

ARCHIVES

ISSN (2299-2944)

of

FOUNDRY ENGINEERING

10.24425/afe.2025.155350

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

Predicted hardness of Austempered Vermicular Graphite Iron

A. Jakubus ^{a,} * 🔟[,] M.S. Soiński ^a 🔟, P. Mierzwa ^b

^a Jakub from Paradyz Academy in Gorzow Wielkopolski,
52 Fryderyk Chopin Street, 66-400 Gorzów Wielkopolski, Poland
^b Czestochowa University of Technology
* Correspondence contact: e-mail: jakubusaneta@wp.pl

Received 13.03.25; accepted in revised form 22.04.25; available online 11.06.2025

Abstract

The aim of this study was to determine the hardness of vermicular cast iron subjected to austempering, depending on the parameters of the heat treatment process. The heat treatment was conducted based on orthogonal experimental design, with a total of 27 experiments performed. The samples underwent austenitization at temperatures of 890°C, 925°C, and 960°C, followed by austempering at 290°C, 340°C, and 390°C. The austenitization and austempering times were set to 90 min, 120 min, and 150 min. To analyse the influence of these parameters, a full polynomial regression model was developed. The proposed model, which describes the hardness of the cast iron after heat treatment, showed a predicted coefficient of determination (R²) of approximately 78%. For optimization purposes, the Response Surface Methodology (RSM) was employed. The results of the ANOVA analysis indicated that the austempering temperature (Tpi), the square of the austenitization time ($\tau\gamma^2$), the interaction between austenitization temperature and time ($T\gamma \tau\gamma$), as well as the interaction between austenitization and austempering temperatures ($T\gamma Tpi$) had the most significant impact on the examined parameter. Following variance analysis, the model was refined once more to eliminate insignificant predictors. The simplified model improved the predicted coefficient of determination to 93%. The optimal conditions for the analyzed parameters, assuming a maximum hardness of approximately 440 HB, were obtained under the following heat treatment conditions: $T\gamma = 930^\circ$ C, $\tau\gamma = 150$ min, and $\tau p = 150$ min.

Keywords: Compacted graphite iron, Austempering, Austenitization, Vermicular cast iron, AVGI, RSM, Regression models, Hardness

1. Introduction

The production of various components made of vermicular cast iron, which operate under demanding conditions (e.g., engine camshaft sleeves, transmission gears), and undergo heat treatment, requires a thorough understanding of the structural transformations accompanying this process. Heat treatment significantly influences the mechanical properties of cast iron.

Typically, the industrial implementation of a new material, such as austempered vermicular cast iron (AVGI), needs extensive experimental testing. The results of these studies offer essential insight into the material's properties, the influence of heat treatment on microstructure, and the mechanical and plastic performance of the alloy, as well as its behaviour under operational conditions. Since such research is time-consuming and costly, the use of mathematical models to predict microstructure and material properties based on technological parameters is of particular importance.

In study [1], an analysis was conducted to investigate the effects of heat treatment parameters on the mechanical properties of vermicular cast iron, such as tensile strength, yield strength, and elongation. Polynomial regression, analysis of variance (ANOVA), and Response Surface Methodology (RSM) were used. The

© The Author(s) 2025. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

regression models enabled the prediction of tensile strength, elongation after stretching, and yield strength with accuracies of 82%, 80%, and 49%, respectively. It was determined that achieving the maximum tensile strength (940 MPa), yield strength (880 MPa), and elongation (0.7%) in the studied vermicular cast iron requires the following heat treatment parameters: $T_{\gamma} = 890$ °C; $T_{pi} = 290$ °C; $\tau_{\gamma} = 120$ min; $\tau_{pi} = 150$ min.

In study [2], the authors also employed statistical methods to predict the hardness of austempered ductile iron (ADI). The spheroidal graphite cast iron was austenitized at 950°C for 120 minutes, followed by austempering in a salt bath at 290°C, 320°C, 350°C, and 380°C for 30, 60, 90, and 120 minutes, respectively. The proposed mathematical model for predicting the hardness of austempered ductile iron achieved a 95.20% validation accuracy compared to experimental results.

Regression models are widely used for approximating values based on a dataset, allowing for a reduction in the number of required experiments. Many researchers have applied similar approaches to analyse various manufacturing processes [3–6]. For instance, in study [7], the authors used the Taguchi method to optimize melding parameters, including compaction, compaction time, and air pressure, and to examine the effects of these factors on material flowability.

In reference to the presented studies, it was deemed appropriate to conduct an analysis of the influence of selected heat treatment parameters on the hardness of vermicular cast iron, in a manner analogous to study [1]

2. Experimental Procedure

A detailed description of the investigated cast iron is provided in studies [8–10]. The ferritic-pearlitic vermicular cast iron (see Fig. 1) was subjected to heat treatment to obtain an ausferritic matrix. The process was conducted based on an orthogonal experimental design.

