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Abstract: Modern industry challenges companies to ensure high reliability of machinery and equipment and continuity of
production processes. An important role in this is played by condition monitoring of machines, during which the operating
parameters of the equipment are analyzed, assessing its condition and the degree of wear of components. As part of the ongoing
research, an 11oT (Industrial Internet of Things) - based solution was developed to monitor the condition of the joints of a FANUC
M-1iA/1H industrial robot. The project involved the integration of sensors on the axes of the robot performing the pick and place
process. A set of condition monitoring tools - CMTK - and sensors enabling diagnostics were used to collect and visualize data.
The monitoring system is based on the analysis of such parameters as the speed of vibration of the joints, their temperature, the
number of cycles performed by the robot. The data sent to the CMTK unit is processed and visualized in the Grafana
environment, making it possible to track the state of the machine in real time. Tests conducted showed the cyclicity of vibrations
during the robot's operation. A clear correlation was observed between the speed of the manipulator's movement and the vibration
level - the highest values were recorded at 4000 mm/s, especially during the braking phase. Deviations from the established
pattern can indicate potential failures. The test results confirm the effectiveness of the applied solution as a diagnostic tool ready
for industrial deployment. Despite the initial cost, the implemented solution increases production efficiency by reducing
downtime and enabling preventive component replacement.

Key words: condition monitoring, parallel robot, palletization process, pick & place process, Industrial
Internet of Things, vibration measurements

1. INTRODUCTION
Condition monitoring of machines and civil engineering

vibrations can interfere with sensitive equipment or delicate
processes inside buildings, such as in laboratories or offices.

constriction is currently one of the applications of lloT
(Industrial Internet of Things) technology. It involves
continuous tracking of specific machine operating parameters
(e.g. vibration), which allows for an ongoing assessment of its
technical condition and the degree of wear and tear
of individual components. This makes it possible to determine
when a component needs to be replaced before it fails, which
could result in production stoppages for a long period of time
[1]. There can be many monitored parameters, e.g.
temperature, ultrasonic vibrations, lubricant contamination,
electrical parameters. However, the most important and most
frequently used method is the analysis of the vibration of
individual components performed by H. A. Rajaetal [2], S.S.
Saidin at al. [3] and T. Singh et al. [4]. A running machine
generates vibrations that provide a lot of information about its
condition. Machine vibrations can have a significant impact
on building construction, particularly in structures near
industrial or heavy machinery operations. Over time,
vibrations from machines, such as those from robotic systems,
construction equipment, or manufacturing machinery, can
lead to structural damage, including cracks in walls, floors,
and foundations. The constant vibration can weaken the
integrity of the building materials, affecting the long-term
stability and safety of the construction. Additionally,

