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Abstract

This study investigates the effectiveness of machine learning models in
forecasting construction indicators derived from Business Tendency Survey data.
Specifically, we compare the performance of traditional statistical models such
as the autoregressive integrated moving average (ARIMA) with long short-
term memory (LSTM) networks and hybrid approaches combining both. Using
a range of economic variables – including sector and economic evaluations,
production, financial situation, investments, and sentiment indicator (IRGBUD)
– we evaluate model accuracy across testing dataset and rolling forecast strategy
to assess consistency over time. Results demonstrate that while LSTM networks
capture non-linear dependencies and temporal patterns, ARIMA-based models
consistently outperforms LSTM in scenarios involving seasonal and cyclical
structures. The findings highlight that the choice of model should align with the
nature of the time series, particularly in relation to seasonality, volatility, and
trend dynamics. This work offers practical implications for improving economic
forecasting with machine learning in survey-based environments.
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1 Introduction

There are various machine learning tools and techniques that can be effectively applied
to analyze business tendency survey data. These include regression analysis, decision
trees, ensemble methods such as random forests, support vector machines (SVM),
neural networks, and natural language processing (NLP). Each of these approaches
provides unique strengths – from identifying statistical relationships and classification
patterns to uncovering complex, nonlinear dynamics in large and multidimensional
datasets.
Such tools enable businesses to extract deeper insights from survey data and support
more accurate forecasting and decision-making. In this research, we focus on
neural networks, which are among the most advanced and powerful frameworks in
contemporary machine learning. Numerous studies have explored the application of
neural networks to economic forecasting and business surveys. For instance, Zhang
(2004) highlights their use across various domains such as market response, stock
returns, emerging market indices, tourism demand, and consumer behavior analysis.
Similarly, Zhong and Enke (2017) presents hybrid machine learning approaches
combining neural networks with traditional models to forecast economic indicators.
Their work introduces a comprehensive big data analytics process applied to stock
market return prediction.
Recent contributions also emphasize the growing relevance of combining neural
networks with traditional statistical models in forecasting tasks. For example,
Michańków et al. (2024) examine the hedging properties of algorithmic investment
strategies using LSTM and ARIMA-GARCH models for equity indices. Likewise,
Kashif and Ślepaczuk (2024) propose a hybrid LSTM-ARIMA approach in algorithmic
investment strategies, showing the advantages of model integration. Additional
research by Roszyk and Ślepaczuk (2022) explores volatility forecasting of the S&P 500
using a hybrid approach that ensembles VIX, GARCH, and LSTM models. Moreover,
Michańków et al. (2022) provide a comparative analysis of LSTM applications in
investment strategies involving BTC and S&P 500 indices, while Baranochnikov and
Ślepaczuk (2023) evaluate the architecture of LSTM and Gated Recurrent Unit (GRU)
models using a novel walk-forward validation method in the context of algorithmic
investment strategy.
The contributions such as Hamid and Iqbal (2004), Moshiri et al. (1999), and Taylor
and Buizza (2003) also provide evidence of the effectiveness of neural networks in
economic and financial applications. These studies collectively underscore the growing
importance of machine learning methods, particularly neural networks and hybrid
models, in enhancing the accuracy of forecasts derived from business tendency surveys.
The primary objective of this research is to evaluate and compare the forecasting
performance of traditional statistical models and modern machine learning techniques
in the context of macroeconomic indicators derived from business tendency surveys.
Specifically, the study investigates the effectiveness of LSTM networks – both
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univariate and multivariate – against the classical ARIMA model and a hybrid
ARIMA+LSTM approach. By conducting extensive model training, validation, and
sensitivity analysis, the research aims to identify which model architecture provides
the most accurate and robust predictions across different forecasting horizons. The
findings are intended to guide the application of machine learning methods in
economic forecasting and support more informed decision-making for policy-makers
and analysts.

2 Forecasting methodology
This study investigates the predictive performance of classical and deep learning
models in the context of short-term economic forecasting within Poland’s construction
sector. The models explored include the traditional ARIMA model, univariate and
multivariate LSTM networks, and a hybrid ARIMA-LSTM approach that combines
the strengths of both techniques.

2.1 Autoregressive integrated moving average model
The autoregressive integrated moving average model, denoted as ARIMA(p,d,q), is
a widely used statistical approach for time series forecasting. The parameters p, d,
and q represent the order of the autoregressive component, the degree of differencing,
and the order of the moving average component, respectively. An ARIMA model
is particularly suited for modeling univariate time series data that exhibit non-
stationarity, which can be removed through differencing.
The ARIMA model extends the autoregressive moving average (ARMA) process by
incorporating differencing of the series. The general form of an ARMA(p, q) process
is defined as follows (Tsay, 2005):

