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Abstract: Modern industry challenges companies to ensure high reliability of machinery and equipment and continuity of 

production processes. An important role in this is played by condition monitoring of machines, during which the operating 

parameters of the equipment are analyzed, assessing its condition and the degree of wear of components. As part of the ongoing 

research, an IIoT (Industrial Internet of Things) - based solution was developed to monitor the condition of the joints of a FANUC 

M-1iA/1H industrial robot. The project involved the integration of sensors on the axes of the robot performing the pick and place 

process. A set of condition monitoring tools - CMTK - and sensors enabling diagnostics were used to collect and visualize data.  

The monitoring system is based on the analysis of such parameters as the speed of vibration of the joints, their temperature, the 

number of cycles performed by the robot. The data sent to the CMTK unit is processed and visualized in the Grafana 

environment, making it possible to track the state of the machine in real time. Tests conducted showed the cyclicity of vibrations 

during the robot's operation. A clear correlation was observed between the speed of the manipulator's movement and the vibration 

level - the highest values were recorded at 4000 mm/s, especially during the braking phase. Deviations from the established 

pattern can indicate potential failures. The test results confirm the effectiveness of the applied solution as a diagnostic tool ready 

for industrial deployment. Despite the initial cost, the implemented solution increases production efficiency by reducing 

downtime and enabling preventive component replacement.

 

Key words: condition monitoring, parallel robot, palletization process, pick & place process, Industrial 
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1. INTRODUCTION 

Condition monitoring of machines and civil engineering 

constriction is currently one of the applications of IIoT 

(Industrial Internet of Things) technology. It involves 

continuous tracking of specific machine operating parameters 

(e.g. vibration), which allows for an ongoing assessment of its 

technical condition and the degree of wear and tear  

of individual components. This makes it possible to determine 

when a component needs to be replaced before it fails, which 

could result in production stoppages for a long period of time 

[1]. There can be many monitored parameters, e.g. 

temperature, ultrasonic vibrations, lubricant contamination, 

electrical parameters. However, the most important and most 

frequently used method is the analysis of the vibration of 

individual components performed by H. A. Raja et al [2], S.S. 

Saidin at al. [3] and T. Singh et al. [4]. A running machine 

generates vibrations that provide a lot of information about its 

condition. Machine vibrations can have a significant impact 

on building construction, particularly in structures near 

industrial or heavy machinery operations. Over time, 

vibrations from machines, such as those from robotic systems, 

construction equipment, or manufacturing machinery, can 

lead to structural damage, including cracks in walls, floors, 

and foundations. The constant vibration can weaken the 

integrity of the building materials, affecting the long-term 

stability and safety of the construction. Additionally, 

vibrations can interfere with sensitive equipment or delicate 

processes inside buildings, such as in laboratories or offices. 

Therefore, monitoring and controlling vibrations is critical in 

construction environments to prevent damage, ensure safety, 

and maintain the durability of the structure. In the article [5] 

the authors proposed a methodology for the classification of 

robot collisions. This methodology involves the analysis of 

motor current and robot link vibrations through the utilization 

of variational mode decomposition (VMD) and an equivalent 

filter bank. The purpose of this analysis is to extract vibration 

features in an efficient manner. Subsequent to this, a neural 

network is trained to detect and classify collisions involving 

different materials, achieving high accuracy in distinguishing 

human-involved collisions and identifying the collision 

location.  In a separate study, Nentwitch and Reinhard [6] 

described a methodology for developing an effective data 

acquisition strategy for predictive maintenance of industrial 

robots. The authors emphasized the strategy's impact on 

productivity and cost reduction. The methodology is defined 

by several key aspects, including the components of the robot 

that are to be monitored, the trajectories for data collection, 

and the frequency at which measurements are to be taken. The 

limitations of the methodology are also addressed. The rapid 

advancement of IoT technologies has enabled improved 

machine interaction, facilitating not only control but also fault 

detection and predictive maintenance. The study conducted by 
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H. A. Raja et al. [7] explores how IoT can enhance industrial 

diagnostics, addressing the need for cost-effective and time-

efficient maintenance solutions. Robot condition monitoring 

is essential for maintaining production efficiency, but the 

dynamic working states of industrial robots pose significant 

challenges. Paper [8] proposes a vibration-based methodology 

using frequency response analysis and short-time Fourier 

transform to detect faults and assess their severity in industrial 

robots. Predictive maintenance strategies that utilize 

vibration-based condition monitoring have been shown to 

play a crucial role in preventing unexpected breakdowns of 

heavy machinery. A study conducted by U. Hassan et al. 

