4) and (5). In fact, it can be given by:(

¤𝑥(𝑡)
¤̂𝑢(𝑡)

)
= 𝜅

(
𝑥(𝑡)
𝑢̂(𝑡)

)
+
(

𝐵

𝐻 + 𝐸𝐶𝐵

)
𝑢(𝑡) +

(
𝐷1

𝐸𝐶𝐷1

)
𝑤(𝑡), (16)

where 𝜅 =
(

𝐴 0
𝐽𝐶 + 𝐸𝐶𝐴 − 𝑁𝐸𝐶 𝑁

)
.

By applying Lemma 1 on augmented system (16), we can give the following
result:

Lemma 4. (5) is a positive filter of system (4) if:
1) 𝑁 is Metzler,
2) 𝐽𝐶 + 𝐸𝐶𝐴 − 𝑁𝐸𝐶 ≻ 0,
3) 𝐻 + 𝐸𝐶𝐵 ≻ 0,
4) 𝐸𝐶𝐷1 ≻ 0.

The problem of the positive functional filter design is to determine 𝑁 , 𝐽, 𝐻
and 𝐸 such that
𝑖) (5) is a positive filter-based controller of system (4), stable and unbiased if
𝑤(𝑡) = 0, i.e. the filter does not depend explicitly on the system state vector
𝑥(𝑡) and the input 𝑢(𝑡).
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𝑖𝑖) the 𝐻∞ performance requirement is satisfied, i.e.
∥𝑒∥2

∥𝑤∥2
< 𝛾1, for a given

𝛾1 > 0.

We are now ready to state the second result of the paper, namely the existence
conditions of the proposed functional filter-based controller. In fact, the following
theorem provides conditions which ensure that the proposed system (5) is a
positive linear functional filter of system (4), by providing an output 𝑢̂(𝑡) that
is always nonnegative and converges to the functional 𝐾𝑥(𝑡) by minimizing the
disturbance effect of disturbances 𝑤(𝑡) on estimation error 𝑒(𝑡).

Theorem 2. The filter defined in (5) is a positive functional 𝐻∞ filter-based
controller of system (4) if the following conditions are satisfied:

1) 𝑁 is Metzler.
2) 𝐽𝐶 + 𝐸𝐶𝐴 − 𝑁𝐸𝐶 ≻ 0
3) 𝐻 + 𝐸𝐶𝐵 ≻ 0
4) 𝐸𝐶𝐷1 ≻ 0
5) 𝑁𝐾 − 𝑁𝐸𝐶 + 𝐽𝐶 + 𝐸𝐶𝐴 − 𝐾𝐴 = 0
6) 𝐻 + 𝐸𝐶𝐵 − 𝐾𝐵 = 0
7) ¤𝑒(𝑡) = 𝑁𝑒(𝑡) + (𝐸𝐶𝐷1 − 𝐾𝐷1) 𝑤(𝑡) is stable and satisfies the 𝐻∞ perfor-

mance requirement, i.e.
∥𝑒∥2

∥𝑤∥2
< 𝛾1 for a given 𝛾1 > 0.

Proof. Conditions 1)−4) are obtained from Lemma 4. They guarantee that the
estimate 𝑢̂(𝑡), output of the proposed filter (5), be nonnegative all the time. In
addition, by considering the expression (15) of the estimation error dynamics,
one can conclude that it is unbiased (does not depend explicitly on state 𝑥(𝑡) and
input 𝑢(𝑡)) if and only if conditions 5) and 6) are satisfied. So, it is clear that if
conditions of the proposed theorem are satisfied then 𝑢̂(𝑡) is always nonnegative

and it tends to 𝐾𝑥(𝑡) such the 𝐻∞ performance satisfies
∥𝑒∥2

∥𝑤∥2
< 𝛾1 for a given

𝛾1 > 0.
We are now ready to state the third result of the paper, namely the design

procedure of the proposed positive functional 𝐻∞ filter-based controller. In fact,
the following subsection is devoted to founding the functional filter matrices 𝑁 ,
𝐽, 𝐻 and 𝐸 such that conditions of Theorem 2 are fulfilled.
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4.3. Filter-based controller design

To achieve unbiasedness of the proposed filter, condition 5) of Theorem 2
must hold:

𝑁𝐾 + 𝜓𝐶 + 𝐸𝐶𝐴 = 𝐾𝐴 (17)

where

𝜓 = 𝐽 − 𝑁𝐸 (18)

with condition 6) of Theorem 2,

𝐻 = 𝐾𝐵 − 𝐸𝐶𝐵. (19)