Fig. 1. Microstructure of vermicular cast iron, metallographic specimen etched with Nital

For the statistical analysis of the experimental data, Minitab 21.1 software (Pennsylvania State University, Pennsylvania, PA, USA) was used. Four independent variables were selected for the study, including austenitization and austempering temperatures, as well as austenitization and austempering times, within the following ranges:

- X₁ austenitization temperature (Tγ) from 890°C to 960°C;
- X₂ austempering temperature (Tpi) from 290°C to 390°C;

- X_3 austenitization time [min] ($\tau\gamma$) from 90 min to 150 min;
- X_4 austempering time (τpi) from 90 min to 150 min.

A total of 27 experiments were conducted, as presented in Table 1. The Brinell hardness of the material was measured using a 5 mm diameter steel ball under a load of 7350 N. The hardness test results are presented in Figure 2, while Figure 3 illustrates representative microstructures of the investigated alloys, corresponding to the experimental conditions listed in Table 1.

Table 1.

Experimental design used to analyze the effect of heat treatment parameters on alloy hardness [1]

	Heat treatment parameters						
No	Austenitization temperature (Τγ) [°C]	Austempering temperature (Tpi) [°C]	Austenitization time (τγ) [min]	Austempering time (τpi) [min]			
	X ₁	\mathbf{X}_{2}	X ₃	X_4			
1.	890	290	90	90			
2.	960	290	90	90			
3.	890	390	90	90			
4.	960	390	90	90			
5.	890	290	150	90			
6.	960	290	150	90			
7.	890	390	150	90			
8.	960	390	150	90			
9.	890	290	90	150			
10.	960	290	90	150			
11.	890	390	90	150			
12.	960	390	90	150			
13.	890	290	150	150			
14.	960	290	150	150			
15.	890	390	150	150			
16.	960	390	150	150			
17.	890	340	120	120			
18.	960	340	120	120			
19.	925	290	120	120			
20.	925	390	120	120			
21.	925	340	90	120			
22.	925	340	150	120			
23.	925	340	120	90			
24.	925	340	120	150			
25.	925	340	120	120			
26.	925	340	120	120			
27.	925	340	120	120			

Fig. 3. Microstructures of vermicular graphite cast iron after heat treatment. Heat treatment parameters: a) Tγ=890°C, Tpi=290°C, τγ=90min, τpi=90min, b) Tγ=960°C, Tpi=390°C, τγ=90min, τpi=150min; c) Tγ=925°C, Tpi=340°C, τγ=120min, τpi=150min; d) Tγ=925°C, Tpi=340°C, τγ=120min, τpi=120min. Etched with Nital

3. Influence of Heat Treatment Parameters on Hardness (HB)

The general ANOVA results for the main effects, squared main effects, and two-way interaction effects are presented in Table 2. The significant parameters at $\alpha = 0.2$ (p < 0.2) are the four interaction models. According to the established model, the most significant main effect is the austempering temperature (Tpi). For the squared main effects, the most significant parameter is the austenitization time $(\tau \gamma^2)$, with a p-value of 0.028. Regarding the two-way interactions, the significance condition is satisfied in two cases (with p-values less than 0.2). Therefore, the significant interactions include the austenitization temperature and time (T γ $\tau\gamma$) as well as the austenitization and austempering temperature (T γ Tpi). The proposed overall model, which captures the relationship between the hardness of cast iron after heat treatment and the considered parameters (see Equation 1), exhibited a high coefficient of determination (R²) of 97.09%, closely approaching the adjusted R² value of 93.7%, indicating the linearity of the regression model. The ability of the model to predict new observations is confirmed by the high value of the predicted coefficient of determination of 78.79%.

 $HB = -7108 + 16,2 X_{1} + 2,66 X_{2} - 0,14 X_{3} - 4,58 X_{4}$ - 0,00798 X₁*X₁ - 0,00111 X₂*X₂+ 0,02469 X₃*X₃ + 0,00747 X₄*X₄ - 0,00307 X₁*X₂ - 0,00595 X₁*X₃ (1) + 0,00298 X₁*X₄ - 0,00208 X₂*X₃ - 0,00100 X₂*X₄

+ 0,00403 X3*X4

For the multi-criteria optimization of heat treatment parameters and their effect on cast iron hardness, the Response Surface Methodology (RSM) was applied. Figure 4 presents the influence of austenitization and austempering temperatures and times on the hardness of cast iron. Each of the six plots in Figure 4 illustrates the interaction between two heat treatment parameters and their impact on the hardness of vermicular cast iron. The influence of the most critical parameter in the discussed model, namely the austempering temperature, requires particular attention. The course of the curves presented in the accompanying graphs shows that as the austempering temperature (X_2) increases,

hardness decreases. For instance, Figure 4a shows that at an austempering temperature (X_2) between 320 and 340°C, the resulting hardness is approximately 330–360 MPa.

