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Abstract: Renewable energy sources have rapidly developed over the past few years. The
stochastic nature of the generated energy in photovoltaic systems (PV) and wind power
plants is causing more interest in energy storage systems (ESS). In commercial installations,
deterministic methods are used to control the power of the storage, which is not efficient.
Developing algorithms that optimize economic and technical aspects is necessary. Methods
based on computational intelligence (CI) can be a solution. The paper presents a novel CI
algorithm for optimizing power flow in microgrids using the particle swarm optimization
(PSO) method. The economic and technical efficiency of control is achieved by combining
multiple criteria in the objective function. The solution is universal, scalable, and can be
applied to any industrial or residential microgrid. The method uses short-term forecasts of
local generation and load and specifications of ESS, ensuring that technological constraints
are maintained. Analyses were conducted for a whole year for a real industrial microgrid.
The paper presents the selected results of the study. The efficiency of the proposed algorithm
is compared with the results obtained by a deterministic algorithm aimed at maximizing
autoconsumption. Using the PSO algorithm resulted in an economic effect of € 6 635 with
461 full discharge cycles, compared to € 2 287 and 110 cycles for the deterministic approach,
meaning an increase of more than 2.5 times. However, such storage operation requires more
intensive work, affecting its lifetime. Further research can develop objective functions that,
without compromising economic effects, support microgrid operation: improving power
quality, minimizing voltage fluctuations.
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1. Introduction

In recent years, there has been an increase in the development of renewable energy sources,
which has caused problems with their integration into the power system. System stability, voltage
and frequency fluctuations, and maintenance of power quality parameters at an appropriate level
are some problems that have begun to arise. In response, there is an increased interest in developing
energy resources and load control methods to eliminate these problems. Renewable energy sources
(RES) and loads are getting connected in microgrids. The importance of energy storage is also
increasing [1]. The high number of variables in the optimization problem contributes to an increase
in the complexity of the objective function, leading to an interest in new algorithms that use
computational intelligence in their operation [2]. The following section presents an analysis of the
state of the art in microgrid control methods, application of energy storage systems, and the use of
computational intelligence methods in power system optimization problems.

1.1. The state of art

The microgrid management methods can be divided into demand control and energy
generation control.

The demand control can be divided into price-based and direct load control. Examples of load
control based on energy prices can be found, for instance, in [3]. The publication’s authors discuss
the case of load control in a residential house. Mainly, interruptible loads and thermostatically
controlled loads are controlled. Another example of the application of demand control using
energy prices can be found in [4]. The paper presents a case study in Vietnam. Tariffs control the
demand. The discussed case is interesting as it does not rely solely on economics; elements such
as environment and social satisfaction are also considered for the objective function. The problem
under discussion is also presented by [5]. The authors of this paper focused on developing a load
control algorithm for a newly built residential neighborhood in China. The paper focuses not only
on the case study but also discusses other price-based load control methods already in use in the
country. A case study is also presented in [6]; this time, the subject is a pilot network in Cyprus. The
analyzed network consists of three hundred prosumers with with photovoltaic (PV) installations.
The control of the network is based on tariffs. The work is interesting because the focus is on
creating optimal tariffs to meet the objectives. The second method of demand control is direct
load control. Thus, to begin with, in [7], the authors focused on the distrust that consumers display
toward allowing the distribution system operator to control the load. The study focused on a group
of Australian residents. Also, a survey of the society was conducted in [8]. This time, the survey
was conducted in Switzerland, and the research object tested consumer preferences on direct load
control. This approach allowed the authors to come to interesting conclusions, including that choices
are influenced by the type of housing, education, and place of employment. A practical application
of direct load control is presented in [9], where the scheduling of a unit of air conditioners in
aregion of China is discussed. Another practical application is the case shown in [10]. The object
was a military microgrid, and the purpose of the load control was to flatten the demand curve.
Another application, this time in a civilian application, can be seen in [11]. Here, the object was
a smart building. The model made it possible not only to control devices in the building but also
to disconnect them from the grid. The goal of the control was to minimize costs. In the paper [12],
on the other hand, the authors implemented technical objectives, such as frequency regulation
and reducing oscillations in the power grid. The model was tested on a 39-bus IEEE system.
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Also, the management of generated power can be divided further. The main division is between
grids with renewable energy sources and grids with conventional energy sources. If the latter is
the case, a further distinction can be made between unit commitment (UC), i.e. controlling energy
sources to meet the established technical and economic objectives while covering the demand, and
economic dispatch (ED), i.e. covering the demand to the lowest cost of the project.

The UC approach can be encountered in [13], where the system that contains wind turbines
is addressed. The authors attempted to solve the problem of forecasting generation. The authors
of [14] also discussed wind turbines; here, the solved problem was the sizing of wind turbines and
their location in the system. Similarly, in [15], the author’s interest was a network with wind turbines.
Here, however, the problem was to control the power flow considering the uncertainties presented by
the generation forecast. Not only wind power plants, but RES in general present dangers associated
with the stochastic nature of the generated power. In [16], the authors link the UC problem to
demand control to balance the uncertainties associated with generation. Optimization objectives
can also be related to optimizing the sources’ operation, and such an approach is seen in [17]. The
authors’ goal is to maximize the use of the generator, which is a hydroelectric power plant.