The equation (17), which has three unknowns (𝐾 is obtained in step 1), that are
𝑁 , 𝜓 and 𝐸 can be transformed to[

𝑁 𝜓 𝐸
] 

𝐾

𝐶

𝐶𝐴

 = 𝐾𝐴. (20)

For the resolution of (20), let set[
𝑁 𝜓 𝐸

]
= 𝑋1 (21)


𝐾

𝐶

𝐶𝐴

 = Σ (22)

𝐾𝐴 = Θ (23)

therefore (20) becomes

𝑋1Σ = Θ. (24)

This equation has a solution 𝑋1 if and only if

𝑟𝑎𝑛𝑘

(
Σ

Θ

)
= 𝑟𝑎𝑛𝑘 Σ. (25)

In this case the general solution for (24), is given by

𝑋1 = ΘΣ− − 𝑍 (𝐼𝑝+2𝑚 − ΣΣ−) (26)

where Σ− is a generalized inverse of matrix Σ given by (22) and 𝑍 ∈ ℜ𝑝×(𝑝+2𝑚)

is an arbitrary matrix, that will be determined in the sequel. Once matrix 𝑋1 is
determined, it is easy to give the expressions of matrices 𝑁 , 𝜓 and 𝐸 .
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In fact,

𝑁 = 𝑋1
©­«
𝐼𝑝

0𝑚×𝑝
0𝑚×𝑝

ª®¬ = 𝐴11 − 𝑍𝐵11 (27)

where

𝐴11 = ΘΣ− ©­«
𝐼𝑝

0𝑚×𝑝
0𝑚×𝑝

ª®¬ (28)

𝐵11 = (𝐼𝑝+2𝑚 − ΣΣ−) ©­«
𝐼𝑝

0𝑚×𝑝
0𝑚×𝑝

ª®¬ (29)

𝜓 = 𝑋1
©­«

0𝑝×𝑚
𝐼𝑚

0𝑚×𝑚

ª®¬ = 𝐴22 − 𝑍𝐵22 (30)

with

𝐴22 = ΘΣ− ©­«
0𝑝×𝑚
𝐼𝑚

0𝑚×𝑚

ª®¬ (31)

𝐵22 = (𝐼𝑝+2𝑚 − ΣΣ−) ©­«
0𝑝×𝑚
𝐼𝑚

0𝑚×𝑚

ª®¬ (32)

and

𝐸 = 𝑋1
©­«

0𝑝×𝑚
0𝑚×𝑚
𝐼𝑚

ª®¬ = 𝐴33 − 𝑍𝐵33 (33)

with

𝐴33 = ΘΣ− ©­«
0𝑝×𝑚
0𝑚×𝑚
𝐼𝑚

ª®¬ , (34)

𝐵33 = (𝐼𝑝+2𝑚 − ΣΣ−) ©­«
0𝑝×𝑚
0𝑚×𝑚
𝐼𝑚

ª®¬ . (35)

Hence functional filter-based controller matrices 𝑁 , 𝐸 and 𝐽 (can be computed
from (18)) are determined if and only if the matrix 𝑍 is known.

Now, we propose a method to compute this matrix 𝑍 such that conditions 1)–4)
and 7) of Theorem 2 are satisfied; Note that equations (24) and (19) correspond
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to conditions 5) and 6) of Theorem 2. Condition 3) of Theorem 2 is all time
verified due to the nonnegativity of matrices 𝐵 and 𝐾 (see condition 6)).

The estimation error dynamics (15b) become, as mentioned in condition 7)
of Theorem 2

¤𝑒(𝑡) = 𝑁𝑒(𝑡) + 𝛼 𝑤(𝑡) (36)
with

𝛼 = 𝐸𝐶𝐷1 − 𝐾𝐷1 = 𝛼1 − 𝑍𝛼2 , (37)
where

𝛼1 = ΘΣ− ©­«
0𝑝×𝑞1

0𝑚×𝑞1

𝐶𝐷1

ª®¬ − 𝐾𝐷1 (38)

𝛼2 = (𝐼𝑝+2𝑚 − ΣΣ−) ©­«
0𝑝×𝑞1

0𝑚×𝑞1

𝐶𝐷1

ª®¬ . (39)

We intend in following lemma to recast remaining existence conditions, 1), 2),
4) and 7) of Theorem 2, of functional filter (5) for positive system (4) using
Lemma 2.