Therefore, monitoring and controlling vibrations is critical in
construction environments to prevent damage, ensure safety,
and maintain the durability of the structure. In the article [5]
the authors proposed a methodology for the classification of
robot collisions. This methodology involves the analysis of
motor current and robot link vibrations through the utilization
of variational mode decomposition (VMD) and an equivalent
filter bank. The purpose of this analysis is to extract vibration
features in an efficient manner. Subsequent to this, a neural
network is trained to detect and classify collisions involving
different materials, achieving high accuracy in distinguishing
human-involved collisions and identifying the collision
location. In a separate study, Nentwitch and Reinhard [6]
described a methodology for developing an effective data
acquisition strategy for predictive maintenance of industrial
robots. The authors emphasized the strategy's impact on
productivity and cost reduction. The methodology is defined
by several key aspects, including the components of the robot
that are to be monitored, the trajectories for data collection,
and the frequency at which measurements are to be taken. The
limitations of the methodology are also addressed. The rapid
advancement of loT technologies has enabled improved
machine interaction, facilitating not only control but also fault
detection and predictive maintenance. The study conducted by
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H. A. Raja et al. [7] explores how IoT can enhance industrial
diagnostics, addressing the need for cost-effective and time-
efficient maintenance solutions. Robot condition monitoring
is essential for maintaining production efficiency, but the
dynamic working states of industrial robots pose significant
challenges. Paper [8] proposes a vibration-based methodology
using frequency response analysis and short-time Fourier
transform to detect faults and assess their severity in industrial
robots. Predictive maintenance strategies that utilize
vibration-based condition monitoring have been shown to
play a crucial role in preventing unexpected breakdowns of
heavy machinery. A study conducted by U. Hassan et al.
reviewed various data collection methods [9], evaluating
different accelerometers and their effectiveness in measuring
vibrations for improved maintenance efficiency. The research
described in [10] introduces an online process monitoring
method that utilizes a vibration-surface quality map and
a convolutional neural network classifier to detect grinding
states, enhancing real-time quality control in robotic
machining. In a related study, H. Han et al. proposed
a vibration-based monitoring approach that uses a triaxial
MEMS accelerometer to detect faults and analyze the
vibration characteristics of different robot joints [11]. This
demonstrates the feasibility of this method for fault detection
and severity assessment. Effective tool condition monitoring
is essential for maintaining process performance in robot-
based incremental sheet forming. In the subsequent paper
[12], the authors demonstrated the use of vibration signal
analysis with an accelerometer sensor to assess tool wear and
surface roughness, highlighting the correlation between
increased vibration and deteriorating tool condition. The
authors of [13] developed an equipment condition monitoring
system based on LabVIEW using the UDP communication
protocol, dynamic invocation, and reentrant technology. The
experimental results confirm the system's ability to efficiently
display, store, and analyze data in both the time and frequency
domains. This supports fault diagnosis, accident prevention,
and improved production efficiency. In the subsequent article
[14], the authors introduce a wireless monitoring system for
operational modal analysis of bridges, using MEMS
accelerometers and a low-power Wi-Fi module for long-term
data collection. The system has been shown to successfully
address challenges such as data synchronization and
preprocessing, as evidenced by experimental validation and
real-world deployment on a concrete arch bridge. R. J.
Stephen et al. explored a tool condition monitoring approach
for drilling operations using an accelerometer sensor to
analyze vibration signals in both time and frequency domains
[15]. By utilizing LabVIEW for vibration amplitude
prediction and training ANN, Fuzzy Neural Network, and
Taguchi models with experimental data, the methodology
effectively detects tool wear and optimizes machining
conditions. Study performed by X. Zhao et al. proposes a force
and material removal monitoring method for robotic grinding
based on acceleration signals [16]. By utilizing an LSTM
network to model the vibration-force relationship, the
framework enables real-time estimation of grinding force and
material removal, ensuring machining  quality.
H. Badkoobehhezaveh et al. analyzed the dynamic and
vibration characteristics of a newly developed 5-DOF long-
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reach robotic arm for farm applications using both finite
element analysis (FEA) and experimental modal analysis [17].
The verified FEA model, which demonstrated good
agreement with experimental results, provides a foundation
for future vibration control and performance optimization
under base excitation. Paper developed by Halder and Asfari
[18] analyzed many robotic solutions for inspection and
monitoring of the built environment, identifying nine types of
robotic systems, with UAVs and UGVs being the most
common. The study highlights key research areas such as
autonomous  navigation,  sensing, and  multi-robot
collaboration, offering insights for future developments in
robotic inspection technologies. Advancements in robot
control, emphasizing model-based control, multi-robot
coordination, force control, and wireless communication to
enhance performance and reduce costs has been detailed
described in [19]. Future trends include lightweight modular
robots, adaptive control for optimized performance, and
expanded applications in industries such as automotive, food
processing, and small and medium enterprises. In their study,
Nentwitch and Daub examined sensor selection for industrial
robot gear condition monitoring, comparing current and
vibration sensor data in accelerated wear tests [20].

The findings emphasize the significance of sensor
characteristics and frequency range variations in the effective
detection of faults. Furthermore, Yuan et al. have developed a
vision-based method for assessing cracks in reinforced
concrete structures, utilizing an inspection robot equipped
with a stereo camera and the 10T for data communication [21].
The method employs deep learning for crack quantification
and projects damage information onto a 3D reconstruction of
the structure, demonstrating high accuracy in damage
segmentation, localization, and quantification during
validation experiments. A dynamic model for robot
transmission defect detection, specifically targeting gear
faults, by developing a geometric model based on the
Modified Denavit-Hartenberg approach and applying the
Euler-Lagrange convention is presented in [22]. The
effectiveness of the model is validated through numerical
simulations and  experimental  vibration  analysis,
demonstrating its capability to detect gear defects under
different conditions. Han et al. proposed a condition
monitoring method for industrial robots using vibration
analysis based on data from a triaxial MEMS accelerometer
[23]. Their experimental results demonstrated that vibration
characteristics vary across different robot joints, and that fault
location and severity—such as seal ring defects—can be
effectively identified using frequency and time-domain
analysis.