Xt − α1Xt− 1 − · · · − αpXt− p = εt + θ1εt−1 + · · · + θqεt−q (1)

where αi are the autoregressive coefficients, θi are the moving average coefficients,
and εt represents white noise error terms, typically assumed to be independently and
identically distributed (i.i.d.) with a normal distribution and zero mean.
While the standard ARIMA model captures linear trends and short-term
autocorrelation, it is often necessary to account for regular seasonal fluctuations in
economic time series data. In such cases, the seasonal ARIMA (SARIMA) model is
employed. SARIMA extends ARIMA by including seasonal autoregressive and moving
average terms, along with seasonal differencing. The SARIMA model is generally
expressed as ARIMA(p, d, q) × (P , D, Q)s, where P , D, and Q denote the seasonal
components and s is the length of the seasonal cycle.
Model identification, parameter estimation, and diagnostic checking in ARIMA
and SARIMA frameworks are thoroughly discussed in the literature. Box et al.
(2015) provides a comprehensive treatment of these processes, including strategies
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for dealing with model selection and residual analysis. Furthermore, Hyndman
and Athanasopoulos (2018) offers a practical and accessible approach to time series
modeling and forecasting, with particular emphasis on using SARIMA models to
effectively capture recurring seasonal patterns in macroeconomic and financial data.
In this study, SARIMA models are employed to generate forecasts for quarterly
indicators in the construction sector. The choice of model parameters is guided
by statistical tests for stationarity, seasonal decomposition analysis, and automated
model selection procedures. The results obtained from SARIMA models are later
compared to those produced by LSTM and hybrid modeling approaches to evaluate
forecasting performance.

2.2 Long short-term memory approach
Neural networks offer a powerful framework for analyzing business tendency survey
data due to their ability to detect complex, nonlinear relationships and extract
meaningful insights from large, multivariate datasets. As demonstrated by Zhang
(2004), neural networks can be effectively applied to tasks such as pattern recognition,
forecasting, feature extraction, sentiment analysis, and predictive modeling, making
them well-suited for economic applications.
Compared to traditional statistical approaches such as ARIMA, neural networks
– particularly recurrent architectures like LSTM – provide advantages in handling
nonlinear dynamics and uncovering hidden patterns in qualitative and semi-
quantitative data such as business surveys. The LSTM network was introduced by
Sepp Hochreiter and Jürgen Schmidhuber in 1997 as a solution to the vanishing
gradient problem encountered in traditional recurrent neural networks (RNNs)
(Hochreiter and Schmidhuber, 1997). LSTM networks have been widely applied to
time series forecasting tasks, but in this study, they are used specifically to model the
evolution of business sentiment indicators drawn from survey data in the construction
sector. The models are trained to capture overall dynamics reflected in respondents’
assessments of the economic situation, business conditions, and future expectations.
LSTM networks are particularly effective when the underlying data exhibit long-
term dependencies or delayed effects, which is often the case with business sentiment
indicators influenced by macroeconomic and sectoral developments. The architecture
is well-suited for this task because it can learn from sequences of historical survey
responses and generate forecasts that integrate both recent and longer-term patterns
in respondent behavior.
The LSTM network is a specialized form of RNN designed to retain memory over
long sequences. It achieves this through the introduction of memory cells and gating
mechanisms. Each LSTM unit receives three main inputs: the input vector at the
current time step (Xt), the hidden state from the previous step (ht−1), and the cell
state or memory from the previous unit (Ct−1). The outputs of the current unit are
the updated hidden state (ht) and the new cell state (Ct), which carry forward the
short-term and long-term memory, respectively (Aggarwal, 2024).
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The internal mechanism of an LSTM unit is governed by three key gates: the forget
gate, the input gate, and the output gate. These gates regulate the retention, update,
and propagation of information. Figure 1 presents the LSTM architecture diagram,
illustrating the internal structure of a single memory cell, including its input, forget,
and output gates.
The forget gate determines the proportion of the previous cell state to retain,
calculated as:

ft = σ(Wf · [ht−1, Xt] + bf ) (2)

The input gate assesses how much of the new information should be stored in the cell
state:

it = σ(Wi · [ht−1, Xt] + bi) (3)

The candidate values for updating the memory are generated through a tanh
activation:

Ĉt = tanh(Wc · [ht−1, Xt] + bc) (4)

These candidate values are combined with the input gate output and the previous
memory state to form the updated cell state:

Ct = it · Ĉt + ft · Ct−1 (5)

The output gate determines which parts of the updated cell state contribute to the
output hidden state. It is calculated as:

ot = σ(Wo · [ht−1, Xt] + bo) (6)

Finally, the new hidden state is produced by modulating the cell state using the
output gate and a tanh transformation:

ht = ot · tanh(Ct) (7)

The LSTM cell utilizes weight matrices and biases associated with each gate:

i) Wf , Wi, Wo, Wc are weight matrices for the forget, input, output, and cell
candidate gates, respectively.

ii) bf , bi, bo, bc are corresponding bias vectors.

iii) ft (forget gate), it (input gate), and ot (output gate) are vectors of values in
[0, 1] that control which information is retained, updated, or output.

