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This study presents an analytical model of a clamped circular sandwich plate with
a functionally graded core, developed within the framework of an individual nonlinear
shear deformation theory. The mathematical formulation is an original contribution,
providing a unified representation of various structural configurations – including
three-layer-like, five-layer-like, homogeneous single-layer, and intermediate forms –
through a single continuous function. The variation of Young’s modulus across the core
is controlled by three parameters, enabling flexible modeling of material gradation.

The governing equations are derived using Hamilton’s principle and are solved
analytically through an approximate solution method. The proposed model allows in-
vestigation of the effects of material property variation and the core-to-plate thickness
ratio on the fundamental natural frequency, as well as on the shear effect coefficient
and plate mass, yielding general conclusions supported by a coherent theoretical
framework.

1. Introduction

Composite constructions are undergoing rapid development due to their high
strength-to-weight ratios and adaptability in engineering applications. Among the
numerous challenges in their analysis and design, the study of free vibrations plays
a crucial role. Meiche et al. [1] introduced a novel hyperbolic shear deformation
theory for buckling and free vibration analysis of thick functionally graded sand-
wich plates. This approach yields only four governing equations and unknowns –
fewer than the five required in classical shear deformation theories such as those
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of Mindlin and Reissner. Importantly, it does not require a shear correction fac-
tor while maintaining high accuracy, comparable to that of higherorder models.
Thai and Vo [2] proposed a sinusoidal shear deformation theory for functionally
graded plates that addresses bending, buckling, and vibration problems. Their the-
ory incorporates a sinusoidal distribution of transverse shear stress and satisfies
traction-free boundary conditions without requiring correction factors, using just
four unknowns. Closed-form solutions for simply supported plates demonstrate
their efficiency and precision. Mahi et al. [3] developed another hyperbolic shear
deformation theory applicable to various plate types – including isotropic, func-
tionally graded, laminated, and sandwich structures. This model, which introduces
five degrees of freedom, ensures parabolic shear strain distribution and satisfies
zero-traction boundary conditions without correction factors. Using Hamilton’s
principle and the Ritz method, the study provides accurate analytical solutions for
deflections, stresses, and vibration frequencies. Chen et al. [4] analyzed free and
forced vibrations of functionally graded porous beams with spatially varying poros-
ity and material properties. Their approach integrates Timoshenko beam theory
with Lagrange’s equations, Ritz trial functions, and the Newmark-𝛽 method to ex-
plore both symmetric and asymmetric porosity effects. The study reveals how these
distributions affect dynamic performance under different loading conditions. Singh
and Singh [5] introduced two advanced shear deformation models – Trigonometric
Deformation Theory (TDT) and Trigonometric-Hyperbolic Deformation Theory
(THDT) – for laminated and 3D braided composite plates. These theories incorpo-
rate nonlinear shear strain distributions that meet surface traction-free conditions.
Numerical results show superior accuracy in predicting vibration and buckling be-
havior, with sensitivity to parameters like fiber volume fraction and braiding angle.
Zhai et al. [6] focused on five-layered sandwich plates with double viscoelastic
cores, analyzing their free vibration behavior using first-order shear deformation
theory. The governing equations derived through Hamilton’s principle were solved
via the Navier method, providing new benchmark data on frequency and damping
characteristics. Żur [7] investigated free vibrations of functionally graded circular
plates supported by concentric rings using classical plate theory. Employing the
quasi-Green’s function method, the study evaluates how boundary conditions, vol-
ume fraction index, and support geometry influence natural frequencies, offering
reference values for model validation. Birman and Kardomateas [8] reviewed con-
temporary developments in sandwich structures, addressing theoretical progress,
core innovations, and application challenges. Their work emphasizes the role of
damage mechanisms and environmental effects in shaping future research across
sectors such as aerospace, civil engineering, electronics, and biomedicine. Mag-
nucki et al. [9] examined a rectangular plate with symmetrical through-thickness
variation in mechanical properties, applying a nonlinear deformation hypothesis.
By deriving motion equations via Hamilton’s principle and solving them ana-
lytically, they determined critical loads and natural frequencies. Their findings
were further validated through finite element modeling using ABAQUS. Żur et
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al. [10] investigated the free vibration and buckling responses of functionally graded
nanoplates incorporating magnetoelectro-elastic coupling, employing a nonlocal
modified sinusoidal shear deformation theory. The motion equations, derived via
Hamilton’s principle, include contributions from electric and magnetic fields. Ana-
lytical solutions for simply supported plates were validated against existing results,
and a parametric study revealed the influence of various factors on the nanoplate’s
mechanical behavior. These outcomes provide benchmark data for validating ana-
lytical and numerical methods in nanoelectromechanical system (NEMS) design.