A comprehensive review of the literature reveals the
paramount importance of condition monitoring for robots and
machines. This approach enables the early detection of
defects, including gear faults, which can have
a substantial impact on product quality and result in financial
losses. The literature survey indicates that robotic components
that are subject to continuous monitoring will experience
a reduction in unplanned downtime, an enhancement in
operational efficiency, and an increase in the lifespan of the
machinery. This, in turn, will ensure consistent performance
and the production of goods and services of a consistently
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high quality. Beyond serving as a diagnostic tool condition
monitoring systems have the potential to support broader
digital ~ transformation initiatives  within  industrial
environments. The continuous collection and analysis of data
from the robot's joints—such as vibration velocity,
temperature, and operational cycles—can serve as a data
source for digital twin models, allowing real-time simulation
and predictive modeling of robotic behavior. Furthermore,
integration with Al-driven diagnostic algorithms could
enhance the system’s ability to detect subtle deviations,
forecast failures, and recommend maintenance actions
autonomously. These capabilities directly contribute to
resilience against production losses, as they enable early
detection of wear, minimize unplanned downtime, and
support proactive decision-making in maintenance planning.
It enables not only localized diagnosticsbut also scalable,
intelligent maintenance ecosystems aligned with Industry 4.0
principles.

2. METHODOLOGY

2.1 Condition monitoring

The vibration velocity is recorded by sensors, usually based
on accelerometers, which then send the individual values to a
master device capable of processing such large amounts of
data. The sensors are usually attached to the housing of the
machine to be monitored. The vibrations recorded by the
sensor are called vibration signals, which can occur in the time
domain or in the frequency domain [1]. The transition
between these two domains is made possible by the Fourier
transformation. The data collection rate, i.e. the sampling rate
of this signal, depends on the quality of the specific sensor
The vibration signal is analyzed in detail to identify
characteristic frequencies that can be used to detect different
types of faults. The most common faults diagnosed include
bearing and gear damage, which are characterized by higher
frequencies, and problems such as imbalance, misalignment
or looseness between components, which are characteristic of
lower frequencies. An example of this is a defective roller
bearing that emits vibrations at specific frequencies. The more
intense these vibrations are, the more severe the damage.
If the monitored process is repeatable to a certain extent, the
same cycles can be compared at different time intervals and
the differences analyzed, which can also indicate damage [1].
Condition monitoring is a technology that involves high initial
costs, including the purchase of sensors and data processing
equipment. However, in the long run, it saves money on
periodic maintenance and unplanned downtime, and reduces
the risk of misdiagnosis regarding component replacement.
All in all, this technology becomes more effective, reliable
and cheaper over time. Vibration diagnostics is an extremely
complex issue that requires extensive knowledge and a lot of
experience. Due to the variety of machine designs, consisting
of different mechanical components and different operating
conditions, each device requires an individual approach to the
analysis and interpretation of the collected data [1].
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2.2 Condition monitoring sensors Balluff BCM0002

For velocity measurements a Balluff BCMO0002 condition
monitoring sensor was used. The device measures vibration,
surface temperature, ambient pressure and relative humidity.
The sensor allows thresholds to be set for these parameters,
and exceeding the set limits can be automatically detected and
signaled. In addition, the device allows for a delayed response
to events - the alarm is only triggered after a user-specified
period of time during which the parameters remain outside the
acceptable range, as shown in Figure 1.
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I Lower threshold underrun
Il Lower threshold no longer underrun
Il Upper threshold exceeded

IV Upper threshold no longer exceeded

Fig.1. Thresholding measured signals [24]