These parameters are learned through backpropagation during training. Sigmoid
activation functions, defined as:

σ(x) = 1
1 + e−x

, (8)
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are used within the gates to produce outputs in the range of [0, 1], representing the
proportion of information retained or discarded.
In contrast, the tanh activation function,

tanh(x) = ex − e−x

ex + e−x
, (9)

is employed to regulate the values of memory updates, allowing both positive and
negative contributions to the cell state.
The architecture of the LSTM network allows for separate handling of long-term
and short-term dependencies. The cell state Ct flows through the network relatively
unimpeded, ensuring stable memory over long periods. This mechanism mitigates
the gradient decay seen in standard RNNs and enhances the model’s ability to learn
time-dependent patterns, including business cycles and seasonal dynamics. As noted
by GeeksforGeeks (2024), the dual-path structure of LSTM – with separate memory
flows for long-term and short-term components – enables accurate and interpretable
sequence modeling.

2.3 Hybrid ARIMA and LSTM modeling framework
To enhance forecasting performance and capture both linear and nonlinear dynamics
present in business tendency survey data, this study implements a hybrid modeling
strategy that combines the Autoregressive Integrated Moving Average model with a
Long Short-Term Memory network. This hybrid approach has been widely recognized
in the literature as an effective method for handling complex, nonstationary, and
nonlinear time series data (Zhang et al., 2003; Ahmed et al., 2010; Moshiri et al.,
1999).
The hybrid model leverages the complementary strengths of ARIMA and LSTM.
ARIMA, as a classical statistical method, is proficient in modeling linear structures,
autocorrelation, and seasonality within time series data. Its interpretability and well-
established theoretical underpinnings make it suitable for extracting trend and cyclical
components (Box et al., 2015; Hyndman and Athanasopoulos, 2018). However,
ARIMA is limited in its ability to model nonlinearities and long-range dependencies.
Conversely, LSTM networks – a variant of Recurrent Neural Networks (RNNs) –
are designed to capture temporal patterns, nonlinear relationships, and long-term
dependencies via gated memory mechanisms (Hochreiter and Schmidhuber, 1997;
Bengio, 2012).
The construction of the hybrid model involves two sequential stages:
In the first stage, an ARIMA or SARIMA model is fitted to the original univariate
time series. Model order selection is based on the Bayesian Information Criterion
(BIC), while the augmented Dickey-Fuller (ADF) test is used to determine the need
for differencing and to assess stationarity (Tsay, 2005). When seasonal effects are
detected, a seasonal ARIMA (SARIMA) specification is used. Once fitted, ARIMA in-
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sample forecasts are generated, and residuals are computed as the difference between
the actual and fitted values.
In the second stage, these residuals are treated as a new time series and modeled
using an LSTM network. The rationale is that the residuals contain nonlinear and
unexplained patterns that ARIMA could not capture. Training the LSTM on the
residual sequence helps isolate and learn those nonlinear characteristics without being
constrained by the linear assumptions of ARIMA (Zhang et al., 2003). The residuals
are framed into supervised learning format using a sliding window approach, and
the LSTM model is optimized via grid search across key hyperparameters, including
sequence length, number of layers, neurons per layer, dropout rate, learning rate,
optimizer (Adam or Nadam), and use of bidirectionality (Aggarwal, 2024).
To avoid overfitting, dropout regularization and early stopping based on validation
loss are applied during training. Once the residual model is trained, the final
hybrid forecast is obtained by summing the ARIMA forecast and the LSTM-predicted
residuals, thereby reconstructing the full signal. This additive combination integrates
the strengths of both models and improves predictive robustness.
Model performance is assessed using standard forecast accuracy metrics: mean
absolute error (MAE), root mean squared error (RMSE), and the Pearson correlation
between forecasts and empirical values are checked. In addition, a rolling-origin
evaluation procedure is used to simulate real-time forecasting conditions and evaluate
the stability of the model across multiple forecasting windows (Hyndman and
Athanasopoulos, 2018).
The hybrid model is benchmarked against standalone ARIMA, univariate LSTM,
and multivariate LSTM models. This comparative analysis helps evaluate whether
the hybrid strategy offers a statistically and practically significant improvement
in forecasting short-term fluctuations in business sentiment indicators within the
construction sector.