reviewed various data collection methods [9], evaluating 

different accelerometers and their effectiveness in measuring 

vibrations for improved maintenance efficiency. The research 

described in [10] introduces an online process monitoring 

method that utilizes a vibration-surface quality map and  

a convolutional neural network classifier to detect grinding 

states, enhancing real-time quality control in robotic 

machining. In a related study, H. Han et al. proposed  

a vibration-based monitoring approach that uses a triaxial 

MEMS accelerometer to detect faults and analyze the 

vibration characteristics of different robot joints [11]. This 

demonstrates the feasibility of this method for fault detection 

and severity assessment. Effective tool condition monitoring 

is essential for maintaining process performance in robot-

based incremental sheet forming. In the subsequent paper 

[12], the authors demonstrated the use of vibration signal 

analysis with an accelerometer sensor to assess tool wear and 

surface roughness, highlighting the correlation between 

increased vibration and deteriorating tool condition. The 

authors of [13] developed an equipment condition monitoring 

system based on LabVIEW using the UDP communication 

protocol, dynamic invocation, and reentrant technology. The 

experimental results confirm the system's ability to efficiently 

display, store, and analyze data in both the time and frequency 

domains. This supports fault diagnosis, accident prevention, 

and improved production efficiency. In the subsequent article 

[14], the authors introduce a wireless monitoring system for 

operational modal analysis of bridges, using MEMS 

accelerometers and a low-power Wi-Fi module for long-term 

data collection. The system has been shown to successfully 

address challenges such as data synchronization and 

preprocessing, as evidenced by experimental validation and 

real-world deployment on a concrete arch bridge. R. J. 

Stephen et al. explored a tool condition monitoring approach 

for drilling operations using an accelerometer sensor to 

analyze vibration signals in both time and frequency domains 

[15]. By utilizing LabVIEW for vibration amplitude 

prediction and training ANN, Fuzzy Neural Network, and 

Taguchi models with experimental data, the methodology 

effectively detects tool wear and optimizes machining 

conditions. Study performed by X. Zhao et al. proposes a force 

and material removal monitoring method for robotic grinding 

based on acceleration signals [16]. By utilizing an LSTM 

network to model the vibration-force relationship, the 

framework enables real-time estimation of grinding force and 

material removal, ensuring machining quality.  

H. Badkoobehhezaveh et al. analyzed the dynamic and 

vibration characteristics of a newly developed 5-DOF long-

reach robotic arm for farm applications using both finite 

element analysis (FEA) and experimental modal analysis [17]. 

The verified FEA model, which demonstrated good 

agreement with experimental results, provides a foundation 

for future vibration control and performance optimization 

under base excitation. Paper developed by Halder and Asfari 

[18] analyzed many robotic solutions for inspection and 

monitoring of the built environment, identifying nine types of 

robotic systems, with UAVs and UGVs being the most 

common. The study highlights key research areas such as 

autonomous navigation, sensing, and multi-robot 

collaboration, offering insights for future developments in 

robotic inspection technologies. Advancements in robot 

control, emphasizing model-based control, multi-robot 

coordination, force control, and wireless communication to 

enhance performance and reduce costs has been detailed 

described in [19]. Future trends include lightweight modular 

robots, adaptive control for optimized performance, and 

expanded applications in industries such as automotive, food 

processing, and small and medium enterprises. In their study, 

Nentwitch and Daub examined sensor selection for industrial 

robot gear condition monitoring, comparing current and 

vibration sensor data in accelerated wear tests [20]. 