BCMO0002 calculates the vibration velocity in three axes
(X, Y and Z) based on the measured acceleration values. For
each axis and in a specific time window, it stores parameters
such as: average value, RMS (Root Mean Square) value,
standard deviation, skew coefficient and kurtosis. It also
allows for the suppression of signals with frequencies outside
the defined band, using a band-pass filter. BCM0002 also
offers additional functions, such as an operating hours
counter: since the last start-up, production run or since the last
reset. The device is based on MEMS (micro-electro
mechanical systems) technology, which enables the
production of microscopic devices combining mechanical and
electronic components. The data recorded by the sensor is sent
to the master device via the 10-Link protocol. The BCM0002
sensor is capable of measuring vibration velocity up to
12500 mm/s. It operates with an accuracy better than +£10%
within the frequency range of 2 Hz to 1800 Hz, and extends
up to 2500 Hz in an expanded range with a 3 dB tolerance.
Vibration analysis is carried out within defined time windows,
during which the sensor calculates and provides statistical
parameters. The time window must be selected manually by
the user. A key principle applies: the lower the frequency to
be analyzed, the longer the time window should be. The
shortest available window is 20 ms, suitable for a minimum
frequency of 100 Hz, while the longest is 1000 ms, allowing
for the analysis of signals starting from 2 Hz [24]. Fig. 2
shows BCMO0002 sensor coupled with one of the robot axis.
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Sensor BCMO0002

Fig. 2. BCMO0002 sensor mounted on one of the axes of an industrial
robot

2.3. Condition monitoring toolkit (CMTK)

CMTK (BAVO002N) is a toolkit for condition monitoring. This
solution, developed by Balluff, includes a base unit with built-
in software. The device offers the possibility to collect and
evaluate large amounts of data in a transparent and
configurable way, which cannot be done in a PLC, for
example. The CMTK collects information from sensors via
I0-Link protocol and then processes it. The base unit is
equipped with four 10-Link ports, two LAN1 and LAN2
sockets, a USB-A port and an SD card slot. Thanks to the
built-in software, it does not require programming. After
assigning an appropriate IP address, the configuration is done
via a web server, from where you can go directly to
applications supporting condition monitoring, used e.g. to
visualize collected data (Grafana). Sensors that monitor the
status are connected to the 10-Link ports. The LAN sockets,
on the other hand, enable communication with network
devices via RJ45 cables. CMTK offers various configuration
modes for its network sockets [24]. The device can operate as
a: DHCP SERVER - when it acts as a simplified DHCP
server, as it can assign dynamic IP addresses to other devices,
e.g. computers that connect to it. It is worth noting, however,
that this functionality is limited: the device does not allow for
the setting of a specific address pool or advanced options
typical of full DHCP servers. Alternatively, in DHCP mode,
the CMTK CLIENT itself requests an IP address from
a DHCP server in the network. It is also possible to assign
a static IP address to this component. Figure 3 shows a general
view of the components [25].
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Fig. 3. Components of CMTK [25]

2.4 Condition monitoring - system integration

The project involved creating a position to monitor the
condition of industrial robot joints. Data were collected using
FANUC M-1iA 1H parallel robot with an R-30iB Mate Open
Air controller. The manipulator was equipped with three axes,
its maximum speed is up to 4000mm/s, and the maximum
lifting capacity is 1kg. The shape of the workspace is a
combination of a cuboid with a base measuring 280x280mm,
and a cone tapering downwards and cut at the end. The total
height of the workspace is 100mm. The task of the robot was
to perform a pick and place process. The procedure was
carried out continuously - the program never ended. In each
cycle, the robot moved eighteen elements at the following
speeds: 100 mm/s, 1000 mm/s, 2000 mm/s,
3000 mm/s, 4000 mm/s — this movement formed the basis for
the collected data. After each of the first nine elements had
been moved, the robot took a 4-second break. The last 9
elements, on the other hand, were moved without interruption
at maximum speed. After the cycle was completed, the robot
paused for 10 seconds and then restarted the process from the
beginning. This infinite process was used to generate data.
Vibrations and temperature from the joints were collected by
BCMO0002 sensors mounted on each of the robot's axes. Then,
using the 10-link protocol, the data was transferred to CMTK,
which was responsible for processing it and transferring it to
the Grafana application. This is an open-source solution for
the graphical visualization of collected data. It allows you to
create charts, tables, heat maps and other visualizations.
It supports many types of data, from numerical to temporal.
Grafana allows you to set alert rules based on data monitored
in real time. It sends notifications via e-mail, Slack,
PagerDuty and other channels. Users can view, filter and
analyze data on dynamic dashboards. Grafana offers many
plugins that extend its functionality, e.g. with new chart types.
The fourth CMTK port was occupied by a flow sensor that
monitored the amount of air flowing through the robot's
suction nozzle. Figure 4 and 5 show delta-type FANUC
M-1iA 1H robot and a view of the robot’s joints with the
BCMO0002 sensors mounted. The blue frames indicate which
robot joint a given BCM sensor was connected to, connected
to a specific CMTK port.
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3. RESULTS