On the other hand, the ED approach is found, for example, in the publication [18]. The object
of the study is a microgrid, and air conditioners are controlled. The goal is to reduce operating
costs. On the other hand, the paper [19] addresses the cost optimization problem related to line
capacity in the power grid. Another example of solving the ED problem is the publication [20].
Here, the author’s primary object of interest was water resource recovery facilities (WRRF) as
potential energy generation units. The goal of the optimization was to reduce costs. Another
example of solving the ED problem is the article [21]. The publication combined the economic
dispatch problem with demand control, and artificial neural networks were used for optimization.
Since the object of consideration was a microgrid in island operation mode, the optimization goal
was to maintain the stability of such a system.

Directly related to the UC and ED problems are energy storage systems, which allow storing
energy when an excess is produced and giving the energy back when there is a shortage. For
example, in [22], the authors solve the UC problem by scheduling an energy storage system (ESS)
in a grid with a wind turbine to enable more efficient scheduling of generation units and improve
the power system’s stability. The studied networks can be complicated; in [23], a grid containing
photovoltaic installations, fuel cells, an energy storage system, and wind power plants is examined.
The goal of controlling such a network was to minimize operating costs and reduce emissions.
An interesting approach is taken by the authors of the publication [24], where the energy storage
system is a hydropower plant. The publication analyzes the problem of scheduling the operation
of a hydropower plant to reduce costs. Energy storage systems support not only economic goals
but also technical ones. In [25], the authors use ESS to maintain the frequency at an appropriate
level in the network where wind power plants are located. Another example of achieving technical
goals is published in [26]. Here, the goal of reducing emissions is realized by supporting grid
operation with an energy storage system.

Intelligent control of a microgrid involves the application of not a single method but a combi-
nation of multiple ways to efficiently meet technical and economic objectives. This makes the
resulting objective functions characterized by high complexity and many local extremes at which
traditional optimization algorithms fail. To address this problem, algorithms using computational
intelligence (CI) are used. A well-publicized algorithm is particle swarm optimization (PSO).
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For example, in [27], the authors use a modified version of the PSO to solve the UC problem in
a grid with hydropower plants, wind turbines, and thermal units. The problem is the uncertainty
in the forecast of the energy produced by the wind power plant. Also, concerning wind turbines,
the paper [28] uses a variant of the PSO algorithm, the crow search algorithm (CSA). There,
the operation of CSA is supported by the JAYA algorithm and is used to solve the problem of
maximizing the use of wind turbines in the analyzed system. Another optimization problems
are environmental objectives, for example in [29]. The variant of the PSO algorithm used is
Niching Penalized Chimp Optimization (NPChOA). An extension of the environmental variant
to include cost balancing is presented in [30]. In this case, the PSO variant used is the mayfly
algorithm (MA). A well-developed and proven method that uses CI is artificial neural networks.
Their application can be seen in the publication [31]. The optimization problem considered by the
authors is transmission line losses.

1.2. Research gaps and contribution of the work

The literature review indicates that the answer to microgrid control problems is not to use
a single optimization method but multiple, properly combined planning strategies. However, the
experiments show that this approach results in multi-criteria optimization, contributing to the
optimization process’s complexity. Hence, the answer to this problem is to solve the optimization
problem using algorithms based on computational intelligence.

Therefore, in this paper, the authors propose a new algorithm for controlling the operation of
a microgrid energy storage system. The algorithm uses a deterministic and CI approach, which
employs the PSO method. The objective function combines technical and economic objectives
and is scalable to any system. Load and generation forecasts were used in the calculations. The
algorithm allows the implementation of any time intervals. Representative operation of the ESS is
provided by experimentally determining the charging and discharging characteristics of the energy
storage system. The operation of the control algorithm is tested for six cases.

1.3. Nomenclature

The article uses the abbreviations and symbols listed in Table 1.

Table 1. Nomenclature

Parameter Description Unit
T Time step (e.g. 1 hour) h
N Number of control steps -

PO Power load (forecast) kW

PG Power PV (forecast) kW

PS Power grid kW

PM Power ESS kW

Pz Assigned power of energy exchange with the grid kW

PX Max. power of ESS (nominal) kW

Continued on next page
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Table 1 — Continued from previous page

Parameter Description Unit
EX Max. energy of ESS (capacity) kWh
SOCX Min. SOC of ESS (e.g. 20%) %o
SOC State of charge %o
B23 Energy purchase tariff € /kWh
RCE Energy sales tariff (energy market price) € /kWh
PLC Charging power by ESS characteristics kW
PLO Charging power by ESS capacity limit kW
PRC Discharging power by ESS characteristics kW
PRO Discharging power by ESS capacity limits kW
feco The objective function in the economic aspect -
The objective function in the technical aspect
fozo (fit with PZ)
The objective function in the technical aspect
fsoc (SOC optimization) -
The objective function in the technical aspect
Jrer (minimize the number of discharge cycles) -
Wy Weights of objective function criteria -

2. The microgrid and ESS models, description of the algorithm

2.1. The microgrid model

The research was based on data from a metallurgical company located in Bialystok, Poland (Pod-
laskie voivodeship). The company produces high-grade stainless steel automotive accessories and
metal laser processing. In connection with the ERA-NET MESHA4U project, the company has be-
come an industrial partner for the multi-energy storage hub system demonstrator. The research aims
to propose the optimal operation of an ESS in an industrial microgrid system to reduce energy con-
sumption costs and maximize energy use from a local PV installation while improving power quality.