The findings emphasize the significance of sensor 

characteristics and frequency range variations in the effective 

detection of faults. Furthermore, Yuan et al. have developed a 

vision-based method for assessing cracks in reinforced 

concrete structures, utilizing an inspection robot equipped 

with a stereo camera and the IoT for data communication [21]. 

The method employs deep learning for crack quantification 

and projects damage information onto a 3D reconstruction of 

the structure, demonstrating high accuracy in damage 

segmentation, localization, and quantification during 

validation experiments. A dynamic model for robot 

transmission defect detection, specifically targeting gear 

faults, by developing a geometric model based on the 

Modified Denavit-Hartenberg approach and applying the 

Euler-Lagrange convention is presented in [22]. The 

effectiveness of the model is validated through numerical 

simulations and experimental vibration analysis, 

demonstrating its capability to detect gear defects under 

different conditions. Han et al. proposed a condition 

monitoring method for industrial robots using vibration 

analysis based on data from a triaxial MEMS accelerometer 

[23]. Their experimental results demonstrated that vibration 

characteristics vary across different robot joints, and that fault 

location and severity—such as seal ring defects—can be 

effectively identified using frequency and time-domain 

analysis. 

A comprehensive review of the literature reveals the 

paramount importance of condition monitoring for robots and 

machines. This approach enables the early detection of 

defects, including gear faults, which can have  

a substantial impact on product quality and result in financial 

losses. The literature survey indicates that robotic components 

that are subject to continuous monitoring will experience  

a reduction in unplanned downtime, an enhancement in 

operational efficiency, and an increase in the lifespan of the 

machinery. This, in turn, will ensure consistent performance 

and the production of goods and services of a consistently 
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high quality. Beyond serving as a diagnostic tool condition 

monitoring systems have the potential to support broader 

digital transformation initiatives within industrial 

environments. The continuous collection and analysis of data 

from the robot's joints—such as vibration velocity, 

temperature, and operational cycles—can serve as a data 

source for digital twin models, allowing real-time simulation 

and predictive modeling of robotic behavior. Furthermore, 

integration with AI-driven diagnostic algorithms could 

enhance the system’s ability to detect subtle deviations, 

forecast failures, and recommend maintenance actions 

autonomously. These capabilities directly contribute to 

resilience against production losses, as they enable early 

detection of wear, minimize unplanned downtime, and 

support proactive decision-making in maintenance planning. 

It enables not only localized diagnosticsbut also scalable, 

intelligent maintenance ecosystems aligned with Industry 4.0 

principles. 

2. METHODOLOGY 

 

2.1 Condition monitoring 

 

The vibration velocity is recorded by sensors, usually based 

on accelerometers, which then send the individual values to a 

master device capable of processing such large amounts of 

data. The sensors are usually attached to the housing of the 

machine to be monitored. The vibrations recorded by the 

sensor are called vibration signals, which can occur in the time 

domain or in the frequency domain [1]. The transition 

between these two domains is made possible by the Fourier 

transformation. The data collection rate, i.e. the sampling rate 

of this signal, depends on the quality of the specific sensor  

The vibration signal is analyzed in detail to identify 

characteristic frequencies that can be used to detect different 

types of faults. The most common faults diagnosed include 

bearing and gear damage, which are characterized by higher 

frequencies, and problems such as imbalance, misalignment 

or looseness between components, which are characteristic of 

lower frequencies. An example of this is a defective roller 

bearing that emits vibrations at specific frequencies. The more 

intense these vibrations are, the more severe the damage.  

If the monitored process is repeatable to a certain extent, the 

same cycles can be compared at different time intervals and 

the differences analyzed, which can also indicate damage [1]. 

Condition monitoring is a technology that involves high initial 

costs, including the purchase of sensors and data processing 

equipment. However, in the long run, it saves money on 

periodic maintenance and unplanned downtime, and reduces 

the risk of misdiagnosis regarding component replacement. 