The following section is dedicated to the discussion of tests
carried out on the integrated workstation. They were based on
the analysis of the transparency of the displayed data during
the execution of actions by the manipulator. The BCM
vibration velocity sensor determines this based on the
acceleration, which is measured by an accelerometer. Signal
integration is performed within the sensor unit, and the
resulting speed signal is transmitted to the graphical
environment, where it is visualized in graphs. This setup
represents, to our knowledge, the first documented instance of
continuous industrial operation combining a FANUC M-1iA
robot, Balluff's CMTK Condition Monitoring Toolkit, and
Grafana-based visualization. A work cycle of the robot is
understood as the execution of one entire process of placing
pucks on the board and putting them back into the warehouse.
One cycle, on the other hand, covers one transfer of a specific
element to the board. During the tests, program corrections
were introduced to make the information displayed in the
Grafana application clearer. These included lengthening the
intervals between robot work cycles and increasing the
differences in speeds during the execution of individual cycle.
There were also minor adjustments to the position of some
points - to fully minimize the risk of the manipulator colliding
during its long and uninterrupted operation. The robot then
continuously ran the program for several days. This extended
runtime allowed for a robust assessment of real-time vibration
feedback and system response to varying kinematic profiles,
illustrating the practical benefits of the setup in early fault
detection and runtime condition monitoring. As a result of
these actions, a lot of data was obtained, some of which is
presented below.
During one cycle, the manipulator moves at the following
speeds:

e Cycle 1-100mm/s,
Cycle 2 — 1000mm/s,
Cycle 3 —1000mm/s,
Cycle 4 — 100mm/s,
Cycle 5 —2000mm/s,
Cycle 6 — 100mms/,
Cycle 7 — 4000mm/s,
Cycle 8 — 100mm/s,
Figure 6. shows the interconnected network components used Cycle 9 — 3000mm/s,
in the integrated workstation. The router is connected to the Putting disks into storage — 4000mm/s.
Internet, and the Condition Monitoring Toolkit is located in Each of the cycles has been visualized in Figure 7.
the subnetwork it creates. The first three octets of the IP
address of the router and the CMTK are identical, which
enables them to communicate due to the subnet mask
255.255.255.0. All devices communicate via Ethernet/IP
protocol - they are connected via RJ45 cable.

Fig. 5. Delta-type FANUC M-1iA 1H robot

o7
"7
7
Internet -
BNIOOSE w
“:.L:NJ 192
Fig. 6. Network view of integrated system Fig. 7. Visualization of the robot's cycles
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Figures 8 - 10 show the combination of three graphs of the  and then averages the measurements, which corresponds to
vibration velocity of each robot axis as a function of time  one sample in the graph.

(each graph represents one joint of the manipulator). Since the

BCMO0002 sensor measures the vibration velocity in three

axes, there are three functions in each graph. Each color of

data represents vibrations in a different axis (X, Y, Z), as

described in the legend. The domain of the functions covers

two robot duty cycles — one of them is marked in Figure 8.

Each sensor measures the vibrations in a specific time window
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Fig. 10. Example of velocity vibration (port 3)

Figures 11-13 shows the vibration velocity characteristics at
port 3 CMTK (reference of ports to the robot axis - figure 4)
distributed into three separate graphs. Each movement of the
robot can be distinguished by the following characteristics -
for the first nine cycles, the manipulator placed discs on the
board. The area after the ninth beat shows the process of the
robot putting the discs into storage; these operations are
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Fig. 11. Vibration velocity of the robot
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performed without interruption and at a speed of 4000mm/s.
In the ninth cycle before putting the disk away, the effector
performed three large circles in the air, extending over the
entire working area. This was to introduce circular
interpolation into the process. This type of movement is
visible on each of the characteristics and marked with a black
frame in Figure 10.
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Vibration Velocity RMS Port 3
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Fig. 13. Vibration velocity of the robot axis corresponding to port 3 (Z direction)