Roshanbakhsh et al. [11] introduced an analytical approach based on displace-
ment potential functions to solve the three-dimensional free vibration problem
of functionally graded circular plates with surface boundary conditions. Material
properties vary according to exponential and power laws. The method decouples the
governing equations into linear partial differential equations, which are solved inde-
pendently. Solutions are presented for isotropic FG materials under axisymmetric
vibration and in-plane shear modes, demonstrating high accuracy and agreement
with previous analytical studies and ABAQUS simulations. Magnucki [12] ad-
dressed the axisymmetric flexural vibrations of circular plates with clamped edges
and symmetric through-thickness property variation, supported on elastic founda-
tions. A shear deformation model was used to derive the motion equations, and the
fundamental natural frequency was obtained analytically. Magnucki et al. [13] stud-
ied a simply supported circular plate with thickness-wise variations transitioning
between single-layer and three-layer configurations. A unified mathematical formu-
lation for axisymmetric bending and buckling – including intermediate structural
states – was developed, accounting for shear effects. The governing equations were
solved analytically. Sah and Ghosh [14] explored free vibration and buckling of
multidirectional porous FGM sandwich plates with continuously varying material
properties along the longitudinal and transverse directions. Voigt’s micromechani-
cal model and sinusoidal shear deformation theory were used to derive equilibrium
equations. An analytical solution using Navier’s technique was obtained, and the
influence of porosity distribution, volume fraction indices, layer thickness, and ge-
ometric parameters on natural frequencies and buckling loads was evaluated. Wei
and Qing [15] applied modified couple stress theory (MCST) to study axisymmet-
ric bending, buckling, and free vibration of circular and annular microplates made
from bi-directional functionally graded (BiFG) materials. Hamilton’s principle was
employed to derive the governing equations and boundary conditions, discretized
using the generalized differential quadrature method. Numerical results illustrated
the effects of material and geometric parameters on mechanical responses under
various edge constraints. Magnucki [16] investigated three-point bending of simply
supported beams, including homogeneous, sandwich, and depth-graded structures
with bisymmetrical cross-sections. Analytical models were developed incorporat-
ing the Zhuravsky shear stress formula, and using the principle of stationary total
potential energy, differential equilibrium equations were solved. Deformations and
maximum deflections were analytically determined and visualized. In [17], Mag-
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nucki and Magnucka-Blandzi modeled free axisymmetric flexural vibrations of a
three-layer sandwich circular plate with a graded core and constant facings. A non-
linear shear deformation theory was developed, and cases of simply supported and
clamped edges were analyzed using Hamilton’s principle. The resulting motion
equations yielded fundamental natural frequencies. Magnucki et al. [18] examined
an asymmetrical sandwich beam with a functionally graded core under three distinct
boundary condition variants. Employing Hamilton’s principle, they developed an
analytical model leading to two differential equations of motion, which were solved
to determine critical loads and fundamental natural frequencies for each support
case. Detailed calculations for exemplary beam configurations were performed and
compared with results from finite element analysis. In a subsequent study, Mag-
nucki et al. [19] investigated a thin-walled rectangular sandwich plate featuring
an individually functionally graded core. Utilizing a nonlinear shear deformation
theory based on the concept of a straight normal, a reduced system of equilibrium
equations was derived and solved analytically to determine the critical load. Ad-
ditional analytical analyses were conducted for selected plates, complemented by
a corresponding FEM-based numerical model. Bardella [20] provided analytical
solutions for the stress field in straight sandwich beams with identical face sheets,
considering linear elastic flexure influenced by zigzag warping and Timoshenko’s
kinematics. An equilibrium equation from Cauchy continuum mechanics was em-
ployed to recover the through-thickness normal stress component. The accuracy of
these estimates was demonstrated across a range of stiffness ratios and boundary
conditions. By comparing with detailed FEM simulations, the study highlighted the
significance of tensile stress at the core–face interface in cantilever sandwich beams
under uniform loads, underscoring its importance in delamination analyses and reli-
able sandwich panel design. This study concerns a clamped circular sandwich plate
with radius 𝑅 and total thickness ℎ, featuring an individually functionally graded
core (see Fig. 1) between facings with constant mechanical properties. The work is
a continuation of previous analyses on circular plates reported in [12, 13, 17], and
an improvement of their analytical models. The main goal of the work is to develop
an analytical model of this plate that incorporates shear deformation effects, and
to determine the fundamental natural frequencies of selected plate configurations.

Fig. 1. Scheme of the clamped circular sandwich plate



Free flexural axisymmetric vibration of a clamped circular sandwich plate. . . 549

Based on Hamilton’s principle, two differential equations of motion for the
clamped circular plate are derived and then approximately solved by assuming
specific forms for the unknown functions that satisfy the boundary conditions of
the clamped plate. Finally, the fundamental natural frequency is obtained.