Table 2.

Analysis of variations in the influence of thermal parameters on the hardness (HB) of vermicular cast iron

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	14	81092,9	5792,3	28,63	0,000
<u>Linear</u>	4	77087,8	19272,0	95,26	0,000
X_1 - Austenitization temperature [°C] T_{γ}	1	5,6	5,6	0,03	0,871
X_2 - Austempering temperature [°C] T_{pi}	1	76832,0	76832,0	379,76	0,000
X_3 - Austenitization time [min] τ_{γ}	1	43,6	43,6	0,22	0,651
X_4 - Austempering time [min] τ_{pi}	1	206,7	206,7	1,02	0,332
<u>Square</u>	4	2359,1	589,8	2,92	0,067
X_1^2 - Austenitization temperaturę [°C] * Austenitization temperaturę [°C] T_{γ}^2	1	245,8	245,8	1,22	0,292
X_2^2 - Austempering temperature [°C] * Austempering temperature [°C] T_{pi}^2	1	19,8	19,8	0,10	0,760
X_3^2 - Austenitization time [min]* Austenitization time [min] τ_7^2		1269,8	1269,8	6,28	0,028
X_4^2 - Austempering time [min] * Austempering time [min] τ_{pi}^2	1	116,2	116,2	0,57	0,463
2-Way Interaction	6	1646,0	274,3	1,36	0,307
X1*X2 - Austenitization temperature [°C] * Austempering temperature [°C] $T_7 T_{pi}$		462,2	462,2	2,28	0,157
X1*X3 - Austenitization temperature [°C] * Austenitization time [min] $T_7 \tau_7$		625,0	625,0	3,09	0,104
X1*X4 - Austenitization temperature [°C] * Austempering time [min] $T_{\gamma} \tau_{pi}$	1	156,3	156,3	0,77	0,397
X2*X3 - Austempering temperature [°C] * Austenitization time [min] $T_{pi} \tau_{\gamma}$	1	156,2	156,2	0,77	0,397
X2*X4 - Austempering temperature [°C] * Austempering time [min] $T_{pi} \tau_{pi}$	1	36,0	36,0	0,18	0,681
X3*X4 - Austenitization time [min] * Austempering time [min] $\tau_{\gamma} \tau_{pi}$	1	210,3	210,3	1,04	0,328
Error	12	2427,8	202,3		
Lack-of-Fit	10	2203,1	220,3	1,96	0,385
Pure Error		224,7	112,3		
Total	26	83520,7			

DF = degree of Freedom; Adj SS = adjusted sums of squares; Adj MS = adjusted mean squares; F value is a value on the F distribution; p-value—p-value or test probability; VIF—variance inflation factor.

Fig. 4. The effect of heat treatment parameters on hardness is presented. The figure presents the relationships between the following heat treatment parameters: a) Tγ and Tpi; (b) Tγ and τγ; (c) Tγ and τpi; (d) Tpi and τγ; (e) Tγ and τpi; (f) τγ and τpi

The regression equation is considered significant if at least one of the model coefficients b1, b2,...bn is significantly different from zero and/or if the coefficient of determination (R-sq) is significantly different from zero. In the overall model, four variables are identified as significant predictors, indicating that the model can be simplified without a substantial loss in approximation quality. After analysing the significant variables, predictor selection was performed by removing non-significant predictors from the full model based on the F-test. The regression equation was determined using the backward elimination method. The proposed model, which is not overloaded with unnecessary predictors, is as follows:

$$HB = 339,33 - 65,33 X_2 + 18,33 X_3 * X_3 - 5,37 X_1 * X_2 - 6,25 X_1 * X_3$$
(2)

The hardness of cast iron after heat treatment is influenced by parameters such as T_{pi} , τ_7^2 , and the interactions $T_7 T_{pi}$ and $T_7 \tau_7$. The squared correlation coefficient of the proposed simplified equation is 95.71%. The predicted coefficient of determination increased by approximately 1% to a value of 94.93%. Both the coefficient of determination and its adjusted value indicate the linearity of the proposed model. The developed function accounts for approximately 93% of the variability in the explanatory variable (HB), with only about 7% of the variability remaining unexplained. The proposed model exhibits a strong ability to predict new observations, achieving an accuracy of 93.13%, which represents an improvement of approximately 14% compared to the full model.

The boundary variables that reach the maximum of each response are indicated as "Cur." (see Fig. 5). The optimization objective was to maximize the hardness (HB). In the case of the material hardness data, the determined desirability is at a satisfactory level of 98%.