2.4 Multivariate long short-term memory network
In addition to univariate forecasting, this study adopts a multivariate LSTM network
to model and predict business sentiment indicators in the construction sector. The
multivariate approach incorporates a set of exogenous macroeconomic and sectoral
indicators that are hypothesized to influence business confidence. By integrating
these variables, the model captures both temporal dynamics and cross-variable
dependencies that traditional time series models might overlook (Hochreiter and
Schmidhuber, 1997; Zhang et al., 2003).
The multivariate LSTM model receives, at each time step, a vector of input features
rather than a single scalar observation. These features include auxiliary variables
from related sectors. Among them are business tendency indicators for industry,
trade, and households, macroeconomic aggregates such as Polish real GDP growth.
The first three indicators are derived from business tendency surveys carried out by
the Research Institute for Economic Development, affiliated with the Warsaw School
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of Economics. The assumption is that these indicators, though not directly part of
the construction sector, contain valuable signals that improve the quality of forecasts.
Before model training, all features are normalized using the z-score transformation
to ensure that they share a common scale, reducing bias during optimization and
accelerating convergence (Bengio, 2012). The time series is then converted into
supervised learning format using a sliding window. Each training sample consists
of a multivariate input matrix (timesteps × features), where the target is the value
of the sentiment indicator at the next time step.
The LSTM network is trained using a backpropagation through time algorithm
with mean squared error as the loss function. To optimize generalization, a set
of hyperparameters is tuned, including the sequence length (number of lags), the
number of neurons in the hidden layers, the number of LSTM layers, dropout
regularization rates, learning rate, and the type of optimizer (Adam or Nadam)
(Hochreiter and Schmidhuber, 1997; Aggarwal, 2024). Grid search is employed to
explore combinations of these hyperparameters, and the best configuration is selected
based on the minimum validation loss.
To avoid overfitting and improve model generalization, the training pipeline includes
early stopping, whereby training halts if the validation performance does not improve
over a specified number of epochs. The training and validation sets are split
chronologically to reflect real-world forecasting conditions (Zhang et al., 2003).
Forecasts are generated using an autoregressive strategy for multi-step ahead
prediction. In this procedure, the model’s predictions are recursively fed back as
inputs to forecast future periods. This technique simulates real deployment conditions
where only past observations and model forecasts are available for prediction (Yan,
2024).
The multivariate LSTM model complements the univariate and hybrid architectures
by expanding the available feature space and introducing exogenous explanatory
variables. While more complex and computationally demanding, this architecture
provides an opportunity to capture richer dynamics in the data, making it particularly
useful for modeling the intricate and delayed effects of macroeconomic developments
on business sentiment in the construction sector.

3 Application

3.1 Data and research design
This study utilizes data from the business tendency surveys conducted by the Research
Institute of Economic Development at the Warsaw School of Economics. The dataset
comprises 90 variables spanning six sectors of the Polish economy: the industry
(IRGIND), construction, trade (IRGTRD), agriculture, banking (available from Q2
2022 within the financial institutions sector), and households (IRGKGD).
The business climate surveys collect qualitative data, reflecting the subjective
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assessments of entrepreneurs and consumers regarding ongoing economic processes.
These surveys capture perceptions related to supply and demand dynamics, current
business conditions, and short-term expectations. Respondents provide insights into
both their specific market environments and the broader economy, enabling the
monitoring of economic activity on a quarterly basis and the early identification
of emerging risks. For the purpose of this study, we focus on the construction
sector, leveraging its long historical time series and relevance to broader economic
trends. The analysis centres on several key indicators within this sector: the economic
sentiment indicator, production volume, investments, the financial standing of firms,
and subjective evaluations of both the general economic outlook and the construction
industry’s condition. The time series used for model span from the first quarter
of 1998 to the end of 2024. Additionally, a set of exogenous variables – including
indicators from three sectors of the economy and GDP growth – were used as inputs
in the multivariate LSTM models.
For each target variable, a univariate LSTM model was trained. Before model
training, the data was normalized using standard scaling. A comprehensive grid
search was performed to identify the optimal combination of hyperparameters. The
search space included sequence lengths of 2, 4, 6, 8, 12 and 48 time steps; the number
of LSTM neurons per layer was set to 50, 75, or 100; and model architectures with
1 stacked LSTM layer were evaluated. A fixed dropout rate of 0.1 was applied to
mitigate overfitting. Additionally, learning rates of 0.01, 0.0005, and 0.0003 were
tested alongside batch sizes of 16 and 32. Both the Adam and Nadam optimizers were
explored. To assess the potential benefit of bidirectional sequence modeling, both
unidirectional and bidirectional LSTM configurations were included in the search.
Model selection was based on the lowest validation loss. In parallel, classical ARIMA
models were calibrated for each variable. The order of integration was determined
using the augmented Dickey-Fuller (ADF) test. The presence of seasonality was
assessed via decomposition, and seasonal ARIMA specifications were applied where
appropriate.
To integrate the strengths of both approaches, hybrid ARIMA-LSTM models were
constructed. In these models, residuals from the ARIMA forecasts were used as input
for LSTM networks, aiming to capture any remaining nonlinear patterns in the data.
The same hyperparameter grid was applied to optimize the residual-based LSTM
architecture.
Additionally, multivariate LSTM models were trained using the selected exogenous
variables to assess the impact of broader economic conditions on each target series.
After reviewing multiple feature selection strategies and evaluating alternative sets
of predictors, we finalized a group of four explanatory variables to include in the
multivariate LSTM model. The final selection was guided by both domain knowledge
and exploratory correlation analysis i.e. IRGTRD, IRGKGD, IRGIND (see figure 2)
and macroeconomic indicator GDP.
Finally, forecasts from each modeling approach – ARIMA, LSTM, hybrid ARIMA-
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Figure 2: Time series of sectoral indicators from the IRG dataset: IRGBUD
(Construction), IRGTRD (Trade), IRGKGD (Households), and IRGIND (Industry)
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-LSTM, and multivariate LSTM – were evaluated and compared using standard
metrics including MAE, RMSE and Pearson correlation.
To evaluate the robustness and practical forecasting performance of the developed
models, we implement a rolling-origin forecast evaluation framework. This approach
enables assessment of model stability and generalization across multiple temporal
segments. The time series is partitioned into training and three sequential testing
windows. For each rolling window, the model is trained on a subset of the available
historical data and used to generate out-of-sample forecasts over a fixed horizon.
Performance metrics are computed by comparing forecasts to the actual values in the
holdout set.
This rolling-origin strategy provides a robust measure of model performance over time
and helps identify whether models are sensitive to structural shifts or time-specific
anomalies. By evaluating each model across multiple forecast windows, we ensure that
the reported results are not biased by a single split or static holdout set, offering a
more comprehensive assessment of forecast accuracy in dynamic real-world conditions.
At the end final results, including model parameters, forecast accuracy, and plots,
were saved for each target variable and modeling approach. All computations were
performed using the Python programming language.