The company is powered by a 20 kV distribution network. Power demand is 510 kW during
the winter (December-April) and 330 kW during the rest of the year. The energy purchase price is
related to the three-zone energy tariff B23. The factory’s annual energy consumption has grown
steadily in recent years, from 0.531 MWh in 2018 to 1.190 MWh in 2021. The breakdown of
energy consumption parameters for production by daily time zones is as follows: morning peak
(7 am.—1 p.m.) — about 31%, afternoon peak about 12%, and other hours — about 55%. An
investment in a 317 kWp PV installation was made to reduce energy demand. The PV installation
began generating energy at the end of 2021. The second stage of the plant’s grid modernization was
the installation of an ESS to act as a UPS for sensitive laser processing equipment and to minimize
energy consumption costs. Due to limited resources, the ESS has a capacity of 150 kWh (EX)
and a maximum power of 150 kW (PX). In contrast, the capacity to which the equipment can be
discharged is 20% of the maximum storage capacity (SOCX). The storage unit was commissioned
in early 2023, and analyses of its actual work are underway.
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The calculations developed for the microgrid model relate to an industrial facility’s existing
low-voltage network. The parameters of the modeled devices correspond to actual data, making
it possible to verify the methods under conditions of actual microgrid operation after the

implementation of ESS control algorithms.

Figure 1 shows a simplified diagram of a microgrid, which is used in power flow calculations.
The grid consists of an energy storage system, a photovoltaic power plant, and a load. The microgrid

is connected to the distribution grid via a transformer.
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Fig. 1. A diagram of the analyzed industrial microgrid
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2.2. The energy storage system model

The energy storage system model used for the calculations is based on its charging and discharg-
ing characteristics. The ESS characteristics determine its technical limitations and are usually spec-
ified by the manufacturer. The shape of the ESS characteristics results from the storage technology
and the battery management system’s (BMS) algorithms that manage the operation of the cells, re-
sponding to changes in temperature, voltage, current levels, state of charge, level of cell degradation,
etc. The characteristics shown in Fig. 2 reflect the physical energy storage system; the characteristics
were determined experimentally. The authors described how they were defined in [32]. In addition,
the system operator can use appropriate shaping of characteristics to control optimization.
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2.3. Description of the proposed algorithm

The algorithm uses a method of particle swarm optimization and a deterministic algorithm to
match the power exchanged with the power system to the desired optimal profile. The algorithm
results in an ESS control plan (PM) to manage the excess energy generated by local microgrid
sources or the energy shortage to supply local loads, thus making it possible to control a microgrid
due to economic and technical aspects. The algorithm also allows the combination of multiple
aspects. Suppose only the economic factor is considered; the objective function is modified so that
the algorithm will minimize the cost of energy purchase and maximize profits from energy sales.
The pseudo-code of the energy storage system control algorithm CI is as follows:

Algorithm CI PM[1..N] = function(PG [1..N], PO[1..N], T, EX, PX, SOCX, SOCO0)
Initialization for each particle PZ[1..N]

repeat for each particle until a termination criterion is met (start PSO)

SOC = SOCO initial value of SOC

for k = 1:N
PLO(k) = EX*(1-SOC)/T charging power based on available ESS energy
PRO(k) = EX*(SOCX-SOC)/T discharging power based on available ESS energy

[PLC(k), PRC(k)] = char(EX, PX,SOC) charging, discharging power based on ESS characteristics
if PG(k) + PO(k) + PZ(k) >
PM(k) = min(—(PG(k) + PO(k) + PZ(k)), PLO(k), PLC(k)) limitation of charging ESS
else
PM(k) = max(—(PG(k) + PO(k) + PZ(k)), PRO(k), PRC(k)) limitation of discharging ESS
end
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PS(k) = microgrid_model (PG(k), PO(k),PM(k)) power flow calculations
SOC = (EX * SOC + PM(k) * T)/EX
SOC(k) = SOC;

end

objective function f calculation

check the criterion for termination PSO

end (stop PSO)

result best PM[1..N]  optimal schedule of ESS control

If the technical aspect is considered, the algorithm works based on a preset condition of the best
match between the preset energy exchange curve and the system, resulting from the microgrid’s
ESS constraints and power balance. Other technical aspects relate to minimizing the number
of discharge cycles or maintaining the state of charge (SOC) at the required level. Combining
economic and technical aspects is done by modifying the objective function. Depending on the
weights of each criterion of the objective function, the algorithm will search for a compromise
between optimizing costs and profits and matching technical constraints.

The algorithm uses the generation and demand forecast and the characteristics of the energy
storage’s available charging and discharging power, depending on the state of charge. These
elements can directly affect the effectiveness of the control algorithm. However, obtaining the
actual storage characteristics through intentional testing or in-use can improve the algorithm’s
reliability. The collection of historical data can enhance the effectiveness of the forecasting method.

