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Abstract. The work attempts to investigate the causes of incorrect predictions of the Chapman-Kolmogorov system of equations generated
during vehicle operation. When researching the process of exploitation of technical objects, Markov theory is often used in literature on the
subject. Based on the developed Markov or semi-Markov models, on the one hand, basic reliability indicators (such as readiness) are assessed,
and the evolution of the considered operation process is anticipated. The solutions of the Chapman-Kolmogorov system serve as the basis for
preparing the forecast. For applications, forecasts of limit probabilities, determination times, and oscillation parameters of the probabilities of
the states of the exploitation process are useful. The literature on the subject indicates the interdependence of each forecast on the estimation
errors of all elements of the transition intensity matrix of the model, as well as errors in the calculation of its eigenvalues, as a potential cause of
unsatisfactory forecast performance in continuous time. Considering the above, the main topic of this work was to investigate the correctness of
the Chapman-Kolmogorov assumption for the vehicle operation process, the solution of which will make a significant substantive contribution to
the current state of knowledge on modeling operation processes.
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1. INTRODUCTION
The issues related to modelling the operation of various ob-
jects [1–3] are often discussed in the source literature. The
authors mainly focus on reproducing the current process and
the characteristic features of the tested object, or trials of its
improvement [4]. The aspects mentioned above are generally
necessary for proper control [5] of the process of operation,
considering the objectives and tasks executed by the tested ob-
ject. Scientific studies in this field can be divided into two main
groups:
• The first one examines the current status (the present) of the

phenomenon under investigation.
• The second one focuses on forecasting the evolution of the

operation process (the oriented future).
The first group includes studies examining the current state of
the process under investigation, in which authors analyze the
basic reliability indicators (including readiness) and highlight
economic and/or ecological aspects to make rational decisions
and optimally benefit from the utility values of the object. For
this purpose, the studied process is modeled using neural net-
works, reliability and renewal theory, as well as experimental,
simulation, and operational studies [6–9] (including optimiza-
tion) and event-based models that preserve trend and season-
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ality. Stochastic processes are commonly used to describe the
phenomenon under study [10], including Markov theory. In the
source literature, neural networks are used as practical tools for
optimizing energy consumption [11], performing Pareto esti-
mations [12], or detecting errors in batch production [13]. Re-
liability and renewal theory are widely used to describe opera-
tions [14,15], considering their basic processes, i.e., use [16,17]
and maintenance [18–20]. Analyses of reliability [21–25], readi-
ness [26–28], and availability are of high importance in this
context [29,30]. Some studies focus on the determination of key
operational parameters [31–33] or refer to costs [34, 35].

The use of analytical methods to analyze and evaluate com-
plex operational processes requires the development of detailed
databases [36,37]. The variability of the operating environment,
as well as the dynamics of the process itself, complicate or even
hinder the resolution of complex decision-making problems. In
such situations, simulation methods and techniques are often
used, where the basis of the simulation model is formed by
empirical probability distributions of random variables. For ex-
ample, in their paper [38], Izdebski et al. present the problem of
minimizing the risk of hazardous events on the apron with the
participation of aircraft and ground handling vehicles. An evalu-
ation of the efficiency of airport processes using simulation tools
is presented in the paper [39]. A methodology for the analysis
and evaluation of the selected indices of the helicopter readiness
used in the Polish Navy is considered in [40]. In turn, operational
research is used to optimize the analyzed process, for example,
to determine the optimal route [41], the minimum delivery time

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 6, p. e155046, 2025 1

https://orcid.org/0000-0001-8880-5142
mailto:jaroslaw.ziolkowski@wat.edu.pl


J. Ziółkowski, A. Lęgas, M. Oszczypała, J. Konwerski, and J. Małachowski

in the product distribution network [42], or to conduct customer
satisfaction surveys [43].

To forecast the evolution of technical object operation pro-
cesses over time using stochastic process models [44–46],
Markov and semi-Markov models are often used [47–51], and
the evolution of the operation process under consideration is
predicted based on the solutions of the Chapman-Kolmogorov
equations [52]. In terms of application, forecasts of limit prob-
abilities, determination times, and oscillation parameters of the
probabilities of the operation process states are of particular
importance. A satisfactory level of forecast error was achieved
for discrete time [53], while for continuous time, the level of
forecast error for characteristic times was unsatisfactory, and
unreasonable limit probabilities of process states, such as those
for urban agglomerations, were found, calculated according to
the Chapman-Kolmogorov system of equations. As a potential
cause of the unsatisfactory level of forecast error [54, 55] in
continuous time, the interdependence of each forecast on the
estimation errors of all elements of the transition intensity ma-
trix of the model and the calculation errors of its eigenvalues is
indicated. This results from the definition of eigenvalues, which
are solutions of a matrix equation containing all elements of the
transition intensity matrix and their linear combinations and/or
power functions that determine the solutions of the Chapman-
Kolmogorov system of equations.