Lemma 5. Let us consider positive system (4). The functional filter-based con-
troller defined in (5) is a positive linear functional 𝐻∞ filter of system (4) and sat-
isfies the 𝐻∞ performance requirement; 𝐽𝑒𝑤 < 𝛾1 for a given 𝛾1 > 0 where 𝐽𝑒𝑤 =

∥(𝑠𝐼 −𝑁)−1𝛼∥∞, if rank condition (25) is satisfied and there exist a matrix 𝑍 and
a diagonal positive definite matrix 𝑃 ∈ ℜ𝑝×𝑝 > 0 such that the following LMI:

©­«
Λ 𝑃𝛼 𝐼𝑝
𝛼𝑇𝑃 −𝛾1𝐼𝑞1 0𝑞1×𝑝
𝐼𝑝 0𝑝×𝑞1 −𝛾1𝐼𝑝

ª®¬ < 0 (40)

under following constraints,
1) 𝐴11 − 𝑍𝐵11 is Metzler,
2) (𝐴33 − 𝑍𝐵33)𝐶𝐴 + (𝐴22 − 𝑍𝐵22)𝐶 ≻ 0,
3) (𝐴33 − 𝑍𝐵33)𝐶𝐷1 ≻ 0

is satisfied, for a given 𝛾1 > 0 where,

Λ = (𝐴𝑇11 − (𝑍𝐵11)𝑇 )𝑃 + 𝑃(𝐴11 − 𝑍𝐵11)
𝛼 = 𝛼1 − 𝑍𝛼2.

At this stage, we’re ready to state the main result of the paper that permits us to
obtain the filter-based controller matrices 𝑁 , 𝐸 and 𝐽 such that conditions 1), 2),
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4) and 7) of Theorem 2 are satisfied. Note that based on optimization problem, one
can get the gain matrix 𝑍 which parameterizes the functional 𝐻∞ filter matrices
𝑁 , 𝐸 and 𝐽 (see (27), (33) and (30) using (18)). In fact, by following theorem,
conditions (of Theorem 2) for the establishment of the positive functional 𝐻∞
filter-based controller (5) for positive linear system (4) are formulated in terms of
convex optimization problem.

Theorem 3. Given positive system (4). The functional filter defined in (5) is
a positive linear stable functional 𝐻∞ filter-based controller of system (4) and
satisfies the 𝐻∞ performance requirement, 𝐽𝑒𝑤 < 𝛾1 for a given 𝛾1 > 0 where
𝐽𝑒𝑤 = ∥(𝑠𝐼 − 𝑁)−1𝛼∥∞ if the following conditions hold:

1. Rank condition(25) is satisfied.
2. There exist a diagonal positive definite matrix 𝑃 > 0 ∈ ℜ𝑝×𝑝, 𝑌1 ∈

ℜ𝑝×(𝑝+2𝑚) and a vector 𝑣̃ ∈ ℜ𝑝×1 such that the following convex opti-
mization problem is feasible:

©­­«
Λ 𝑃𝛼1 − 𝑌1𝛼2 𝐼𝑝

𝛼𝑇1𝑃 − 𝛼𝑇2𝑌
𝑇
1 −𝛾1𝐼𝑞1 0𝑞1×𝑝

𝐼𝑝 0𝑝×𝑞1 −𝛾1𝐼𝑝

ª®®¬ < 0 (41)

under the inequalities, 
Λ11 Λ12
Λ21 Λ22
Λ31 Λ32

 Υ ≻ 0, (42)

where,

Λ11 = (𝐴11 −𝑉1)𝑇 , Λ12 = −𝐵𝑇11,

Λ21 = (𝐴33𝐶𝐴 + 𝐴22𝐶)𝑇 , Λ22 = (−𝐵33𝐶𝐴 − 𝐵22𝐶)𝑇 ,
Λ31 = (𝐴33𝐶𝐷1)𝑇 , Λ32 = (−𝐵33𝐶𝐷1)𝑇 ,
Υ =

[
𝑃 𝑌1

]𝑇
, Λ = 𝐴𝑇11𝑃 − 𝐵𝑇11𝑌

𝑇
1 + 𝑃𝐴11 − 𝑌1𝐵11,

𝑉1 = 𝑑𝑖𝑎𝑔(𝑣̃), 𝑣̃ =
[
𝑣̃1, 𝑣̃2, ....̃𝑣𝑝

]𝑇
.