As input data, the algorithm uses a generation power forecast matrix (PG), a load power
forecast matrix (PO) of size N, a given time step (T), the maximum capacity of the energy storage
system (EX), the maximum power of the ESS (PX), the minimum SOC of the ESS (SOCX). At
the beginning of each control algorithm calculation step, the ESS’s output state of charge is also
set (SOCO). Limiting the values in the PZ matrix ensures that only the excess of locally generated
energy or its local deficit is managed.

The ESS characteristic P = char(SOC) defines the permitted charging (PLC) and discharging
(PRC) power of the energy storage system, depending on the SOC. The algorithm calculates
the permitted power of the storage under extreme charging and discharging conditions (PLO,
PRO), which depend on the available energy of the ESS. The algorithm’s operation begins with
generating a random PZ profile in the PSO loop. In the first step of loop "k", the initial state of
charge of the storage (SOCO) is determined. For each consecutive value of the matrices PZ(k),
PG(k), and PO(k), the permitted values of the charging and discharging power of the ESS are
calculated according to the set characteristics of the storage. The algorithm in the deterministic
part calculates in each step "k" the excess of generated power or its deficiency and, depending on
this, decides to charge or discharge the ESS. For the charging decision, the power in the storage
operation plan PM(k) is the minimum value of the storage power resulting from the comparison of
three values: the power of excess generation [(PG(k) + PO(k) + PZ(k)], the power resulting from
the storage characteristics PLC = char(SOC), and the power for the available charging energy
PLO. In the case of the discharge decision, the power in the PM(k) matrix is the maximum value
of the storage power obtained by comparing three powers: the power of generation deficiency
[PG(k) + PO(k) + PZ(k)], the power resulting from the characteristic PRC = char(SOC), and the
power for the available discharge energy PRO. The microgrid model is then used to calculate the
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power flow, resulting in a matrix of power values for power exchange with the distribution system
PS(k) and a matrix of the state of charge SOC(k). The loop is executed until the entire control plan
PM(k) matrix is filled. The heuristic algorithm then evaluates the solution according to the given
objective function. Suppose the result of the search for the optimum is satisfied, the algorithm
terminates (e.g. reaching the set number of iterations or no changes in the value of the objective
function according to the set tolerance), and if not, a new value of PZ(k) is calculated in the PSO
loop and the evaluation process repeats. The result of the algorithm is the matrix PM(k), which is
the work plan of the ESS.

The proposed algorithm’s advantage is its high flexibility and scalability. The method can
be successfully used in larger, more complex systems by increasing the number of dimensions
in the search space (e.g., more storage units, longer time horizon) and implementing techniques
such as multi-swarm PSO, which enable parallel optimization in distributed systems. This allows
the algorithm to be applied to industrial microgrids and residential or commercial systems with
multiple RES and ESS units.

The algorithm operates on metering data, energy production, and demand prediction data.
The usual interval is 1 h to 15 minutes, and planning captures 24 hours. Implementing PSO
modifications for larger-scale systems in such a time regime should not significantly affect the
solution’s performance. Section 2.4 on PSO characteristics provides more details.

2.4. PSO algorithm

The particle swarm optimization algorithm is a heuristic optimization algorithm inspired by
the behavior of animal packs. In PSO, potential solutions are represented as particles moving
through the search space. The particles cooperate, adjusting their position according to local and
global best solutions [33]. This collective approach allows the algorithm to efficiently explore
and exploit the search space, which can lead to finding better solutions compared to classical
optimization algorithms. Figure 3 shows a simplified diagram of how the PSO algorithm works.

Current value better

than pBest?
initial swarm selection existing pBest remains particle position update
Yes 18 4
calculation of objective iving new speeds to stopping cryterion
function value for each current value is pBest gBest = pBest |a{ O'VINg new sp Pping 5
particle particles met?

No A

Fig. 3. A block diagram of the PSO algorithm

PSO is especially effective in high-dimensional spaces where traditional methods can encounter
difficulties, especially when solving multi-criteria microgrid optimization problems, as shown
in [34,35]. Its ability to simultaneously search and exploit contributes to efficiently finding global
optima, making it an attractive tool in optimization.
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The literature compares many CI techniques. The article [36] compares the performance
of genetic algorithms, memetic algorithms, particle swarm, ant colony systems, and shuffled
frog leaping. Comparative benchmarks between the algorithms are presented for continuous and
discrete optimization problems regarding processing time, convergence speed, and results quality.
The authors demonstrate that PSO performs better than the other algorithms studied in terms of
success rate and solution quality, while being the second best (after ant colony) in processing time.

The method’s main advantages are its simplicity, rapid convergence to the global optimum
solution, scalability, and ability to work efficiently in multidimensional spaces. The proposed
approach, which has not been used before in this type of problem, deals with optimization in
high-dimensional space, where each planned value of ESS power in the control schedule is the
coordinates of the position of the swarm particle in the search space. In the daily analysis at 1h
resolution, the dimension of the space is 24. The large dimension of the search space and the nature of
the objective function, which is discontinuous and contains many local minima, require appropriate
methods. The PSO algorithm was used because classical optimization methods are helpless in such
cases, and other CI algorithms achieve barely correct results with much more computation time.