3.2 Stationarity and ARIMA model specification
Before fitting ARIMA-based models, each time series was tested for stationarity using
ADF test. The ADF test assesses the null hypothesis that a unit root is present in the
time series, implying non-stationarity. If the p-value is below a significance threshold
(typically 0.05), the null hypothesis is rejected, indicating that the series is stationary.
The results of the ADF tests are summarized in Table 1. Among the six variables
considered, only financial situation and sector evaluation exhibit p-values below 0.05,
with statistics of -3.01 and -2.91, respectively. These results suggest that these two
series are stationary at the 5% significance level. The remaining variables, including
investments, economic evaluation, production, and IRGBUD, have higher p-values
(ranging from 0.06 to 0.26), indicating that the null hypothesis of a unit root cannot
be rejected. As such, differencing was applied accordingly when specifying ARIMA
models for these series.
The ARIMA order (p, d, q) and the corresponding seasonal order (P, D, Q, s) were
selected based on a combination of AIC and BIC minimization criteria. For example,
the best-fitting model for financial situation was determined to be ARIMA(1, 0, 0)
with a seasonal component (1, 0, 2, 4), achieving an AIC of 839.35 and a BIC of
852.76. In contrast, economic evaluation required a higher-order ARIMA(2, 1, 1) with
seasonal order (1, 0, 1, 4), yielding higher information criteria values (AIC = 897.39,
BIC = 913.43), reflecting greater model complexity or noisier data.
The table also highlights variability in the degree of differencing (d), where differencing
is needed (d=1) in series such as economic evaluation, production, and IRGBUD, but
not in financial situation or sector evaluation. Seasonality was modeled uniformly with
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a seasonal frequency of 4 (quarterly data), though the specific P, D, Q parameters
vary across series.
These findings underscore the heterogeneity in the underlying dynamics of the
economic indicators, justifying the tailored ARIMA configurations used in the
forecasting experiments.

Table 1: ADF Test Results and ARIMA Specifications

Variable ADF Stat. p-value ARIMA Seasonal AIC BIC
(p,d,q) (P,D,Q,s)

financial situation -3.01 0.034 (1,0,0) (1,0,2,4) 839.35 852.76
investments -2.66 0.081 (0,1,2) (1,0,1,4) 764.68 778.04
economic evaluation -2.22 0.199 (2,1,1) (1,0,1,4) 897.39 913.43
sector evaluation -2.91 0.044 (3,0,0) (1,0,1,4) 881.56 897.66
production -2.06 0.261 (0,1,1) (1,0,1,4) 854.64 865.34
IRGBUD -2.77 0.062 (1,1,2) (2,0,1,4) 784.87 806.25