All in all, this technology becomes more effective, reliable 

and cheaper over time. Vibration diagnostics is an extremely 

complex issue that requires extensive knowledge and a lot of 

experience. Due to the variety of machine designs, consisting 

of different mechanical components and different operating 

conditions, each device requires an individual approach to the 

analysis and interpretation of the collected data [1]. 

 

2.2 Condition monitoring sensors Balluff BCM0002 

 

For velocity measurements a Balluff BCM0002 condition 

monitoring sensor was used. The device measures vibration, 

surface temperature, ambient pressure and relative humidity. 

The sensor allows thresholds to be set for these parameters, 

and exceeding the set limits can be automatically detected and 

signaled. In addition, the device allows for a delayed response 

to events - the alarm is only triggered after a user-specified 

period of time during which the parameters remain outside the 

acceptable range, as shown in Figure 1. 

Fig.1. Thresholding measured signals [24] 

 

BCM0002 calculates the vibration velocity in three axes  

(X, Y and Z) based on the measured acceleration values. For 

each axis and in a specific time window, it stores parameters 

such as: average value, RMS (Root Mean Square) value, 

standard deviation, skew coefficient and kurtosis. It also 

allows for the suppression of signals with frequencies outside 

the defined band, using a band-pass filter. BCM0002 also 

offers additional functions, such as an operating hours 

counter: since the last start-up, production run or since the last 

reset. The device is based on MEMS (micro-electro 

mechanical systems) technology, which enables the 

production of microscopic devices combining mechanical and 

electronic components. The data recorded by the sensor is sent 

to the master device via the IO-Link protocol. The BCM0002 

sensor is capable of measuring vibration velocity up to  

12500 mm/s. It operates with an accuracy better than ±10% 

within the frequency range of 2 Hz to 1800 Hz, and extends 

up to 2500 Hz in an expanded range with a 3 dB tolerance. 

Vibration analysis is carried out within defined time windows, 

during which the sensor calculates and provides statistical 

parameters. The time window must be selected manually by 

the user. A key principle applies: the lower the frequency to 

be analyzed, the longer the time window should be. The 

shortest available window is 20 ms, suitable for a minimum 

frequency of 100 Hz, while the longest is 1000 ms, allowing 

for the analysis of signals starting from 2 Hz [24]. Fig. 2 

shows BCM0002 sensor coupled with one of the robot axis. 
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Fig. 2. BCM0002 sensor mounted on one of the axes of an industrial 

robot 

 

2.3. Condition monitoring toolkit (CMTK) 
 

CMTK (BAV002N) is a toolkit for condition monitoring. This 

solution, developed by Balluff, includes a base unit with built-

in software. The device offers the possibility to collect and 

evaluate large amounts of data in a transparent and 

configurable way, which cannot be done in a PLC, for 

example. The CMTK collects information from sensors via 

IO-Link protocol and then processes it. The base unit is 

equipped with four IO-Link ports, two LAN1 and LAN2 

sockets, a USB-A port and an SD card slot. Thanks to the 

built-in software, it does not require programming. After 

assigning an appropriate IP address, the configuration is done 

via a web server, from where you can go directly to 

applications supporting condition monitoring, used e.g. to 

visualize collected data (Grafana). Sensors that monitor the 

status are connected to the IO-Link ports. The LAN sockets, 

on the other hand, enable communication with network 

devices via RJ45 cables. CMTK offers various configuration 

modes for its network sockets [24]. The device can operate as 

a: DHCP SERVER – when it acts as a simplified DHCP 

server, as it can assign dynamic IP addresses to other devices, 

e.g. computers that connect to it. It is worth noting, however, 

that this functionality is limited: the device does not allow for 

the setting of a specific address pool or advanced options 

typical of full DHCP servers. Alternatively, in DHCP mode, 

the CMTK CLIENT itself requests an IP address from  

a DHCP server in the network. It is also possible to assign  

a static IP address to this component. Figure 3 shows a general 

view of the components [25].  