Based on the above characteristics, it can be concluded that
the vibration speed depends on the speed at which the robot
moves and the type of movement. The shapes of each of the
characteristics for all ports are similar. Only the graph from
port three is scaled due to the last recorded speed value on the
Y axis, which deviates from the other data. This may be due
to the last movement of the robot, which is carried out
between two extreme points of the workspace and is
performed at a speed set in the registry to 4000 mm/s. The
longer the path of the effector, the higher the speed it reaches,
approaching the set value. The high-speed forces more abrupt
braking, which significantly increases the level of vibration in
the system. A comparison of the characteristics shows that the
highest vibrations in all axes occur during the last disc
placement. The analysis of the graphs also reveals that the
higher the speed of movement in a given cycle, the shorter the
duration of the cycle, resulting in short-lived but intense
vibrations. The smallest vibrations were recorded in the
X-axis because the robot covered the shortest distances along
this axis. With a time interval of 4 seconds between cycles and
10 seconds between cycles, it is easy to localize the individual
intervals in the diagram. A failure of the robot axis or
a collision could be recognized by higher and non-cyclical
vibration frequencies.

4. CONCLUSIONS

As part of this work, a workstation for monitoring the wear of
the joints of the FANUC M-1liA 1H parallel robot was
designed, integrated and tested. All stages were successfully
completed. The manipulator was restored to full working order
and programmed, and all components ensuring its proper
operation were successfully integrated. The electrical
components responsible for connecting the robot to the network
and powering all additional elements were correctly connected.
All network devices were correctly connected, enabling the
processing and display of the collected data. In the last stage,
a clear graphical presentation of the data was created in the
Grafana environment. In contrast to many existing 110T-based
diagnostic systems that focus on either hardware-level sensing
or post-process data analytics, this work demonstrates a fully
integrated and operational industrial diagnostic loop—

capturing live data via CMTK, visualizing it through Grafana,
and allowing human operators to identify anomalies in real
time. The tests carried out consisted of continuous operation of
the station for several days. During this time, the collected data
was analyzed on an ongoing basis. The robot executed the
program correctly and without collisions, even over a long
period of time. The vibration graphs show the repeatability of
the cycles. If the manipulator works at higher speeds, higher
vibrations are visible, and at lower speeds they are lower, which
proves that the sensors are correctly mounted and integrated.
The  temperature of the joints  stabilized at
a certain level, which indicates the absence of a failure. In the
event of a robot joint failure or collision, non-cyclical vibration
frequencies, increased temperature or changes in current
consumption would be visible in the graphs. Balluff will
continue to develop the developed station by creating a web
interface. It will be accessible via the WAN IP address of the
router and, after logging in, users will be able to view the
currently collected data. This data will be accessible from
anywhere in the world, which is in line with the idea of machine
and device condition monitoring technology and the principles
of Industry 4.0. In a further stage, it is planned to develop the
workstation and extend the project to include software that
analyzes the information provided, so that the user is not
burdened with the analysis of the displayed data, but can have
direct insight into the condition of the robot's joints. Balluff’s
Condition Monitoring Toolkit (CMTK) offers a compact and
integrated solution for monitoring key machine health
parameters like vibration, temperature, and humidity. Its major
advantage lies in the ease of deployment—featuring 10-Link
connectivity and built-in data processing, it allows for seamless
integration into industrial automation systems. Unlike many
third-party systems, CMTK requires no external software or
controllers, as it can process and transmit condition data directly
to PLCs or cloud platforms. The system is designed for harsh
industrial environments, providing robust housing and reliable
operation in challenging conditions. While alternatives like the
ifm VVBO020 [26] or Analog Devices Voyager [27] Kits exist,
they often require additional configuration or infrastructure,
making Balluff’'s CMTK much flexible for plug-and-play
industrial monitoring. The presented system contributes to
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broader smart manufacturing objectives by enabling predictive
maintenance through real-time condition monitoring, which
helps to anticipate component degradation before failures
occur. Its continuous data acquisition and visualization
capabilities improve uptime optimization by allowing early
detection of anomalies and rapid response. Moreover, the
modular and non-invasive nature of the CMTK toolkit makes
the solution scalable across different robot models and
industrial environments, supporting flexible deployment in
diverse automation scenarios. Despite its contributions, the
current system also has several limitations. Tests were
performed on a single robot platform (FANUC M-1iA), and no
induced fault scenarios were implemented to validate failure
response in practice.

Future work may explore deployment in collaborative or
mobile robotic systems, where dynamic environments present
more complex monitoring challenges and safety considerations.
The solution’s engineering relevance is notable: low detection
latency, ease of deployment (due to 10-Link and no external
software), and its cost-effective nature make it highly attractive
for small and medium-sized enterprises (SMEs) seeking
scalable condition monitoring without major infrastructure
investments.
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