3.3 LSTM model estimation and hyperparameter tuning
The performance of the LSTM models was evaluated using an extensive
hyperparameter tuning procedure for each of the six variables under analysis.
The search space for tuning was defined across several architectural and training
dimensions, including sequence length, number of neurons, number of layers, dropout
rate, learning rate, batch size, optimizer type, and whether bidirectional architecture
was used.
This section presents the results of hyperparameter tuning for different LSTM-based
architectures, including univariate LSTM, multivariate LSTM, and hybrid models
combining ARIMA residuals with neural network forecasting. Each configuration was
evaluated across six economic variables, with validation loss serving as the primary
metric of model performance. Table 2 presents final parameters for each considered
models. Chart 3 presents training and validation loss of different models for IRGBUD
as an example.
Multivariate LSTM models consistently outperformed their univariate and hybrid
counterparts across most variables. For instance, in the case of financial situation,
the multivariate model achieved the lowest validation loss of 0.0834, outperforming
the univariate LSTM (0.1047) and the hybrid (0.1070). Similarly, for investments, the
multivariate model recorded a loss of 0.0698, clearly better than both the univariate
(0.1082) and hybrid (0.1559) alternatives. This suggests that incorporating additional
explanatory variables helps the LSTM learn broader dependencies, confirming the
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benefits of multivariate settings noted in prior literature (Ahmed et al., 2010;
Hyndman and Athanasopoulos, 2018).
The hybrid models, which use residuals from ARIMA as inputs to the LSTM, showed
some promise, particularly in the case of IRGBUD, where the hybrid configuration
performed better (validation loss = 0.1695) than the standalone univariate LSTM
(0.2847). This supports findings from recent studies emphasizing that hybrid
architectures can be particularly effective when linear and nonlinear components
coexist (Zhang et al., 2003; Michańków et al., 2024).
Regarding model structure, most effective configurations used a single LSTM layer,
aligning with findings that deeper architectures do not always improve performance for
time series data (Hochreiter and Schmidhuber, 1997). The number of neurons ranged
from 50 to 100. Larger neuron counts slightly improved performance in multivariate
settings but added complexity and training time. The dropout rate was fixed at 0.1
for all experiments, a standard value to mitigate overfitting while retaining model
capacity (Bishop, 1995).
Sequence length, which defines how many past time steps the model considers, was
another important factor. Shorter sequences (length = 2 or 4) performed better for
variables with less persistent dynamics (e.g., sector evaluation), while longer sequences
(length = 6 or 12) were more effective for variables like production or investments,
which may rely on extended memory to capture cyclical trends. This corroborates
earlier observations on memory depth and temporal dependencies in LSTM design
(Hochreiter and Schmidhuber, 1997; Tsay, 2005).
Optimizer choice also played a role in performance. Most top-performing models
used the Nadam optimizer, a blend of RMSProp and Nesterov momentum, known
for its ability to accelerate convergence in recurrent networks (Dixon et al., 2020).
In contrast, Adam – a popular general-purpose optimizer – was used in a few cases,
particularly in hybrid models. Adam’s effectiveness in hybrid settings may be due to
its adaptiveness to the less predictable residual structure (Hia et al., 2023).
Batch size was alternated between 16 and 32. Smaller batches (size = 16) slightly
improved performance by offering more frequent weight updates, but larger batches
were beneficial in hybrid setups, likely due to more stable gradient estimates (Bengio,
2012).
Overall, these findings underscore the value of thorough hyperparameter optimization
and the complementary nature of hybrid models. While multivariate LSTM remains
the most consistent across variables, hybrid models can improve robustness when the
underlying data exhibit both linear and nonlinear characteristics.

3.4 Model performance evaluation
This section presents a comparative evaluation of four forecasting models – ARIMA,
LSTM, ARIMA+LSTM hybrid, and multivariate LSTM – across six business
sentiment indicators: economic evaluation, financial situation, investments, IRGBUD,
production, and sector evaluation. The performance metrics considered include MAE,

15 E. Ratuszny
CEJEME 17: 1-29 (2025)



Ewa Ratuszny

Figure 3: Loss curves for IRGBUD
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RMSE, and Pearson correlation coefficient, computed for both the testing period and
predictions using three rolling forecast windows (W1, W2, and W3). Table 3 presents
the statistics. Charts 4-6 presents calculated forecasts.
In the evaluation on the testing dataset, traditional ARIMA and hybrid
ARIMA+LSTM models consistently achieved the lowest MAE and RMSE values
across most variables. For instance, ARIMA and the hybrid model performed
best on economic evaluation, investments, and IRGBUD, with MAE values below
8 and high correlation scores (0.56-0.73). The hybrid model generally offered slight
improvements over ARIMA in capturing variance, suggesting its ability to model
residual nonlinearities not captured by the linear ARIMA component.
LSTM-only models showed higher testing error in some cases (e.g., economic
evaluation, MAE = 18.26) but also demonstrated strong correlation in areas like
production (0.81) and sector evaluation (0.44), hinting at their potential for nonlinear
pattern learning. However, their variance remained higher compared to ARIMA-based
models.
The multivariate LSTM models, although theoretically advantageous due to the
inclusion of exogenous variables, underperformed in the testing period in most
categories, with significantly higher MAE and RMSE (e.g., production, MAE=26.26;
RMSE = 32.03). This suggests overfitting or challenges in capturing the complex
interactions between variables with limited data.
Forecasting accuracy was tested across three rolling windows (W1-W3), simulating
real-world forecasting conditions.
Rolling-W1: In the short-term forecasts, ARIMA and ARIMA+LSTM hybrid models
delivered the most reliable and accurate predictions. For example, in the financial
situation variable, the hybrid model achieved an MAE of 2.62 with a high correlation
of 0.97. Similar results were noted for IRGBUD and production. Notably, the hybrid
models slightly outperformed ARIMA in most cases, validating the value of modeling
residuals using LSTM. In contrast, standalone LSTMmodels performed inconsistently
in W1, with deteriorated correlation in economic evaluation (-0.63) and investments
(0.10), while showing competitive accuracy for production (correlation = 0.99).
Rolling-W2: As the forecast horizon extended, hybrid models maintained robustness,
outperforming LSTM and multivariate LSTM in most indicators. Multivariate LSTM
again showed weaker performance, with low or negative correlations for several
indicators, including economic evaluation (-0.37) and financial situation (-0.59),
despite modest error values.
Rolling-W3: For longer-term forecasts, hybrid models continued to outperform both
standalone LSTM and multivariate LSTMmodels in terms of MAE and RMSE. LSTM
models occasionally yielded high correlation (e.g., economic evaluation, 0.80), but also
showed volatility in performance, such as in investments (-0.70). Multivariate LSTM
generally underperformed across variables, indicating overfitting or an inability to
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Figure 4: Forecasting performance visualizations for six economic indicators
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Figure 5: Forecasting performance visualizations for six economic indicators
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Figure 6: Forecasting performance visualizations for six economic indicators
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generalize well to future data, possibly due to the noisy influence of external inputs
or insufficient data for training.
ARIMA+LSTM Hybrid consistently provided balanced performance across all
evaluation metrics and forecast windows, confirming its value in capturing both
linear and nonlinear structures of the data. LSTM models showed competitive
performance in select areas, especially where nonlinearity and long-term dependencies
were pronounced (e.g., production, economic evaluation), but their instability across
forecast horizons limits their standalone reliability. Multivariate LSTM, despite its
theoretical advantages, underperformed in this study, suggesting the need for more
sophisticated input preprocessing, dimensionality reduction (e.g., PCA), or larger
datasets. Overall, ARIMA and hybrid ARIMA+LSTM models offer a practical
and effective approach for business sentiment forecasting in the construction sector,
balancing interpretability, accuracy, and robustness across multiple forecast windows.