Analysing the influence of T_{pl} , it can be observed that an increase in austempering temperature leads to a decrease in material hardness. In the case of the austenitizing temperature (T γ), an increase results in a slight hardness increase up to approximately 930°C, after which hardness decreases with further temperature rise. The optimal austenitizing time (τ_{γ}), is approximately 150 minutes. A reduction in τ_{γ} leads to a decrease in HB. The maximum alloy hardness can be achieved with an austenitizing and austempering time of 150 minutes.

In conclusion, to obtain a cast iron alloy hardness of approx. 440 MPa, the heat treatment should be conducted with the following parameters: $T_{\gamma} = 930^{\circ}C$; $T_{pi} = 290^{\circ}C$; $\tau_{\gamma} = 150$ min; and $\tau_{pi} = 150$ min.

Fig. 5. Desirability function applied in multiple responses (Minitab 21.4.3.0 Statistical Software)

The graph (see Fig. 6) presents a comparison between the hardness of vermicular cast iron (HB) determined using the regression models and the corresponding experimental data.

Fig. 6. Comparison of the obtained material hardness results with the proposed mathematical models

4. Summary

The objective of this study was to assess the potential for estimating the hardness of vermicular cast iron, based on the parameters of the heat treatment process, including austenitizing and austempering. The research was conducted using a factorial design approach. A central composite design was employed, and a total of 27 experiments (i.e., heat treatments with varying parameters, including 3 repetitions at the zero point) were performed. The derived mathematical model demonstrates that the primary factors influencing the hardness of vermicular cast iron after heat treatment include the austempering temperature, the square of the austenitizing time, the interaction between austenitizing and austempering temperatures, and the interaction between austenitizing temperature and time. The simplified regression model predicts the experimental results with an accuracy of approximately 93%. To achieve a vermicular cast iron hardness of approximately 440 MPa, the heat treatment should be conducted using the following parameters: $T\gamma = 930^{\circ}C$, $Tpi = 290^{\circ}C$, $\tau\gamma = 150$ min, and $\tau pi = 150$ min.

References

- Jakubus, A., Soiński, M.S., Mierzwa, P. & Stradomski, G. (2024). Regression analysis and optimum values of austempering affecting mechanical properties of compacted graphite iron. *Materials*. 17(20), 5024, 1-20. https://doi.org/10.3390/ma17205024.
- [2] Rodríguez-Rosales, N.A., Montes-González, F.A., Gómez-Casas, O., Gómez-Casas, J., Galindo-Valdés, J.S., Ortiz-

Cuellar, J.C., Martínez-Villafañe, J.F., García-Navarro, D. & Muñiz-Valdez, C.R. (2022). Statistical data-driven model for hardness prediction in austempered ductile irons. *Metals.* 12(4), 676, 1-20. https://doi.org/10.3390/met12040676.

- [3] Saikaew, C. & Harnsopa, S. (2023). Influence of component proportions in casting process on hardness and the quality of cast iron. *Archives of Foundry Engineering*. 23(2), 35-42. DOI: 10.24425/afe.2023.144293.
- [4] Fajdek-Bieda, A. (2023). Optimization of the geraniol transformation process in the presence of natural mineral diatomite as a catalyst. *Catalysts.* 13(4), 777, 1-20. https://doi.org/10.3390/catal13040777.
- [5] Rao, M.S., Khandelwal, H., Kumar, M. & Kumar, A. (2023). Parametric optimization for producing semi-solid A383 alloy using cooling slope casting process. *Archives of Foundry Engineering*. 23(1), 43-52. https://doi.org/10.24425/afe.2023.144279.
- [6] Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A., Kawecka, E. (2022). Efficiency of tool steel cutting by water jet with recycled abrasive materials. *Materials*. 15(11), 3978, 1-16. https://doi.org/10.3390/ma15113978.

- [7] Abdulamer, D., Muhsan, A.A. & Hamdi, S.S. (2024). Utilizing taguchi method and regression analysis for optimizing sand mould flowability. *Archives of Foundry Engineering*. 24(3), 5-9. https://doi.org/10.24425/afe.2024.151284.
- [8] Soiński, M.S., Jakubus, A., Borowiecki, B., Mierzwa, P. (2021). Initial assessment of graphite precipitates in vermicular cast iron in the as-cast state and after thermal treatments. *Archives of Foundry Engineering*. 21(4), 131-136. https://doi.org/10.24425/afe.2021.139762.
- [9] Mierzwa, P. (2010). The effect of thermal treatment on the selected properties of cast iron with vermicular graphite. Doctoral thesis, Czestochowa University of Technology, Poland.
- [10] Jakubus, A. (2022). Initial analysis of the surface layer of AVGI cast iron subject to abrasion. Archives of Foundry Engineering. 22(2), 50-56. https://doi.org/10.24425/afe.2022.140224.