The total thickness of the plate is expressed as the sum of the following layers

ℎ = 2ℎ 𝑓 + ℎ𝑐 , (1)

where: ℎ 𝑓 – thickness of each facing, ℎ𝑐 – thickness of the core.

2. The analytical model of the circular sandwich plate

Fig. 2 illustrates the distribution of Young’s modulus across the plate’s thick-
ness.

Fig. 2. Variation of Young’s modulus along the plate thickness (left) and simplified representation
for larger values of 𝑛 (right)

The Young’s modulus is defined based on the formulation proposed in [19]. In
the upper (−1/2 ⩽ 𝜁 ⩽ −𝜒𝑐/2) and lower facing (𝜒𝑐/2 ⩽ 𝜁 ⩽ 1/2), it is constant
and equal to 𝐸 𝑓 , whereas in the core (−𝜒𝑐/2 ⩽ 𝜁 ⩽ 𝜒𝑐/2), it varies according to
the following expression:

𝐸𝑐 (𝜁) = 𝐸 𝑓 𝑓𝑒 (𝜁), (2)

where the dimensionless function

𝑓𝑒 (𝜁) = 𝑒𝑐 + (1 − 𝑒𝑐)
[
1
2
+ 1

2
cos

(
4
𝜋

𝜒𝑐
𝜁

)]𝑛
− 𝑘

[
cos

(
𝜋

𝜒𝑐
𝜁

)]10𝑛
, (3)

and 𝜁 = 𝑧/ℎ – dimensionless coordinate across the plate thickness, 𝜒𝑐 = ℎ𝑐/ℎ –
relative thickness of the core, 𝑒𝑐 – modulus coefficient, with 0 < 𝑒𝑐 ⩽ 1, 𝑛 – natural
number, 𝑘 – coefficient (0 ⩽ 𝑘 ⩽ 1 − 𝑒𝑐).
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Thus, the structure can be classified as a sandwich configuration with an
individually tailored functionally graded core. For 𝑘 = 0, it resembles a five-layer
structure. It is readily observed that the applied function satisfies the continuity
condition of material properties between layers, particularly at 𝜁 = −𝜒𝑐/2, i.e.,
𝑓𝑒 (−𝜒𝑐/2) = 1, which results in 𝐸𝑐 (−𝜒𝑐/2) = 𝐸 𝑓 . Similarly, the same applies for
𝜁 = 𝜒𝑐/2.

Fig. 3 illustrates the post-bending deformation of a straight normal initially
perpendicular to the plate’s neutral surface.

Fig. 3. The deformation scheme of the straight normal line of this plate

The longitudinal displacements, as shown in Fig. 3, are given by:
• the upper facing (−1/2 ⩽ 𝜁 ⩽ −𝜒𝑐/2)

𝑢 (𝑢 𝑓 ) (𝑟, 𝜁 , 𝑡) = −ℎ
[
𝜁
𝜕𝑤

𝜕𝑟
− 𝑓

(𝑢 𝑓 )
𝑑

(𝜁)𝜓(𝑟, 𝑡)
]
, (4)

• the core (−𝜒𝑐/2 ⩽ 𝜁 ⩽ 𝜒𝑐/2)

𝑢 (𝑐) (𝑟, 𝜁 , 𝑡) = −ℎ
[
𝜁
𝜕𝑤

𝜕𝑟
− 𝑓

(𝑐)
𝑑

(𝜁)𝜓(𝑟, 𝑡)
]
, (5)

• the lower facing (𝜒𝑐/2 ⩽ 𝜁 ⩽ 1/2)

𝑢 (𝑙 𝑓 ) (𝑟, 𝜁 , 𝑡) = −ℎ
[
𝜁
𝜕𝑤

𝜕𝑟
− 𝑓

(𝑙 𝑓 )
𝑑

(𝜁)𝜓(𝑟, 𝑡)
]
, (6)

where: 𝑤(𝑟, 𝑡) – deflection of the plate, 𝜓(𝑟, 𝑡) = 𝑢 𝑓 (𝑟, 𝑡)/ℎ – dimensionless
displacement function, 𝑓 (𝑢 𝑓 )

𝑑
(𝜁), 𝑓 (𝑐)

𝑑
(𝜁), 𝑓 (𝑙 𝑓 )

𝑑
(𝜁) – unknown dimensionless de-

formation functions representing the shape of the deformed straight normal line,
𝑡 – time.