Fig. 1. Factors determining system forecasts Chapman-Kolmogorov
according to [56]

For Markov models with more than four analytical states, in-
vestigations into forecast errors of the Chapman-Kolmogorov
system of equations are executable only for special forms of
the transition intensity matrix, when analytical formulas for

their eigenvalues exist, or when the analytical solutions of the
Chapman-Kolmogorov system of equations are not overly com-
plex.

For the general form of the transition intensity matrix of de-
grees higher than four, only numerical studies of the forecast
errors of the Chapman-Kolmogorov system of equations are
feasible. These studies are conducted at selected points in the
set of confidence intervals for elements of the transition in-
tensity matrix, for example, at the centers and endpoints. Due
to the considerable number of confidence intervals, numerical
tests may prove to be either unreliable with insufficient test
points or even infeasible within an acceptable time. For exam-
ple, for three points of each confidence interval and 𝑀 intervals,
there are as many Chapman-Kolmogorov systems of equations
that need to be solved as the number of three-element varia-
tions with repetitions from the set 𝑀 of elements (𝑀3). For
the process of operation considered in this work, with the num-
ber of intervals 𝑀 = 16, it would be necessary to solve 4096
Chapman-Kolmogorov systems of equations for five probabili-
ties of states. This would require the development of a special
computational procedure and several hours of operation on an
efficient computer, with low reliability of the calculated max-
imum forecast errors of the Chapman-Kolmogorov system of
equations. A more reliable study would require calculations of
forecasts at a minimum of ten points of each confidence inter-
val. Therefore, for the process of operation considered below,
1610 ≈ 1.1 · 1012 Chapman-Kolmogorov systems of equations
would need to be solved. The time needed to solve 10 000 sys-
tems using the Wolfram computer available “in the cloud” for
Mathematica owners is 1.8 seconds. Calculating solutions for
1.1 · 1012 systems would take over six years, and its cost would
exceed PLN 220 million. Based on the above examples, it can
be concluded that unacceptably high time and cost make it cur-
rently impossible to perform reliable numerical tests of forecast
errors of the Chapman-Kolmogorov system of equations, even
for only a five-state operation process, and the calculations us-
ing efficient computers would require verification of reliability.
Such verification would require the use of gradient numerical
methods.

The set of potential causes of forecast errors in the Chapman-
Kolmogorov system of equations includes the following:
• Multi-seasonality of everyday life as the environment of

operational processes [57]
• Autocorrelations, correlations, and heteroskedasticity of

stochastic model variables [58]
• Deviations of the actual distributions of process state dura-

tions from the theoretical distributions
The fundamental reason may also be the failure to meet the
Chapman-Kolmogorov assumption about the linear dependence
of the derivatives of probabilities of states with respect to time
on the values of their probabilities. The applicability of this
assumption to operational process models has not been tested
so far [59]. For this reason, examining the correctness of the
Chapman-Kolmogorov assumption for the vehicle operation
process was considered the main topic of the present work, mak-
ing an important contribution to the current state of knowledge
about modeling operation processes.
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The paper is organized as follows. Section 1 contains a sum-
mary of knowledge about modeling the operation process, along
with the justification for the purposefulness of the present work.
Section 2 presents a multi-stage methodology for testing the
Chapman-Kolmogorov system of equations, including initial
conditions and the normalization condition. The results of the
tests conducted on the actual operation process are described
in Section 3, while Section 4 contains the results of the valida-
tion of the verification procedure for the Chapman-Kolmogorov
assumptions. The verification procedure included: average fre-
quencies and ex ante forecasts for average state probabilities,
endpoints of confidence intervals for transition intensities, ex-
amination of nonlinearity of multiple and simple regression
models, and validation of the proposed verification procedure
based on simulations.