The economic and technical criteria are expected to affect the results equally in the examples
shown. In the algorithm, normalization of the criteria was applied through the weights. Their
different values are because the criteria have different units and change ranges. The economic
component unit is much larger than the technical component, which was considered when
calibrating the weights. The average daily energy cost is €2 000, the maximum daily number of
discharge cycles is 4, the maximum SOC change is 0.8, and the average daily energy exchange
power with the host system is 3 200 kW. The weights used for the various criteria are shown
in Table 2, while a description of the objective function for the same criteria can be found in
Section 2.5, and the calculation of weights is in Section 2.6. Table 2 also shows the parameters
used for the PSO algorithm in the simulation calculations.

For the values shown in Table 2, i.e. 24-hour optimization with a resolution of 1 h (search space
of 24 dimensions), 72 particles, and a maximum of 100 iterations, the average optimization time
was less than 10 seconds. Each time, ten PSO runs were performed for different random starting
positions of the swarm particles on an i7-class computer (3.4 GHz, 16 GB RAM). This approach
aims to select a schedule that guarantees the objective function’s minimum and repeatable value.

Compared to other algorithms based on CI, such as genetic algorithms or neural networks, the
PSO method has a favorable balance between solution quality and processing time, which has also
been confirmed in the literature [36]. For larger decision spaces (e.g., longer time horizon, more
ESS), the computational cost increases proportionally, but parallel methods or adaptive versions
of PSO can reduce it.

2.5. The objective functions

In technical terms, ESS applications for cooperation with the power grid can have various
purposes. These include maintaining the required power quality parameters through load com-
pensation, reducing load peaks, shifting load and generation peaks, reducing overload losses of
transmission devices by reducing power flows, voltage level control, voltage asymmetry reduction,
emergency power supply, and interaction with renewable energy sources.



Vol. 74 (2025) Optimized control of industrial microgrid energy storage using particle
Table 2. PSO parameters
Symbol Description Parameter value
N Size of search space 24 (number of forecast steps)
S Swarm size 72
MaxlIter Maximum iterations 100
Cl Self-adjustment weight 1.49
C2 Social adjustment weight 1.49
Inertia Inertia range [0.1-1.1]
Tol Function tolerance 10e-4
unlimited! max(PO + PG)
L L
b ower bound limited? max(POy+ PGy)
unlimited! min(PO + PG)
Ub Upper bound limited? min(POy+ PGy)
WECO; WPZ0 Weights for fgpzo 0.6160; 0.3840
WECOs WSOC Weights for fESOC 0.0002; 0.9998
WECOs WLCR Weights for fgrcr 0.0020; 0.9980

! The maximum and minimum values (PO + PG) over the total control range
were taken as a boundary.
2 The maximum and minimum values (POy+ PGy) for each control step
were taken as a boundary.

The optimization objective function (1) in the technical aspect ( fpzg) is to best match the power
curve of energy exchange with the distribution system (PS) and the calculated power curve (PZ)
for the entire forecast interval. For a one-day forecast with a resolution of one hour, N is 24. The
achievement of PZ depends mainly on the parameters of the ESS, namely its maximum capacity
(EX) and rated power (PX), as well as the waveform of charging and discharging characteristics,
and the state of charge and power balance in the microgrid.

N
fozo = ) \(PSk — PZy)”. ()
k=1

The economic optimization uses prices for energy purchases according to the B23 tariff. This is
a three-zone tariff designed for companies supplied from the medium-voltage grid whose contracted
power exceeds 40 kW. In the B23 tariff on business days (Monday—Friday), zones are as follows:

— morning peak,

— afternoon peak (the most expensive zone),

— remaining hours of the day (the cheapest zone).
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The hours of each zone depend on the month. On weekends and public holidays, one zone
applies. Figure 4 shows an example of the distribution of prices in each zone of the B23 tariff for
a weekday in the summer month (June 1, 2021). The morning peak applies from 7 a.m. to 1 p.m.,
and the afternoon peak applies from 7 p.m. to 10 p.m. Figure 4 also shows the energy sales rates
published on the day-ahead energy price market.
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An hourly storage operation schedule can be created based on the energy purchase tariff
(B23) and the energy sales prices in the market (RCE). The economic analysis is based on energy
purchase prices and energy sales prices. CI algorithms mainly use this information to decide how
the ESS will work.

The optimization objective function (2) in the economic aspect (fgco) is to minimize the cost
of energy purchase and maximize the profits of energy sales. The power exchange curve (PS) is split
into a part with positive values (PS}) by replacing negative values with zeros in the PS vector and
a part with negative values (PS, ) by replacing positive values with zeros in the PS. The new vector
PS{ is the power resulting from energy purchased at B23 tariff prices, and PS__ is the power resulting
from energy sold at the forecast energy price market (RCE). The difference between costs and
profits forms the objective function, the minimization of which provides the best economic effect.

N N

feco=T - Z (PS} - B23y) — Z PS; - RCEy), )
k=1 k=1

where T is the time step.

Having the objective functions (1) and (2), the two criteria can be combined with appropriate
weights, wgco and wpyg, using the Weighted Objectives Method. Multi-criteria optimization is
then reduced to a single criterion by introducing a substitute criterion. The choice of the values of
the criteria weights depends on the preference for economic or technical effects and can be carried
out experimentally by simulation.