(43)

Then, positive functional 𝐻∞ filter-based controller matrices 𝑁 , 𝐸 and 𝐽 can be
computed by (27), (33) and (30) using (18), with

𝑍 = 𝑃−1𝑌1. (44)

Proof. From Lemma 5, the functional filter defined in (5) is a positive functional
𝐻∞ filter of system (4) and satisfies the𝐻∞ performance if the LMI (41), obtained
by considering (40) with 𝑌1 = 𝑃𝑍 , under the following inequalities is satisfied,
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1. 𝐴11 − 𝑍𝐵11 is required to be Metzler and that can be written as:

𝐴11 − 𝑍𝐵11 ≻ 𝑉1 , (45)

where 𝑉1 = diag(𝑣̃) for vector 𝑣̃ = [𝑣̃1, 𝑣̃2, ....̃𝑣𝑝]𝑇 . Multiplying both sides
of this inequality with the diagonal positive definite matrix 𝑃 > 0 and
taking into account a change of the variable 𝑌1 = 𝑃𝑍 , one can verify that
following inequality holds:

(𝐴11 −𝑉1)𝑇 𝑃𝑇 − 𝐵𝑇11 𝑌
𝑇
1 ≻ 0. (46)

2. Consider now condition 2) of Lemma 5:

(𝐴33 − 𝑍𝐵33)𝐶𝐴 + (𝐴22 − 𝑍𝐵22)𝐶 ≻ 0. (47)

By multiplying (47) with diagonal positive definite matrix 𝑃 > 0 with
𝑌1 = 𝑃𝑍 this inequality is thus equivalent to,

(𝐴33𝐶𝐴 + 𝐴22𝐶)𝑇𝑃𝑇 + (−𝐵33𝐶𝐴 − 𝐵22𝐶)𝑇𝑌𝑇1 ≻ 0. (48)

3. We consider now condition 3) of Lemma 5:

(𝐴33 − 𝑍𝐵33)𝐶𝐷1 ≻ 0. (49)

By multiplying (49) with diagonal positive definite matrix 𝑃 > 0 with
𝑌1 = 𝑃𝑍 this inequality is thus equivalent to,

(𝐴33𝐶𝐷1)𝑇𝑃𝑇 + (−𝐵33𝐶𝐷1)𝑇𝑌𝑇1 ≻ 0. (50)

Consequently, with Υ =
[
𝑃 𝑌1

]𝑇 conditions (46), (48) and (50) can then
be written as the convex condition (42). Therefore, (41) and (42) form the
convex optimization problem. This completes the proof.

5. Positive functional 𝐻∞ filter-based controller design steps summary

The different steps that must be achieved to design the proposed controller
are given as follows:

1. If LMI (9) under inequality (10) is feasible, get matrices 𝑉 and 𝑌 .
2. Compute the state feedback gain 𝐾 by (11) for the control law design (7).
3. Compute Σ and Θ from (22) and (23).
4. Verify rank condition (25).
5. Compute 𝐴11, 𝐵11, 𝐴22, 𝐵22, 𝐴33 and 𝐵33 from relations (29), (32) and (35).
6. If optimization problem formed by LMI (41) under inequalities (42) is

feasible, get matrices 𝑃 and 𝑌1.
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7. Compute filter matrix gain 𝑍 from (44).
8. Get filter-based controller matrices 𝑁 , 𝐸 from (27) and (33). Deduce filter

matrix 𝐻 from (19).
9. Get matrix 𝜓 from (30) and compute filter-based controller matrices 𝐽 using

(18).
Note that if rank conditions fail and/or the optimization problem turns out to be
infeasible, then the filter-based controller does not exist and we need to signif-
icantly increase the filter dimension to have any hope of obtaining a functional
filter. And if the algorithm runs well until the end, then the proposed positive
functional 𝐻∞ filter-based controller description (5) for positive linear system
(4) is obtained.

The following section demonstrates the effectiveness of the proposed approach
on a numerical example.

6. Numerical results

Consider the system presented in Section 3, where

𝐴 =


−9 0 0.5
0.2 −8 1
0.3 1.3 −2

 , 𝐵 =


0.6 0.5
0.1 0.8
2 0.1

 , 𝐹1 =

[
1 0 1

0.2 0.5 0.7

]
,

𝐷1 =


1
1

0.2

 , 𝐶 =

[
0 0 5
0 1 4

]
.