 

 
 

Fig. 3. Components of CMTK [25] 
 

2.4 Condition monitoring - system integration 

 

The project involved creating a position to monitor the 

condition of industrial robot joints. Data were collected using 

FANUC M-1iA 1H parallel robot with an R-30iB Mate Open 

Air controller. The manipulator was equipped with three axes, 

its maximum speed is up to 4000mm/s, and the maximum 

lifting capacity is 1kg. The shape of the workspace is a 

combination of a cuboid with a base measuring 280x280mm, 

and a cone tapering downwards and cut at the end. The total 

height of the workspace is 100mm. The task of the robot was 

to perform a pick and place process. The procedure was 

carried out continuously - the program never ended. In each 

cycle, the robot moved eighteen elements at the following 

speeds: 100 mm/s, 1000 mm/s, 2000 mm/s,  

3000 mm/s, 4000 mm/s – this movement formed the basis for 

the collected data. After each of the first nine elements had 

been moved, the robot took a 4-second break. The last 9 

elements, on the other hand, were moved without interruption 

at maximum speed. After the cycle was completed, the robot 

paused for 10 seconds and then restarted the process from the 

beginning. This infinite process was used to generate data. 

Vibrations and temperature from the joints were collected by 

BCM0002 sensors mounted on each of the robot's axes. Then, 

using the IO-link protocol, the data was transferred to CMTK, 

which was responsible for processing it and transferring it to 

the Grafana application. This is an open-source solution for 

the graphical visualization of collected data. It allows you to 

create charts, tables, heat maps and other visualizations.  

It supports many types of data, from numerical to temporal. 

Grafana allows you to set alert rules based on data monitored 

in real time. It sends notifications via e-mail, Slack, 

PagerDuty and other channels. Users can view, filter and 

analyze data on dynamic dashboards. Grafana offers many 

plugins that extend its functionality, e.g. with new chart types. 

The fourth CMTK port was occupied by a flow sensor that 

monitored the amount of air flowing through the robot's 

suction nozzle. Figure 4 and 5 show delta-type FANUC  

M-1iA 1H robot and a view of the robot’s joints with the 

BCM0002 sensors mounted. The blue frames indicate which 

robot joint a given BCM sensor was connected to, connected 

to a specific CMTK port. 

 

Sensor BCM0002 
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Fig. 4. View of the robot's joints with attached sensors BCM0002 

 

 
 

Fig. 5. Delta-type FANUC M-1iA 1H robot 

 

Figure 6. shows the interconnected network components used 

in the integrated workstation. The router is connected to the 

Internet, and the Condition Monitoring Toolkit is located in 

the subnetwork it creates. The first three octets of the IP 

address of the router and the CMTK are identical, which 

enables them to communicate due to the subnet mask 

255.255.255.0. All devices communicate via Ethernet/IP 

protocol - they are connected via RJ45 cable. 

 

 
 

Fig. 6. Network view of integrated system 

3. RESULTS 

The following section is dedicated to the discussion of tests 

carried out on the integrated workstation. They were based on 

the analysis of the transparency of the displayed data during 

the execution of actions by the manipulator. The BCM 

vibration velocity sensor determines this based on the 

acceleration, which is measured by an accelerometer. Signal 

integration is performed within the sensor unit, and the 

resulting speed signal is transmitted to the graphical 

environment, where it is visualized in graphs. This setup 

represents, to our knowledge, the first documented instance of 

continuous industrial operation combining a FANUC M-1iA 

robot, Balluff's CMTK Condition Monitoring Toolkit, and 

Grafana-based visualization. A work cycle of the robot is 

understood as the execution of one entire process of placing 

pucks on the board and putting them back into the warehouse. 

One cycle, on the other hand, covers one transfer of a specific 

element to the board. During the tests, program corrections 

were introduced to make the information displayed in the 

Grafana application clearer. These included lengthening the 

intervals between robot work cycles and increasing the 

differences in speeds during the execution of individual cycle. 