SfePz0 = WECO - fEco + Wpzo - fpzo- 3)

An example of another objective function implementing a technical aspect is (4), which is
related to maintaining the SOC at the end of the control period (SOCy ) at an average level. That
is, in the case presented here, at the end of each day. Such a function ensures that the ESS at the
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beginning of each new forecasting period is not entirely discharged or charged. The calculations
assumed a sample SOC value of 60% as the target at the end of the control period.

fsoc =10.6 - SOCp]|. “4)
As before, the criteria are combined in (5) with appropriate weights.

fesoc = Weco - feco + Wsoc - fsoc. )

An important technical criterion relating to the lifetime of an EES operating in a microgrid
is minimizing the number of ESS discharging cycles. The objective function that calculates the
discharging cycles in the considered control interval is described by (6).

1 N-1
5 2, 180C, ~80Ci]. (6)
k=1

ficr =

Similarly to (3), an economic criterion was combined with a technical one.

SELCR = WECO * fECO + Wi R * fLCR- 7

Now, the minimization of energy purchase costs is being realized, with consideration given to
the life of the ESS. The used weights may prefer the economic or technical aspect. An important
engineering problem is to select the weights so as to achieve a significant reduction in discharging
cycles with minimal change in the economic balance. The adopted weights are designed to
normalize the criteria. This ensures that each criterion of the objective function has a similar
impact on the optimization result.

2.6. Calculating weights in the objective function

To calculate the individual weights, the weighted objective function method was used. In this
method, technical and economic criteria are combined into a single optimization function. Since
these criteria have different units and ranges (e.g., euros, kW, number of cycles), it was necessary
to normalize them in advance and then calibrate the weights objectively.

The objective function f is the sum of L normalized criteria f;,

f—zL:f- —iﬁ (8)
_. ln_. ﬁs’
i=1 i=1

where f;, is the normative value of the criterion f;.
The objective function as a sum of weighted criteria has the form

L
f=) wifi ©)
i=1
Hence, the weights w; of the f; criteria are:
1
fis

w; =

(10)

M-
=~
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The sum of the weights equals one. This normalization method ensures that each criterion has
a comparable impact on the optimization result, regardless of units or scale. The weights given
in Table 2 are calculated according to (8—10) for the adopted normative values of the criteria
described in Section 2.4. The weights presented are specific to the analyzed case and depend
on the structure of the objective function and the technical and economic data of the system in
question. For other microgrids (e.g., residential) or other market conditions (e.g., other energy
tariffs), the weights would have to be redetermined according to the procedure presented.

3. Performance analysis

All analyses presented in the paper were performed for an industrial metallurgical plant. The
plant has a photovoltaic installation and energy storage. Figure 5 shows generation and load
forecasts for June 1, 2021.
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The authors analyzed the microgrid operation for five cases of different objective functions of
the proposed CI algorithm. To compare the obtained results, a case of control using a deterministic
algorithm (DE) was also considered.

3.1. Deterministic algorithm, balancing exchange power to zero (DE)

The DE algorithms aim to limit the power exchanged with the distribution system to a preset
level (PZ). In this case, the most common situation was considered: an attempt to reduce to zero
the power taken from the distribution system and given back to the system, the value of this PZ
level throughout the entire interval is zero, i.e. island operation of the microgrid is enforced. The
discussed case considers only the technical aspect and is usually proposed by companies offering
integrated photovoltaic installations with energy storage systems.

Applying this type of algorithm could allow a profit of €2 287. In addition, the number of full
discharge cycles would amount to 110.

The rest of the cases involve the CI algorithm and use heuristic methods. Each deals only with
economic goals or combined economic and technical criteria. The algorithm aims to achieve the
economic objective of minimizing costs and maximizing profits.
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3.2. CI algorithm, economic criterion with constraint (E-LIM)

In the second case (E-LIM), charging ESS from the distribution system is prohibited. The
energy storage system can only be charged with surplus power from the photovoltaic plant and
discharged when there is a deficit of energy to meet demand — in other words, implementing
the economic objective with the limitation of ESS cooperation with the distribution grid. The
algorithm is focused on minimizing the cost of purchasing energy and maximizing the profits of
energy sales. In this case, there is no preset level of exchange power PZ, so the algorithm worked
only based on prices determined from the tariff and prices in the energy market.

Adopting this approach for a whole year could gain the studied facility € 3 070, an increase
over the previous approach. In addition, the number of full discharge cycles was also reduced by
two to 108.

3.3. CI algorithm, economic criterion with global constraint (E-NO-LIM)

In the third case (E-NO-LIM), ESS charging from the grid is allowed by introducing a fixed
power limit. This level was set as the maximum and minimum PO+PG (the sum of load and
generation power) for the entire day. The economic criterion remained unchanged. The algorithm’s
goal is to minimize costs and maximize profits.

The analysis was performed for June 1, 2021. Analyzing the waveforms, particularly the inten-
sive work of the ESS, can be seen, especially if we compare the changes in SOC to previous cases.
Without technical limitations, the algorithm took advantage of every opportunity to save money. This
resulted in charging and discharging the energy storage system whenever it was economically viable.