Therefore, the strains:
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• the upper facing (−1/2 ⩽ 𝜁 ⩽ −𝜒𝑐/2)

𝜀
(𝑢 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑢 𝑓 )

𝜕𝑟
= −ℎ

[
𝜁
𝜕2𝑤

𝜕𝑟2 − 𝑓
(𝑢 𝑓 )
𝑑

(𝜁) 𝜕𝜓
𝜕𝑟

]
, (7)

𝜀
(𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) = 𝑢 (𝑢 𝑓 ) (𝑟, 𝜁 , 𝑡)

𝑟
= −ℎ

[
𝜁
𝜕𝑤

𝑟𝜕𝑟
− 𝑓

(𝑢 𝑓 )
𝑑

(𝜁)𝜓(𝑟, 𝑡)
𝑟

]
, (8)

𝛾
(𝑢 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑢 𝑓 )

ℎ𝜕𝜁
+ 𝜕𝑤

𝜕𝑟
=

d 𝑓
(𝑢 𝑓 )
𝑑

d𝜁
𝜓(𝑟, 𝑡), (9)

• the core (−𝜒𝑐/2 ⩽ 𝜁 ⩽ 𝜒𝑐/2)

𝜀
(𝑐)
𝑟 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑐)

𝜕𝑟
= −ℎ

[
𝜁
𝜕2𝑤

𝜕𝑟2 − 𝑓
(𝑐)
𝑑

(𝜁) 𝜕𝜓
𝜕𝑟

]
, (10)

𝜀
(𝑐)
𝜑 (𝑟, 𝜁 , 𝑡) = 𝑢 (𝑐) (𝑟, 𝜁 , 𝑡)

𝑟
= −ℎ

[
𝜁
𝜕𝑤

𝑟𝜕𝑟
− 𝑓

(𝑐)
𝑑

(𝜁)𝜓(𝑟, 𝑡)
𝑟

]
, (11)

𝛾
(𝑐)
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑐)

ℎ𝜕𝜁
+ 𝜕𝑤

𝜕𝑟
=

d 𝑓
(𝑐)
𝑑

d𝜁
𝜓(𝑟, 𝑡), (12)

• the lower facing (𝜒𝑐/2 ⩽ 𝜁 ⩽ 1/2)

𝜀
(𝑙 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑙 𝑓 )

𝜕𝑟
= −ℎ

[
𝜁
𝜕2𝑤

𝜕𝑟2 − 𝑓
(𝑙 𝑓 )
𝑑

(𝜁) 𝜕𝜓
𝜕𝑟

]
, (13)

𝜀
(𝑙 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) = 𝑢 (𝑙 𝑓 ) (𝑟, 𝜁 , 𝑡)

𝑟
= −ℎ

[
𝜁
𝜕𝑤

𝑟𝜕𝑟
− 𝑓

(𝑙 𝑓 )
𝑑

(𝜁)𝜓(𝑟, 𝑡)
𝑟

]
, (14)

𝛾
(𝑙 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) = 𝜕𝑢 (𝑙 𝑓 )

ℎ𝜕𝜁
+ 𝜕𝑤

𝜕𝑟
=

d 𝑓
(𝑙 𝑓 )
𝑑

d𝜁
𝜓(𝑟, 𝑡). (15)

Consequently, the stresses:
• the upper facing (−1/2 ⩽ 𝜁 ⩽ −𝜒𝑐/2)

𝜎
(𝑢 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑢 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

(𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡)

]
, (16)

𝜎
(𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

𝑢 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡)

]
, (17)

𝜏
(𝑢 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

2(1 + 𝜈) 𝛾
(𝑢 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡), (18)

• the core (−𝜒𝑐/2 ⩽ 𝜁 ⩽ 𝜒𝑐/2)

𝜎
(𝑐)
𝑟 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑐)
𝑟 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

(𝑐)
𝜑 (𝑟, 𝜁 , 𝑡)

]
𝑓𝑒 (𝜁), (19)
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𝜎
(𝑐)
𝜑 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑐)
𝜑 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

(𝑐)
𝑟 (𝑟, 𝜁 , 𝑡)

]
𝑓𝑒 (𝜁), (20)

𝜏
(𝑐)
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

2(1 + 𝜈) 𝛾
(𝑐)
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) 𝑓𝑒 (𝜁), (21)

• the lower facing (𝜒𝑐/2 ⩽ 𝜁 ⩽ 1/2)

𝜎
(𝑙 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑙 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

(𝑙 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡)

]
, (22)

𝜎
(𝑙 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

1 − 𝜈2

[
𝜀
(𝑙 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡) + 𝜈𝜀

(𝑙 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡)

]
, (23)

𝜏
(𝑙 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡) =

𝐸 𝑓

2(1 + 𝜈) 𝛾
(𝑙 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡), (24)

where 𝜈 – Poisson’s ratio, assumed to be constant throughout the entire plate.
The unknown dimensionless deformation functions of the straight normal

line 𝑓
(𝑢 𝑓 )
𝑑

(𝜁), 𝑓
(𝑐)
𝑑

(𝜁), 𝑓
(𝑙 𝑓 )
𝑑

(𝜁) (Fig. 3) are consistent with those presented in
paper [19]. Moreover, procedures for their derivation are described in detail in
papers [16] and [20], with consideration of the Zhuravsky (Jourawski) shear stress.
Thus, these functions are in following forms:

• the upper facing (−1/2 ⩽ 𝜁 ⩽ −𝜒𝑐/2)

𝑓
(𝑢 𝑓 )
𝑑

(𝜁) = 𝐶 𝑓 +
1
24

(
3 − 4𝜁2

)
𝜁, (25)

• the core (−𝜒𝑐/2 ⩽ 𝜁 ⩽ 𝜒𝑐/2)

𝑓
(𝑐)
𝑑

(𝜁) =
∫

𝑆
(𝑐)
𝑧 (𝜁)
𝑓𝑒 (𝜁)

d𝜁, (26)

• the lower facing (𝜒𝑐/2 ⩽ 𝜁 ⩽ 1/2)

𝑓
(𝑙 𝑓 )
𝑑

(𝜁) = −𝐶 𝑓 +
1

24

(
3 − 4𝜁2

)
𝜁, (27)

where

𝑆
(𝑐)
𝑧 (𝜁) = 1

8

[
1 − 𝜒2

𝑐 + 𝑒𝑐

(
𝜒2
𝑐 − 4𝜁2

)]
− (1 − 𝑒𝑐) 𝐽𝑐1(𝜁) + 𝑘𝐽𝑐2(𝜁),

𝐽𝑐1(𝜁) =
𝜁∫

−𝜒𝑐/2

[
1
2
+ 1

2
cos

(
4
𝜋

𝜒𝑐
𝜁1

)]𝑛
𝜁1 d𝜁1 ,

𝐽𝑐2(𝜁) =
𝜁∫

−𝜒𝑐/2

[
cos

(
𝜋

𝜒𝑐
𝜁1

)]10𝑛
𝜁1 d𝜁1 ,
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𝐶 𝑓 =
1

48

(
3 − 𝜒2

𝑐

)
𝜒𝑐 −

𝜒𝑐/2∫
0

𝑆
(𝑐)
𝑧 (𝜁)
𝑓𝑒 (𝜁)

d𝜁 .

Functions (25) and (27) corresponding to the upper and lower facings satisfy the
necessary condition, i.e., they are perpendicular to the external surfaces of this
plate.

Fig. 4 presents the variation of Young’s modulus as described by equation (3),
along with the deformation profile of the straight normal line based on expressions
(25), (26), and (27), for the representative plate configuration defined by 𝜒𝑐 =

22/25, 𝑒𝑐 = 1/25, 𝑛 = 5, 𝑘 = 0.5.

𝑓𝑒 (𝜁) 𝑓
(𝑢 𝑓 )
𝑑

(𝜁), 𝑓
(𝑐)
𝑑

(𝜁), 𝑓
(𝑙 𝑓 )
𝑑

(𝜁)

Fig. 4. Variation of Young’s modulus and deformation of the initially straight normal line

3. The analytical study of the free flexural axisymmetric vibration
of the plate

The kinetic energy of the plate is expressed as:

𝑈𝑘 = 𝜋𝜌𝑝ℎ

𝑅∫
0

(
𝜕𝑤

𝜕𝑡

)2
𝑟 d𝑟, (28)

where the mass density of the plate

𝜌𝑝 = 𝜌 𝑓

1 − 𝜒𝑐 +
𝜒𝑐/2∫

−𝜒𝑐/2

𝑓𝜌 (𝜁)d𝜁

 , (29a)
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the dimensionless function, in accordance with the article [18], is as follows

𝑓𝜌 (𝜂) =
√
𝑒𝑐 +

(
1 − √

𝑒𝑐
) [1

2
+ 1

2
cos

(
4
𝜋

𝜒𝑐
𝜁

)]𝑛
− 𝑘

[
cos

(
𝜋

𝜒𝑐
𝜁

)]10𝑛
, (29b)

and 𝜌 𝑓 is mass density of the facing material.
The elastic strain energy

𝑈𝜀,𝛾 = 𝜋
𝐸 𝑓 ℎ

1 − 𝜈2

𝑅∫
0

[
Φ

(𝑢 𝑓 )
𝜀,𝛾 (𝑟, 𝑡) +Φ

(𝑐)
𝜀,𝛾 (𝑟, 𝑡) +Φ

(𝑙 𝑓 )
𝜀,𝛾 (𝑟, 𝑡)

]
𝑟 d𝑟, (30)

where:

Φ
(𝑢 𝑓 )
𝜀,𝛾 (𝑟, 𝑡) =

−𝜒𝑐/2∫
−1/2

{[
𝜀
(𝑢 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡)