With the computational approach summarized in previous section 5, which is
based on constrained LMIs and an optimization problem, we have obtained the
following results:

Positive state-feedback gain synthesis

The proposed LMI (9) under inequality (10) is feasible for 𝛾 = 4.7. One such
feasible solution provides:

1. 𝑉 =


1 0 0
0 5 0
0 0 1

 and 𝑌 =

[
0.2018 0.4873 0.0274
2.9846 5.0809 0.4701

]
.

2. Then, the state feedback gain is given by:

𝐾 =

[
0.2018 0.0975 0.0274
2.9846 1.0162 0.4701

]
.
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One can verify that the closed-loop system is positive, stable and satisfies the 𝐻∞
performance requirement, where the infinity norm of the closed loop is equal to
0.85618 < 4.7.

Positive filter-based controller synthesis

For this design, after checking conditions (25), the proposed optimization
problem (41)–(42) is feasible, for 𝛾1 = 1.5. One such feasible solution provides:

1. 𝑍 =

[
10.3408 9.7210 2.1797 0.8590 2.5690 1.2851
7.9819 137.3429 49.9984 3.7245 14.4897 5.9390

]
.

2. Then, filter-based controller matrices 𝑁 , 𝐸 and 𝐻 are given as follows:

𝑁 =

[
−9.6776 0.0236
0.7289 −8.9493

]
, 𝐸 =

[
−0.0393 0.1093
−2.2903 2.4866

]
,

𝐻 =

[
−0.3066 0.0701
5.5942 0.5135

]
.

3. 𝜓 =

[
−0.4357 0.7371
−18.6314 23.3539

]
, then we obtain 𝐽 =

[
−0.1090 −0.2624
1.8362 1.1807

]
.

So, the proposed design of the positive filter-based controller for positive linear
system subject to bounded energy disturbances is obtained. Notice that 𝐽𝑒𝑤 =

∥(𝑠𝐼 − 𝑁)−1𝛼∥∞ = 0.2152 < 1.5.
Simulation results are illustrated by Figures 1–4, where we present in Figure 1

the behavior of the used disturbances 𝑤(𝑡). Note that Figure 2 demonstrates the
positivity of the functional state 𝐾𝑥(𝑡) components, Figure 3 shows the responses
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Figure 1: Disturbances 𝑤(𝑡) behavior
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Figure 2: Evolution of 𝑢.𝑟𝑒𝑎𝑙1 and 𝑢.𝑟𝑒𝑎𝑙2 components of functional 𝐾𝑥(𝑡)
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Figure 3: Evolution of 𝑢1 and 𝑢2 components of the output of the controller 𝑢̂(𝑡)
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Figure 4: Evolution of 𝑢.𝑟𝑒𝑎𝑙1 and 𝑢.𝑟𝑒𝑎𝑙1 with their estimates 𝑢(1) and 𝑢(2)
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of the proposed observer-based controller (components of the output 𝑢̂(𝑡)). In
Figure 4 we plot together the components of the functional state 𝐾𝑥(𝑡) and their
estimated components. Note that the simulations are performed with the following
positive initial conditions:

𝑥(0) =
[
2 5 8

]𝑇
.

The estimates are nonnegative and the designed controller based-filter esti-
mated the functional state 𝐾𝑥(𝑡) as expected. Finally, simulation results show
the behavior of the proposed positive controller based-𝐻∞ functional filter for
positive linear systems and so, the effectiveness of our approach.

7. Conclusion

A new design of a positive functional filter-based controller for linear multi-
variable positive linear systems subject to bounded energy disturbances is pro-
posed in this paper. The order of this controller is equal to the dimension of the
functional to be estimated. The positive filter-based controller, that is always non-
negative at any time, is obtained into two steps. First, we search for a positive state
feedback gain for the design of a control law through 𝐻∞ techniques such that the
closed-loop is positive, stable and ensures an𝐻∞ performance requirement. Then,
we search in a second step for a positive functional filter-based controller permit-
ting us to reconstruct this control law, and so to estimate only a functional of the
state useful for control purposes. The proposed procedure is based on the positiv-
ity of an augmented system composed of dynamics of both considered system and
proposed filter-based controller and also, on the unbiasedness of the estimation
error by the resolution of Sylvester equation. Then we derive conditions for the
establishment of such filter-based controller in terms of an optimization problem,
that can be solved via constrained LMIs. The positive functional filter used has
the advantages that it estimates the control law without estimating all the state of
the system contrary to full order observer-based control approach. An algorithm
that summarizes the different steps of the proposed positive controller based on
positive functional filters for positive linear systems design is given.
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