2. RESEARCH METHODOLOGY
Let (Ω, 𝐹, 𝑃) be a probability space. The sequence {𝑋𝑡 }𝑡≥0
denotes a continuous-time Markov chain, where 𝑋𝑡 : Ω →
{𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5}. The distribution of the sojourn time, among
other characteristics, is defined accordingly.

For a five-state stochastic process, the Chapman-Kolmogorov
system of equations with the normalization condition and initial
conditions has the following matrix form:[

d
d𝑡

𝑝𝑖

]
=
[
𝜆𝑖 𝑗

]
· [𝑝𝑖] , (1)

d
d𝑡

𝑝1 = 𝜆11𝑝1 +𝜆12𝑝2 +𝜆13𝑝3 +𝜆14𝑝4 +𝜆15𝑝5 , (1.1)

d
d𝑡

𝑝2 = 𝜆21𝑝1 +𝜆22𝑝2 +𝜆23𝑝3 +𝜆24𝑝4 +𝜆25𝑝5 , (1.2)

d
d𝑡

𝑝3 = 𝜆31𝑝1 +𝜆32𝑝2 +𝜆33𝑝3 +𝜆34𝑝4 +𝜆35𝑝5 , (1.3)

d
d𝑡

𝑝4 = 𝜆41𝑝1 +𝜆42𝑝2 +𝜆43𝑝3 +𝜆44𝑝4 +𝜆45𝑝5 , (1.4)

d
d𝑡

𝑝5 = 𝜆51𝑝1 +𝜆52𝑝2 +𝜆53𝑝3 +𝜆54𝑝4 +𝜆55𝑝5 . (1.5)

Normalization condition

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 = 1. (1.6)

The initial conditions

∃𝑘 (𝑝𝑘 = 1) ∩∀𝑖≠𝑘 (𝑝𝑖≠𝑘 = 0), (1.7)

where 𝑡 ≥ 0 – non-negative continuous physical time of the
process from the initial state 𝑆3; [𝑝𝑖] – columnar probability

vector 𝑝1 of the process states;
[

d
d𝑡

𝑝𝑖

]
– column vector of

time derivative probabilities 𝑡; 𝑝1 = 𝑝1 (𝑡), 𝑝2 = 𝑝2 (𝑡), 𝑝3 =

𝑝3 (𝑡), 𝑝4 = 𝑝4 (𝑡), 𝑝5 = 𝑝5 (𝑡) – unknown probability of the
process being in the states 𝑆1–𝑆5 as functions of time 𝑡; [𝜆𝑖 𝑗 ]
– square transition intensity matrix, with elements representing
transitions from state 𝑆𝑖 to state 𝑆 𝑗 (rows and columns indexed
by 𝑖 and 𝑗); 𝜆𝑖 𝑗≠𝑖 – off-diagonal elements of the intensity matrix,
representing the reciprocals of the expected durations in state 𝑆𝑖

before transitioning to 𝑆 𝑗 , or zeros if the transition probability
from 𝑆𝑖 to 𝑆 𝑗 is zero; 𝜆𝑖𝑖 – diagonal elements of the intensity
matrix, which are non-positive (negative or zero), defined such
that the sum of each row (i.e., the diagonal and off-diagonal
elements in row 𝑖) equals zero.

The Chapman-Kolmogorov assumption refers to equations
(1.1)–(1.5), which constitute a homogeneous system of first-
order ordinary differential equations, having infinitely many
general solutions. Particular solutions are obtained after supple-
menting the system with the normalization condition for state
probabilities (1.6) and the set of initial conditions (1.7), with
one 𝑝𝑖 (𝑡 = 0+) = 1.

The Chapman-Kolmogorov assumption is formally equiva-
lent to the assumption of the multiple linear regression model
for derivatives of probabilities with respect to time 𝑡, without
free (constant) terms. This is also equivalent to the assumption
of no heteroscedasticity in the model with respect to time. There
is a well-known methodology and available software in litera-
ture that can perform estimation and post-estimation analyses
of regression models. The slopes of the independent variables
can be estimated from the sample, along with their errors and
statistical significance, using multiple methods. This enables an
empirical, direct verification of the Chapman-Kolmogorov as-
sumption without solving the Chapman-Kolmogorov system of
equations, by comparing the transition intensity estimates from
the regression equations with the values calculated from the
sample according to (4). A detailed verification of the Chapman-
Kolmogorov assumption, with identification of the probabilities
that do not meet the assumptions, is possible using the four-step
procedure discussed below. It constitutes an indirect proof of the
thesis known from logic, consisting in demonstrating the con-
tradiction between the Chapman-Kolmogorov assumption and
empirical data.
Stage 1 concerns the formulation of the empirical analog of
differential equations (1.1)–(1.5) in the conventional form of
an OLS-estimated multiple linear regression model without a
constant term, to fulfil normalization condition (1.6) as 𝑡 →∞.
The model includes estimators of 𝑝𝑖 ,

d
d𝑡

𝑝𝑖 , and 𝜆𝑖 𝑗 as in (1),
and has the following general form shown in (2), with detailed
forms given in (2.1)–(2.5).