]2
+ 2𝜈𝜀 (𝑢 𝑓 )

𝑟 (𝑟, 𝜁 , 𝑡)𝜀 (𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡)

+
[
𝜀
(𝑢 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡)

]2
+ 1 − 𝜈

2

[
𝛾
(𝑢 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡)

]2
}
𝑟 d𝑟,

Φ
(𝑐)
𝜀,𝛾 (𝑟, 𝑡) =

𝜒𝑐/2∫
−𝜒𝑐/2

{[
𝜀
(𝑐)
𝑟 (𝑟, 𝜁 , 𝑡)

]2
+ 2𝜈𝜀 (𝑐)𝑟 (𝑟, 𝜁 , 𝑡)𝜀 (𝑐)𝜑 (𝑟, 𝜁 , 𝑡)

+
[
𝜀
(𝑐)
𝜑 (𝑟, 𝜁 , 𝑡)

]2
+ 1 − 𝜈

2

[
𝛾
(𝑐)
𝑟 𝑧 (𝑟, 𝜁 , 𝑡)

]2
}
𝑟 d𝑟,

Φ
(𝑙 𝑓 )
𝜀,𝛾 (𝑟, 𝑡) =

1/2∫
𝜒𝑐/2

{[
𝜀
(𝑙 𝑓 )
𝑟 (𝑟, 𝜁 , 𝑡)

]2
+ 2𝜈𝜀 (𝑙 𝑓 )𝑟 (𝑟, 𝜁 , 𝑡)𝜀 (𝑙 𝑓 )𝜑 (𝑟, 𝜁 , 𝑡)

+
[
𝜀
(𝑙 𝑓 )
𝜑 (𝑟, 𝜁 , 𝑡)

]2
+ 1 − 𝜈

2

[
𝛾
(𝑙 𝑓 )
𝑟 𝑧 (𝑟, 𝜁 , 𝑡)

]2
}
𝑟 d𝑟.

Based on Hamilton’s principle 𝛿

𝑡2∫
𝑡1

(
𝑈𝑘 −𝑈𝜀,𝛾

)
d𝑡 = 0, and considering the ex-

pressions for kinetic energy (28) and elastic strain energy (30), two differential
equations of motion for the clamped circular plate are obtained in the following
form:

𝜌𝑝ℎ𝑟
𝜕2𝑤

𝜕𝑡2
+ 𝐷𝑜

𝜕

𝜕𝑟

{
𝑟
𝜕

𝜕𝑟

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟

(
𝐶𝑤𝑤

𝜕𝑤

𝜕𝑟
− 𝐶𝑤𝜓𝜓(𝑟, 𝑡)

))]}
= 0, (31)

𝜕

𝜕𝑟

{
1
𝑟

𝜕

𝜕𝑟

[
𝑟

(
𝐶𝑤𝜓

𝜕𝑤

𝜕𝑟
− 𝐶𝜓𝜓𝜓(𝑟, 𝑡)

)]}
+ 𝐶𝜓

𝜓(𝑟, 𝑡)
ℎ2 = 0, (32)
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where dimensionless coefficients:

𝐶𝑤𝑤 = 1 − 𝜒3
𝑐 + 12

𝜒𝑐/2∫
−𝜒𝑐/2

𝜁2 𝑓𝑒 (𝜁)d𝜁,

𝐶𝜓𝜓 = 12

2
1/2∫

𝜒𝑐/2

[
𝑓
(𝑙 𝑓 )
𝑑

(𝜁)
]2

d𝜁 +
𝜒𝑐/2∫

−𝜒𝑐/2

[
𝑓
(𝑐)
𝑑

(𝜁)
]2

𝑓𝑒 (𝜁)d𝜁

 ,

𝐶𝑤𝜓 = −3
(
1 − 𝜒2

𝑐

)
𝐶 𝑓 +

1
40

(
4 − 5𝜒3

𝑐 + 𝜒5
𝑐

)
+ 12

𝜒𝑐/2∫
−𝜒𝑐/2

𝜁 𝑓
(𝑐)
𝑑

(𝜁) 𝑓𝑒 (𝜁)d𝜁,

𝐶𝜓 =
1 − 𝜈

2

[
1
80

(
8 − 15𝜒𝑐 + 10𝜒3

𝑐 − 3𝜒5
𝑐

)]
+ 12

𝜒𝑐/2∫
−𝜒𝑐/2

[
𝑆
(𝑐)
𝑧 (𝜁)

]2

𝑓𝑒 (𝜁)
d𝜁,

and

𝐷𝑜 =
𝐸 𝑓 ℎ

3

12
(
1 − 𝜈2) [Nmm].