4 Sensitivity analysis of LSTM hyperparameters
To validate the robustness of the LSTM model configuration selected through the
primary grid search, a targeted sensitivity analysis was conducted. The goal was to
test whether the best configuration lies within a stable region of the hyperparameter
space or whether small perturbations lead to significantly degraded performance.
Table 4 and charts 7-8 present the results.
The initial grid search selected a unidirectional LSTM model with a sequence length of
4, 50 or 100 neurons, 1 hidden layer, a dropout rate of 0.1, a learning rate of 0.0005, a
batch size of 16, and either the Adam or Nadam optimizer. For the sensitivity analysis,
we designed a focused grid that made local modifications to the best-performing setup
to examine how each component contributes to model accuracy.
The following hyperparameter dimensions were tested:
The sequence length was adjusted to 3 and 5 to investigate the model’s sensitivity to
slightly shorter or longer temporal memory. While the full grid had broader values,
this refinement narrowed the focus around the optimum.
A two-layer architecture was evaluated instead of the originally selected single-
layer network, to determine whether deeper structures might marginally enhance
performance, especially in more complex multivariate configurations.
The number of neurons was fixed at 75, a value that consistently balanced performance
and training efficiency across variables.
To test regularization effects, dropout rates of 0.05 and 0.15 were applied. These
values were chosen to assess whether slightly lower or higher dropout would lead to
underfitting or overfitting, respectively, in the context of economic time series.
Learning rate sensitivity was tested using 0.0003 and 0.0008. These values bracket
the optimal 0.0005, allowing insight into training dynamics under slightly slower or
faster convergence conditions.
Batch sizes of 8 and 32 were used to test sensitivity to mini-batch granularity. Smaller
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batch sizes can provide more stable generalization at the cost of longer training times,
while larger batches offer efficiency gains but may risk convergence to sharper minima.
Both Adam and Nadam optimizers were reevaluated, as they had previously shown
good performance, to confirm their consistency under modified configurations.
Finally, bidirectional LSTM architectures were tested to determine whether
introducing forward and backward sequence processing could enhance forecasting
accuracy, even though they were not selected as optimal in the initial grid.
The following targeted variations were applied, producing seven configurations
(sensitivity 1 to sensitivity 7):

sensitivity 1: Sequence length varied to 3 and 5 (vs. optimal 4)

sensitivity 2: Reduced number of neurons to 75

sensitivity 3: Increased number of layers to 2

sensitivity 4: Dropout adjusted to 0.05 and 0.15

sensitivity 5: Learning rate tuned to 0.0003 and 0.0008

sensitivity 6: Batch sizes tested at 8 and 32

sensitivity 7: Enabled bidirectional LSTM (BiLSTM)

The results demonstrate that the ARIMA+LSTM Hybrid model remains the most
stable and accurate across parameter variations, confirming its robustness. It
consistently performs well under different configurations, outperforming both the
standalone LSTM and the multivariate LSTM.
Sequence length adjustments (sensitivity 1) showed that even small deviations from
the optimal value can influence the model’s ability to capture temporal dependencies,
particularly affecting standard LSTM and Multivariate models.
Reducing the number of neurons (sensitivity 2) had limited effect on the hybrid model,
suggesting that it is less sensitive to this parameter. However, other architectures
displayed small increases in error, indicating a trade-off between model complexity
and generalization.
Increasing the number of layers (sensitivity 3) resulted in poorer overall performance,
likely due to overfitting or training instability. This finding suggests that deeper
networks may not yield better results in the context of macroeconomic data.
Dropout modifications (sensitivity 4) caused minor fluctuations in error, but no
consistent improvement. The models appeared tolerant to slight changes in
regularization, reinforcing that the original dropout value was well-calibrated.
Learning rate variation (sensitivity 5) confirmed that the chosen value (0.0005) was
already optimal. Other tested values either slowed convergence or led to unstable
learning without significant gains in accuracy.
Batch size (sensitivity 6) changes showed that the models were largely insensitive to
this parameter, with only marginal differences in performance across the range tested.
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Enabling bidirectionality (sensitivity 7) did not lead to meaningful gains. While it
theoretically allows the network to learn from future and past time steps, it did not
improve accuracy in this application, suggesting that unidirectional LSTM is more
appropriate for economic forecasting where time flows forward naturally.
Overall, the analysis confirms that the ARIMA+LSTM hybrid model is robust to
reasonable hyperparameter variation. While certain parameters like sequence length
and depth have noticeable effects, others such as dropout, batch size, and learning
rate can be adjusted more flexibly without substantial impact on performance.