𝑟𝑖 (𝑡) =
Δ𝑤𝑖 (𝑡)
Δ𝑡

=
𝑤𝑖 (𝑡) −𝑤𝑖 (𝑡0)

𝑡 − 𝑡0
=
∑︁
𝑗

𝑎𝑖 𝑗𝑤 𝑗 (𝑡), (2)

𝑟1 = 𝑎11𝑤1 + 𝑎12𝑤2 + 𝑎13𝑤3 + 𝑎14𝑤4 + 𝑎15𝑤5 , (2.1)
𝑟2 = 𝑎21𝑤1 + 𝑎22𝑤2 + 𝑎23𝑤3 + 𝑎24𝑤4 + 𝑎25𝑤5 , (2.2)
𝑟3 = 𝑎31𝑤1 + 𝑎32𝑤2 + 𝑎33𝑤3 + 𝑎34𝑤4 + 𝑎35𝑤5 , (2.3)
𝑟4 = 𝑎41𝑤1 + 𝑎42𝑤2 + 𝑎43𝑤3 + 𝑎44𝑤4 + 𝑎45𝑤5 , (2.4)
𝑟5 = 𝑎51𝑤1 + 𝑎52𝑤2 + 𝑎53𝑤3 + 𝑎54𝑤4 + 𝑎55𝑤5 . (2.5)

where 𝑖 – number of the empirical Chapman-Kolmogorov equa-
tion and the dependent variable 𝑟𝑖; 𝑗 – number of the regressor
(independent variable) 𝑤 𝑗 (𝑡); 𝑡 ≥ 0 – continuous time of the
process; Δ𝑡 = 𝑡− 𝑡0 – time increment between times 𝑡0 < 𝑡 and 𝑡;
𝑡0 < 𝑡 – reference time of the increment Δ𝑡; min Δ𝑡 = 1 minute
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(the accuracy of process clock), or the time interval of averag-
ing large frequency fluctuations illustrated on Fig. 4 below, up to
40 000 minutes (15–20 process steps); Δ𝑤𝑖 (𝑡) = 𝑤𝑖 (𝑡) −𝑤𝑖 (𝑡0)
– the increment of frequency 𝑤𝑖 in time interval ⟨𝑡0; 𝑡0 +Δ𝑡⟩;
𝑤𝑖 (𝑡), 𝑤 𝑗 (𝑡) – the cumulative frequencies in time period ⟨0; 𝑡⟩
(estimators of 𝑝𝑖 (𝑡), 𝑝 𝑗 (𝑡) in (1)); 𝑟𝑖 (𝑡) – instantaneous rate of

frequency change in time 𝑡 is the estimator of derivative
d
d𝑡

𝑝𝑖;
𝑎𝑖 𝑗 – directional coefficient (slope) of the model (2) for 𝑖-th
equation and 𝑗-th regressor.

According to auxiliary system (2), the value 𝑎𝑖 𝑗 denotes 𝜆𝑖 𝑗
intensity estimator in the Chapman-Kolmogorov system (1).
The frequency 𝑤𝑖 (𝑡) in continuous time is defined by (11). The
conventional one-time estimator𝜆∗

𝑖 𝑗
is the reciprocal of the mean

duration of the state before transition.
For an empirical phase trajectory, conditions (1.6) and (1.7)

are satisfied by formula (11).
Structural and stochastic parameters, as well as confidence