There were also minor adjustments to the position of some 

points - to fully minimize the risk of the manipulator colliding 

during its long and uninterrupted operation. The robot then 

continuously ran the program for several days. This extended 

runtime allowed for a robust assessment of real-time vibration 

feedback and system response to varying kinematic profiles, 

illustrating the practical benefits of the setup in early fault 

detection and runtime condition monitoring. As a result of 

these actions, a lot of data was obtained, some of which is 

presented below.  

During one cycle, the manipulator moves at the following 

speeds: 

 Cycle 1 – 100mm/s, 

 Cycle 2 – 1000mm/s, 

 Cycle 3 – 1000mm/s, 

 Cycle 4 – 100mm/s, 

 Cycle 5 – 2000mm/s, 

 Cycle 6 – 100mms/, 

 Cycle 7 – 4000mm/s, 

 Cycle 8 – 100mm/s, 

 Cycle 9 – 3000mm/s, 

 Putting disks into storage – 4000mm/s. 

Each of the cycles has been visualized in Figure 7. 

 

 
 

Fig. 7. Visualization of the robot's cycles 

Z 

X 

Y 

Port 2 

Port 1 

Port 3 
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Figures 8 - 10 show the combination of three graphs of the 

vibration velocity of each robot axis as a function of time 

(each graph represents one joint of the manipulator). Since the 

BCM0002 sensor measures the vibration velocity in three 

axes, there are three functions in each graph. Each color of 

data represents vibrations in a different axis (X, Y, Z), as 

described in the legend. The domain of the functions covers 

two robot duty cycles – one of them is marked in Figure 8. 

Each sensor measures the vibrations in a specific time window 

and then averages the measurements, which corresponds to 

one sample in the graph. 

 

 

 

 

 

 

 

 
 

Fig. 8. Example of velocity vibration (port 1) 

 

 

 
 

Fig. 9. Example of velocity vibration (port 2) 

 

  Cycle 1 

 

Tact 1 

 

Tact 6 

 

Replacing 
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Fig. 10. Example of velocity vibration (port 3) 

 

Figures 11-13 shows the vibration velocity characteristics at 

port 3 CMTK (reference of ports to the robot axis - figure 4) 

distributed into three separate graphs. Each movement of the 

robot can be distinguished by the following characteristics - 

for the first nine cycles, the manipulator placed discs on the 

board. The area after the ninth beat shows the process of the 

robot putting the discs into storage; these operations are 

performed without interruption and at a speed of 4000mm/s. 

In the ninth cycle before putting the disk away, the effector 

performed three large circles in the air, extending over the 

entire working area. This was to introduce circular 

interpolation into the process. This type of movement is 

visible on each of the characteristics and marked with a black 

frame in Figure 10. 

 

 
 

Fig. 11. Vibration velocity of the robot axis corresponding to port 3 (X direction) 

 

 
Fig. 12. Vibration velocity of the robot axis corresponding to port 3 (Y direction) 

 

Circular interpolation 
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Fig. 13. Vibration velocity of the robot axis corresponding to port 3 (Z direction) 
 

Based on the above characteristics, it can be concluded that 

the vibration speed depends on the speed at which the robot 

moves and the type of movement. The shapes of each of the 

characteristics for all ports are similar. Only the graph from 

port three is scaled due to the last recorded speed value on the 

Y axis, which deviates from the other data. This may be due 

to the last movement of the robot, which is carried out 

between two extreme points of the workspace and is 

performed at a speed set in the registry to 4000 mm/s. The 

longer the path of the effector, the higher the speed it reaches, 

approaching the set value. The high-speed forces more abrupt 

braking, which significantly increases the level of vibration in 

the system. A comparison of the characteristics shows that the 

highest vibrations in all axes occur during the last disc 

placement. The analysis of the graphs also reveals that the 

higher the speed of movement in a given cycle, the shorter the 

duration of the cycle, resulting in short-lived but intense 

vibrations. The smallest vibrations were recorded in the  

X-axis because the robot covered the shortest distances along 

this axis. With a time interval of 4 seconds between cycles and 

10 seconds between cycles, it is easy to localize the individual 

intervals in the diagram. A failure of the robot axis or  

a collision could be recognized by higher and non-cyclical 

vibration frequencies. 