Table 4: IRGBUD forecast accuracy comparison for sensitivity configurations.

Type Model MAE RMSE Corr.

estimation
LSTM 8.38 11.03 0.35
ARIMA+LSTM Hybrid 7.23 13.34 0.40
Multivariate LSTM 6.99 10.16 0.55

sensitivity 1
LSTM 8.67 11.11 0.37
ARIMA+LSTM Hybrid 7.22 13.34 0.40
Multivariate LSTM 7.08 10.28 0.52

sensitivity 2
LSTM 9.80 12.51 0.42
ARIMA+LSTM Hybrid 7.21 13.29 0.40
Multivariate LSTM 6.87 9.93 0.56

sensitivity 3
LSTM 11.24 14.31 0.28
ARIMA+LSTM Hybrid 7.22 13.32 0.40
Multivariate LSTM 10.39 13.35 0.52

sensitivity 4
LSTM 8.25 10.89 0.39
ARIMA+LSTM Hybrid 7.22 13.32 0.40
Multivariate LSTM 6.93 9.95 0.56

sensitivity 5
LSTM 8.55 10.93 0.41
ARIMA+LSTM Hybrid 7.22 13.31 0.40
Multivariate LSTM 6.88 9.77 0.58

sensitivity 6
LSTM 8.78 11.13 0.39
ARIMA+LSTM Hybrid 7.22 13.33 0.40
Multivariate LSTM 7.05 10.14 0.56

sensitivity 7
LSTM 8.17 10.79 0.40
ARIMA+LSTM Hybrid 7.22 13.29 0.40
Multivariate LSTM 7.05 10.11 0.55
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Figure 7: Comparison of IRGBUD model results for sensitivity analysis.
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Figure 8: Comparison of IRGBUD model results for sensitivity analysis.

2000 2004 2008 2012 2016 2020 2024

Time

−40

−20

0

20

40

IR
G

B
U

D

IRGBUD – Forecast Comparison

Original Series

LSTM

ARIMA

ARIMA + LSTM Hybrid

Multivariate LSTM

(a) Sensitivity 5

2000 2004 2008 2012 2016 2020 2024

Time

−40

−20

0

20

40

IR
G

B
U

D

IRGBUD – Forecast Comparison

Original Series

LSTM

ARIMA

ARIMA + LSTM Hybrid

Multivariate LSTM

(b) Sensitivity 6

2000 2004 2008 2012 2016 2020 2024

Time

−40

−20

0

20

40

IR
G

B
U

D

IRGBUD – Forecast Comparison

Original Series

LSTM

ARIMA

ARIMA + LSTM Hybrid

Multivariate LSTM

(c) Sensitivity 7

E. Ratuszny
CEJEME 17: 1-29 (2025)

26



The Long Short-Term Memory . . .

5 Model enhancement and future directions
Although traditional ARIMA and hybrid ARIMA+LSTM models demonstrated
the highest forecasting accuracy in this study, there remains substantial potential
for enhancing deep learning-based approaches. Future research may consider the
following directions to further improve model performance:

1. Feature engineering and selection: incorporating lagged variables, differencing,
moving averages, or applying dimensionality reduction techniques such as
principal component analysis (PCA) (Jolliffe, 2002) could help reduce
noise and improve the relevance of input features in multivariate models
These enhancements represent promising directions for improving time series
forecasting models and can contribute to more accurate and interpretable results
in future studies.

2. Advanced LSTM architectures: more sophisticated recurrent neural network
structures, such as attention-based LSTM models (Vaswani et al., 2017), may
enhance the capacity to capture complex temporal dependencies present in
macroeconomic time series.

3. Variable importance analysis: methods such as SHAP (shapley additive
explanations) (Lundberg and Lee, 2017) or permutation importance (Breiman,
2001) can be utilized to evaluate the impact of individual exogenous variables
– such as GDP, consumer confidence, or sectoral indicators – on model
predictions. This analysis can guide more targeted feature selection in future
model iterations.

4. Expanded sensitivity and robustness testing: beyond conventional
hyperparameter tuning, future studies should implement more granular
sensitivity analyses across forecast horizons and noise levels.

5. Alternative machine learning benchmarks: additional models like support
vector regression (SVR) and random forests could offer valuable benchmarks,
particularly for non-sequential prediction tasks and recommend them for future
comparative studies.

In conclusion, while ARIMA-based models currently offer strong baseline performance
for forecasting economic indicators derived from business survey data, incorporating
modern deep learning architectures and multivariate inputs presents a promising
avenue for future research. A systematic approach to feature engineering, architecture
optimization, and interpretability will be essential for advancing the accuracy and
trustworthiness of machine learning in economic forecasting.
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