The two differential equations of motion, (31) and (32), are approximately
solved by assuming the following forms for the functions:

𝑤(𝑟, 𝑡) =
[
1 −

( 𝑟
𝑅

)2
]2

𝑤𝑎 (𝑡), 𝜓(𝑟, 𝑡) =
[
1 −

( 𝑟
𝑅

)2
]
𝑟

𝑅
𝜓𝑎 (𝑡), (33)

where 𝑤𝑎 (𝑡), 𝜓𝑎 (𝑡) – functions of the time.
These assumed functions satisfy the boundary conditions of the clamped plate:

𝑤(𝑅, 𝑡) = 0, 𝜕𝑤/𝜕𝑟
��
0 = 0, 𝜕𝑤/𝜕𝑟

��
𝑅
= 0, 𝜓(0, 𝑡) = 𝜓(𝑅, 𝑡) = 0. Substituting these

functions into the motion equations (31) and (32), and applying Galerkin’s method,
after simple transformations, one obtains:

𝜓𝑎 (𝑡) =
56𝐶𝑤𝜓

14𝐶𝜓𝜓 + 𝐶𝜓 (𝑅/ℎ)2
𝑤𝑎 (𝑡)
𝑅

, (34)

and the differential equation

d2𝑤𝑎

d𝑡2
+ 320

3
(1 + 𝐶𝑠𝑒) 𝐶𝑤𝑤

𝐷𝑜

𝜌𝑝ℎ𝑅
4𝑤𝑎 (𝑡) = 0, (35)

where dimensionless coefficient of the shear effect

𝐶𝑠𝑒 =
14𝐶2

𝑤𝜓

14𝐶𝜓𝜓 + 𝐶𝜓 (𝑅/ℎ)2
1

𝐶𝑤𝑤

. (36)
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Equation (35) is solved by assuming the following form of the solution:

𝑤𝑎 (𝑡) = 𝑤𝑎 sin(𝜔𝑡), (37)

where:𝑤𝑎 – amplitude of the flexural vibration,𝜔 – fundamental natural frequency.
Substituting the assumed solution (37) into the differential equation (35), one

obtains the fundamental natural frequency as follows

𝜔 =
8 · 106

𝑅2

√︄
5
3
(1 + 𝐶𝑠𝑒)

𝐷 𝑝

𝜌𝑝ℎ
[1/s], (38a)

or

𝜔

2𝜋
=

4 · 106

𝜋𝑅2

√︄
5
3
(1 + 𝐶𝑠𝑒)

𝐷 𝑝

𝜌𝑝ℎ
[Hz], (38b)

where: the flexural rigidity of the plate 𝐷 𝑝 = 𝐶𝑤𝑤𝐶𝑜 [Nmm] and ℎ [mm], 𝑅 [mm],
𝐸 𝑓 [MPa], 𝜌𝑝 [kg/m3].

Moreover, the mass of the plate

𝑚𝑝 = 𝜋
𝑅2ℎ

109 𝜌𝑝 [kg]. (39)

Exemplary calculations are conducted for two circular sandwich plates, both having
the same total thickness but differing core thicknesses. The material and geometric
data for both plates are as follows: 𝐸 𝑓 = 72000 MPa, 𝜌 𝑓 = 2710 kg/m3, Young’s
modulus coefficient 𝑒𝑐 = 1/25, Poisson’s ratio 𝜈 = 0.3, radius 𝑅 = 400 mm,
total thickness ℎ = 25 mm, material exponent 𝑛 = 5, 20, and coefficient 𝑘 =

0, 0.25, 0.50, 0.75, 0.96.
• First plate specifications: core thickness ℎ𝑐 = 22 mm, facing thickness
ℎ 𝑓 = 1.5 mm, thus 𝜒𝑐 = 22/25.

The computational outcomes are presented in Tables 1 and 2, with corresponding
graphical results illustrated in Figs. 5 and 6.

Table 1. First plate – Selected results of exemplary calculations for material exponent 𝑛 = 5

𝑘 0 0.25 0.50 0.75 0.96
𝐶𝑤𝑤 0.554492 0.554036 0.553580 0.553124 0.552741
𝐶𝑠𝑒 0.0988801 0.100362 0.102386 0.105914 0.117268

𝜔/2𝜋 [Hz] 456.50 469.14 482.97 498.44 514.51
𝑚𝑝 [kg] 15.98025 15.13907 14.29790 13.45673 12.75014
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Table 2. First plate – Selected results of exemplary calculations for material exponent 𝑛 = 20

𝑘 0 0.25 0.50 0.75 0.96
𝐶𝑤𝑤 0.459644 0.459587 0.459528 0.459471 0.459422
𝐶𝑠𝑒 0.108055 0.108566 0.109286 0.110563 0.114864

𝜔/2𝜋 [Hz] 461.22 468.92 477.06 485.75 494.14
𝑚𝑝 [kg] 13.08596 12.66379 12.24162 11.81946 11.46484

Fig. 5. Fundamental natural frequency of the first plate configuration

Fig. 6. Mass of the first plate configuration

• Second plate specifications: core thickness ℎ𝑐 = 20 mm, facing thickness
ℎ 𝑓 = 2.5 mm, thus 𝜒𝑐 = 20/25.
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The computational results for the second sandwich plate configuration are detailed
in Tables 3 and 4, with their graphical counterparts illustrated in Figs. 7 and 8.