Compared to the previous two, this algorithm involves intensive energy storage system
operation, as can be seen in the dynamic changes of the SOC. It makes the most of saving
opportunities by making every economically advantageous decision, and is not technically limited.
As a result, charging and discharging of the ESS occur whenever it is profitable, which translates
into effective cost optimization. In this case, the annual profit reaches as much as € 6710. However,
the annual number of full discharge cycles increases greatly, reaching 745.

3.4. CI algorithm, both technical and economic aspects, balancing to PZ (E-PZ0)

In the fourth case (E-PZ0), the algorithm combines the economic and technical goal of
compensating the power exchanged with the system. The objective function contains two criteria:
the technical aspect, with a weight of 0.384, and the economic aspect, with a weight of 0.616.

It can be noted that in this case, too, the ESS worked very intensively. The energy storage system
charged and discharged more frequently than in the previous case. The ESS worked practically
every hour, allowing an annual profit of € 6 689, with an annual number of full discharge cycles
of 930. In summary, with similar gains, a much higher number of full discharge cycles came out.

3.5. CI algorithm, both technical and economic aspects, conditions for SOC (E-SOC)

In the fifth case (E-SOC), an economic and technical criterion regarding the state of charge
of the energy storage system is combined. The algorithm will aim for the SOC to be the same
at the beginning and end of the day. This time, the weights of the components were 0.0002 and
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0.9998 for the economic and technical criteria, respectively. Analyzing the obtained results, it is
noticed that the ESS operates at a lower frequency than in the case of E-PZ0. The operation of the
energy storage system is similar to that of E-NO-LIM. The profit reached € 6 697, while annual
full discharge cycles equal 706.

3.6. CI algorithm, both technical and economic aspects, limitation of the number of discharg-
ing cycles of ESS (E-LCR)

In the sixth case (E-LCR), the number of ESS discharging cycles is minimized in addition to
achieving the optimal economic goal. The weights for the individual components of the objective
function were 0.002 and 0.998 for the economic and technical criteria, respectively.

It can be seen that adding the number of discharging cycles to the objective function significantly
reduced the ESS’s activity. The energy storage system operates less frequently than in previous
cases. Its activity is comparable to the case in which the economic aspect was analyzed while
reducing the ESS’s cooperation with the grid (E-LIM), which means in this case, reaching the
annual number of full discharge cycles of 461 cycles.

Next, the economic effect of such control was checked. The obtained waveform is similar to
the E-NO-LIM and E-PZ0 cases. In this case, the annual gain reached € 6 635.

As it was one of the most interesting cases the authors decided to show the power flow and
state of charge curves June 1, 2021. In Fig. 6, it can be seen that despite the restriction of ESS
operation for part of the day, it manages to reduce the power taken from the distribution system,
for example, the hours between 7 and 9 p.m. It can also be noted that there are hours when the
algorithm decides to charge the ESS from the system, for example, between 4 and 7; this is due
to the part of the objective function responsible for the economic effect. A load and generation
forecast is given to the algorithm’s input, so the ESS operation is scheduled to receive the best
value of the objective function throughout the entire day.
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Fig. 6. Power flow (a) and state of charge (b) curves, June 1, 2021. PO — load power, PG — generation power,
PS — distribution system power for DE and E-LCR algorithm
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4. Summary of conducted analyses

The final stage of the analysis was to compare all the cases considered with each other. It
should be noted that the economic analysis of the control method was carried out and referred to
the effects obtained in a microgrid without ESS. The calculations are based on energy purchase
and sale tariffs. Only net electricity prices were considered, deliberately omitting distribution
charges, fixed charges, and taxes. The study omits investment costs and energy losses in the ESS
and transmission lines, which have no significant impact on the comparative analysis since the
comparison of all control methods involves the same microgrid system and equipment with the
same parameters. A graphical illustration of the summary is shown in Fig. 7.
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Fig. 7. Comparison of the total annual economic effect for all considered cases (a) and the total annual
number of complete discharging cycles for all considered cases (b)

Analyzing the data, it can be seen that the best economic effect was obtained with E-NO-LIM
control. Still, CI algorithms with technical constraints, such as E-PZ0, E-SOC, and E-LCR, are
only slightly behind the best solution in economic terms.

The annual cost of energy in 2021 required to cover the loads of the studied industrial plant is
€352 281. After installing a 317 kWp PV system, the cost decreased to € 265 036, or 24.77%.
Installing an ESS in a microgrid and using the E-LCR algorithm reduces the cost to € 258 401,
or 26.65%. This means the difference between an installation without ESS and one with ESS is
1.88% (€6 635). The result depends mainly on the parameters of the energy storage system. In the
studied case, the small capacity of the ESS significantly reduced the control ability.

In contrast, a comparison with the DE algorithm shows an increase in the annual economic
efficiency of more than 280%. On the other hand, the yearly number of discharging cycles favors
the DE algorithms. It reached 110 cycles for the DE. From the group of CI algorithms, the smallest
value of discharging cycles was obtained in the case of E-LIM, i.e., where the algorithm preferred
the economic effect, while reducing cooperation with the grid. However, the economic effect is
much lower in this case than in the other CI cases.