4. CONCLUSIONS 

As part of this work, a workstation for monitoring the wear of 

the joints of the FANUC M-1iA 1H parallel robot was 

designed, integrated and tested. All stages were successfully 

completed. The manipulator was restored to full working order 

and programmed, and all components ensuring its proper 

operation were successfully integrated. The electrical 

components responsible for connecting the robot to the network 

and powering all additional elements were correctly connected. 

All network devices were correctly connected, enabling the 

processing and display of the collected data. In the last stage,  

a clear graphical presentation of the data was created in the 

Grafana environment. In contrast to many existing IIoT-based 

diagnostic systems that focus on either hardware-level sensing 

or post-process data analytics, this work demonstrates a fully 

integrated and operational industrial diagnostic loop—

capturing live data via CMTK, visualizing it through Grafana, 

and allowing human operators to identify anomalies in real 

time. The tests carried out consisted of continuous operation of 

the station for several days. During this time, the collected data 

was analyzed on an ongoing basis. The robot executed the 

program correctly and without collisions, even over a long 

period of time. The vibration graphs show the repeatability of 

the cycles. If the manipulator works at higher speeds, higher 

vibrations are visible, and at lower speeds they are lower, which 

proves that the sensors are correctly mounted and integrated. 

The temperature of the joints stabilized at  

a certain level, which indicates the absence of a failure. In the 

event of a robot joint failure or collision, non-cyclical vibration 

frequencies, increased temperature or changes in current 

consumption would be visible in the graphs. Balluff will 

continue to develop the developed station by creating a web 

interface. It will be accessible via the WAN IP address of the 

router and, after logging in, users will be able to view the 

currently collected data. This data will be accessible from 

anywhere in the world, which is in line with  the idea of machine 

and device condition monitoring technology and the principles 

of Industry 4.0. In a further stage, it is planned to develop the 

workstation and extend the project to include software that 

analyzes the information provided, so that the user is not 

burdened with the analysis of the displayed data, but can have 

direct insight into the condition of the robot's joints. Balluff’s 

Condition Monitoring Toolkit (CMTK) offers a compact and 

integrated solution for monitoring key machine health 

parameters like vibration, temperature, and humidity. Its major 

advantage lies in the ease of deployment—featuring IO-Link 

connectivity and built-in data processing, it allows for seamless 

integration into industrial automation systems. Unlike many 

third-party systems, CMTK requires no external software or 

controllers, as it can process and transmit condition data directly 

to PLCs or cloud platforms. The system is designed for harsh 

industrial environments, providing robust housing and reliable 

operation in challenging conditions. While alternatives like the 

ifm VVB020 [26] or Analog Devices Voyager [27] kits exist, 

they often require additional configuration or infrastructure, 

making Balluff’s CMTK much flexible for plug-and-play 

industrial monitoring. The presented system contributes to 
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broader smart manufacturing objectives by enabling predictive 

maintenance through real-time condition monitoring, which 

helps to anticipate component degradation before failures 

occur. Its continuous data acquisition and visualization 

capabilities improve uptime optimization by allowing early 

detection of anomalies and rapid response. Moreover, the 

modular and non-invasive nature of the CMTK toolkit makes 

the solution scalable across different robot models and 

industrial environments, supporting flexible deployment in 

diverse automation scenarios. Despite its contributions, the 

current system also has several limitations. Tests were 

performed on a single robot platform (FANUC M-1iA), and no 

induced fault scenarios were implemented to validate failure 

response in practice. 

Future work may explore deployment in collaborative or 

mobile robotic systems, where dynamic environments present 

more complex monitoring challenges and safety considerations. 

The solution’s engineering relevance is notable: low detection 

latency, ease of deployment (due to IO-Link and no external 

software), and its cost-effective nature make it highly attractive 

for small and medium-sized enterprises (SMEs) seeking 

scalable condition monitoring without major infrastructure 

investments. 
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