Table 3. Second plate – Selected results of exemplary calculations for material exponent 𝑛 = 5

𝑘 0 0.25 0.50 0.75 0.96
𝐶𝑤𝑤 0.665283 0.664941 0.664598 0.664255 0.663968
𝐶𝑠𝑒 0.114099 0.115710 0.117944 0.121836 0.134382

𝜔/2𝜋 [Hz] 479.44 490.42 502.31 515.45 529.42
𝑚𝑝 [kg] 17.62339 16.85869 16.09399 15.32928 14.68693

Table 4. Second plate – Selected results of exemplary calculations for material exponent 𝑛 = 20

𝑘 0 0.25 0.50 0.75 0.96
𝐶𝑤𝑤 0.594023 0.593979 0.593936 0.593892 0.593856
𝐶𝑠𝑒 0.133176 0.133772 0.134601 0.136077 0.141105

𝜔/2𝜋 [Hz] 495.37 501.95 508.84 516.17 523.42
𝑚𝑝 [kg] 14.99222 14.60843 14.22464 13.84086 13.51847

Fig. 7. Fundamental natural frequency of the second plate configuration

The variability in the core structure – reflected in the mechanical properties
described by Eq. (2) and the core thickness ratio – has a pronounced influence on
both the fundamental natural frequency and the mass of the plate. It is governed
by the material exponent 𝑛 and the coefficient 𝑘 (0 ⩽ 𝑘 ⩽ 1 − 𝑒𝑐), both of which
are incorporated into the dimensionless displacement function 𝑓𝑒 (𝜁) defined in
expression (3).

However, in the particular case of a homogeneous plate – a single-layer struc-
ture characterized by 𝑒𝑐 = 1 and 𝑘 = 0 – the graphs of the Young’s modulus
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Fig. 8. Mass of the second plate configuration

variation (3) and the deformation of the straight normal line (25), (26), and (27)
are presented in Fig. 9.

𝑓𝑒 (𝜁) 𝑓
(𝑢 𝑓 )
𝑑

(𝜁), 𝑓
(𝑐)
𝑑

(𝜁), 𝑓
(𝑙 𝑓 )
𝑑

(𝜁)

Fig. 9. Young’s modulus and deformation of the initially straight normal line

Moreover, the values of the dimensionless coefficients appearing in equa-
tions (31) and (32) are as follows: 𝐶𝑤𝑤 = 1, 𝐶𝑤𝜓 = 0.1, 𝐶𝜓𝜓 = 0.010119,
𝐶𝜓 = 0.035. Therefore, the dimensionless shear effect coefficient (36) is 𝐶𝑠𝑒 =

0.0153818. It can be readily observed that these values are independent of the ma-
terial exponent 𝑛 – a natural number. Consequently, the values of the fundamental
natural frequencies (38b) for this plate are as follows:
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• with the shear effect
𝜔

2𝜋
= 403.682 Hz,

• without the shear effect (𝐶𝑠𝑒 = 0) – the classical solution
𝜔

2𝜋
= 400.613 Hz.

4. Conclusions

These dimensionless deformation functions 𝑓
(𝑢 𝑓 )
𝑑

(𝜁) (25), 𝑓
(𝑐)
𝑑

(𝜁) (26),
𝑓
(𝑙 𝑓 )
𝑑

(𝜁) (27) of the straight normal line, adopted from article [19], enhance the
analytical model of the circular plate. These functions are derived with consider-
ation of the classical shear stress formula, known as Zhuravsky (Jourawski) shear
stress.

The proposed variation of Young’s modulus (expression (2)) across the core
thickness of the plate – formulated as a single continuous function – enables
an analytical description of a sandwich structure composed of two facings with
constant mechanical properties and a core with variable properties. This unified
model can represent a homogeneous single-layer, a three-layer configuration (with
a nearly constant-property core), a five-layer-like structure, and all intermediate
configurations, within a single analytical framework. Thus:

• homogeneous – one-layer structures for 𝑒𝑐 = 1 and 𝑘 = 0,
• similar to three-layer structures for 𝑘 = 1 − 𝑒𝑐,
• similar to five-layer structures for 𝑘 = 0.
The variability of the core structure and the core thickness ratio have a sig-

nificant impact on both the fundamental natural frequency and the mass of the
plate.
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