A general conclusion can be drawn that with a small number of discharging cycles, the
economic effect will be low, so to maximize the profits of using an ESS, a shorter life of the ESS

resulting from its more intensive operation must be taken into account.
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Assuming that the lifetime of modern ESS based on lithium-ion cells is about 3 000 cycles, it
is possible to plot an analysis of the lifetime of ESS for each scenario (Fig. 8).
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Analysis of the results leads to the conclusion that there is a compromise between profit
maximization and ESS lifespan. The scenarios with the highest profit, such as E-NO-LIM and
E-PZ0 (€6 710 and €6 689), result in fast degradation of the ESS (745 and 930 full discharge
cycles per year). On the other hand, strategies such as E-LCR or E-SOC allow a significant
reduction in the number of cycles, to 461 and 706 per year, respectively, while maintaining high
profits: € 6 635 and € 6 697. With E-LCR, the gain is only 1.1% lower than with E-NO-LIM, and
the number of cycles is more than 38% lower.

Assuming a typical lithium-ion battery life of about 3 000 full cycles, these differences translate
into significantly different system lifetimes: from about 3.2 years (for E-PZ0) to more than 6.5
years (for E-LCR). This shows that optimizing ESS control should take into account not only
short-term gains but also the lifetime and potential need for storage replacement.

5. Conclusions

Optimal control of a microgrid energy storage system requires consideration of many technical
and economic components. This contributes to the complexity of the objective function, which
must consider many elements. This results in deterministic optimization methods not always
successfully finding the global minimum. Therefore, the paper uses deterministic and heuristic
methods to present a CI control algorithm for a microgrid energy storage system.

The authors used the proposed algorithm to control the operation of the ESS in five cases of
different objective functions and constraints. One case of deterministic control is also presented
as a background to compare the achieved results. The deterministic algorithm typically aims to
balance the power exchanged with the distribution grid to zero.

The following five cases combined economic objectives and various technical constraints. In
case two, the ESS was only permitted to charge using excess power from the photovoltaic system.
In case three, ESS charging from the distribution system was allowed. In case four, an economic
criterion was combined with a technical criterion concerning the compensation of power exchanged



Vol. 74 (2025) Optimized control of industrial microgrid energy storage using particle 649

with the distribution system. In case five, the technical constraint was the state of charge of the ESS.
The SOC at the beginning and end of the day was to be the same, at the average level of ESS capacity.
The last case was a limitation on the number of full discharging cycles of the energy storage system.

Choosing the optimal control strategy is not straightforward and results from a compromise
between technical and economic aspects. The E-LIM method had the smallest number of complete
discharging cycles of 108 among PSO-based methods. It was also characterized by the smallest
annual profit of € 3 070. Compared to deterministic methods, the economic effects are not much
better. Still, in this case, a significant flattening of the power curve of energy exchange with the
system is achieved, which should be considered a great advantage of the method. On the other
hand, the strategies with the highest profit were characterized by the highest number of complete
discharging cycles. The economic profits varied from €6 735 to € 6 710. On the other hand, the
number of full discharging cycles was between 461 and 930 cycles. The best strategy, in terms of the
compromise achieved between economic profit and the annual number of full discharging cycles,
was the last tested strategy, E-LCR. With this control, the annual profit was € 6 635 with 461
discharging cycles. Compared to the effects obtained by a deterministic algorithm, the improvement
in economic efficiency is significant, reaching the level of 280% in the present case. The profits
result from the active operation of the ESS, which reduces the device’s lifetime. In the currently
preferred prosumer billing systems, such control seems optimal, maximizing the ESS’s life with
a minimum annual economic gain. As the presented research shows, artificial intelligence methods
allow adjusting the objective function to find the optimal balance of economic and technical effects.

Despite the positive results obtained, the proposed approach also has some limitations. The
algorithm relies on short-term demand and generation forecasts, the accuracy of which directly
affects control efficiency. In the current version of the work, no formal analysis of robustness
to forecast errors has been carried out, which we plan to address in future studies. In addition,
the algorithm’s behavior has not yet been analyzed for larger, more complex systems, which can
significantly affect the computation time and convergence of the algorithm. Finally, the current
objective functions focus on economic and basic technical aspects — in the future, the authors
plan to expand them to include qualitative criteria, such as improving power quality, minimizing
voltage fluctuations at microgrid nodes, load symmetrization, extending storage lifetime, etc. To
achieve this, the objective function will require parameters calculated in an adequately developed
electrical grid distribution model, taking into account the exact electrical parameters of devices and
transmission lines, as well as the structure of the microgrid. In addition, the authors plan to research
using multi-criteria optimization algorithms in the Pareto-optimal sense combined with MCDA. In
addition, the algorithm is ready to consider other energy storage technologies. However, this requires
future mapping of electricity dispatch characteristics depending on the characteristics of the stored
energy, such as heat and temperature, compressed air pressure, etc. In addition, the method can be
called multiple times during the day, introducing an element of self-correction of storage scheduling
due to current measurements from the system or other information. The final result of the system
with plan autocorrection requires sensitivity and performance testing. Further possibilities for
developing the solution also involve replacing the weighting system in constructing the objective
function with multi-criteria optimization. It is then possible to transfer not only techno-economic
factors, but also environmental indicators or elements of social factors to the objective function.

The authors hope that the research and results presented are steps to develop smart systems
that integrate RES and ESS in microgrids.
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