intervals for structural parameters, are calculated (estimated)
based on empirical difference quotient values of 𝑟 𝑗 (𝑡) and fre-
quencies 𝑤𝑖 (𝑡), 𝑤 𝑗 (𝑡). Selecting the minimum time difference
Δ𝑡 = 𝑡 − 𝑡0 should consider the time needed for the examined
process to establish itself satisfactorily in discrete time, to avoid
the lack of observations of most process states in the time inter-
val ⟨𝑡 − 𝑡0; 𝑡⟩, and frequent jumps of 𝑟𝑖 (𝑡) from 0.
Stage 2 of the procedure for verifying the Chapman-Kolmo-
gorov assumption involves the estimation of structural and
stochastic parameters, as well as the confidence intervals of
structural parameters of the linear regression models defined by
equation (2) for all states of the analyzed process. The structural
parameters of models (2.1)–(2.5) are estimators of the coef-
ficients in equations (1.1)–(1.5). The estimation is performed
using various analytical programs, such as the free software
Gretl.
Stage 3 of the procedure for verifying the Chapman-Kolmo-
gorov assumption is the estimation of the elements of the tran-
sition intensity matrix from the data sample, and calculation of
estimation errors and the endpoints of confidence intervals for
transition intensities, according to the following formulas:

𝜆∧𝑖 𝑗 =


𝑁𝑖 𝑗∑𝑁𝑖 𝑗

𝑘=1𝑇𝑖 𝑗𝑘
, for 𝑖 ≠ 𝑗 ,

−∑ 𝑗≠𝑖 𝜆𝑖 𝑗 , for 𝑖 = 𝑗 ,

(3)

where 𝜆∧
𝑖 𝑗

– the non-negative intensity of state transition from
state 𝑆𝑖 to 𝑆 𝑗≠𝑖 (exits 𝑆𝑖 to 𝑆 𝑗≠𝑖; random variable); 𝑁𝑖 𝑗 – number
of 𝑆𝑖 state observations before state 𝑆 𝑗 (random variable), equal
to the number of transitions 𝑆𝑖 → 𝑆 𝑗≠𝑖; {𝑇𝑖 𝑗𝑘}1≤𝑘≤𝑁𝑖 𝑗

– the
sequence of sojourn times when the system takes the state 𝑆𝑖
and transitions to state 𝑆 𝑗 in the interval [𝑡 − 𝑡0, 𝑡].

Since the estimators of the transition intensities have not been
developed, the endpoints of the confidence intervals for the in-
tensities 𝜆∧

𝑖 𝑗
are calculated as the reciprocals of the endpoints of

the average times 𝑇𝑖 𝑗 :

𝜆∧1𝑖 𝑗 = 1/𝑇2𝑖 𝑗 ; 𝜆∧2𝑖 𝑗 = 1/𝑇1𝑖 𝑗 for 𝑇1𝑖 𝑗 < 𝑇2𝑖 𝑗 . (4)

For any time distribution 𝑇𝑖 𝑗 of the duration of the initial transi-
tion state and sample size of at least 100, a normal distribution
of the sample mean is assumed based on the Central Limit The-
orem, and the endpoints of the central confidence interval are
calculated according to formula (5):

𝑇1𝑖 𝑗 = 𝑇𝑖 𝑗
(
𝑛𝑖 𝑗

)
−𝑢∝ ·

𝑆
(
𝑇𝑖 𝑗

)
√
𝑛𝑖 𝑗

,

𝑇2𝑖 𝑗 = 𝑇𝑖 𝑗
(
𝑛𝑖 𝑗

)
+𝑢∝ ·

𝑆
(
𝑇𝑖 𝑗

)
√
𝑛𝑖 𝑗

,

(5)

where 𝑇1𝑖 𝑗 < 𝑇2𝑖 𝑗 – ends of the confidence interval for the mean
time 𝑇𝑖 𝑗 of the initial transition state; 𝑇𝑖 𝑗

(
𝑛𝑖 𝑗

)
= 𝑇𝑖 𝑗 – mean

duration of the initial transition state from the test; 𝑆(𝑇𝑖 𝑗 ) –
unbiased standard deviation of the empirical time distribution
𝑇𝑖 𝑗 of the initial transition state; 𝑛𝑖 𝑗 – number of state 𝑆𝑖 to state
𝑆 𝑗 transitions during the test; 𝛼 – risk of incorrect estimation
based on an unusual random sample; 𝑢𝛼 – bilateral critical
value of order 𝛼 of decomposition 𝑁 (0;1); 𝑃 = 1−𝛼: assumed
confidence level.

For known time distributions 𝑇𝑖 𝑗 and a small number of tests,
the endpoints of confidence intervals are calculated according
to individual formulas. For example, for the exponential time
distribution 𝑇𝑖 𝑗 , the asymmetrical confidence interval for the
mean time 𝑇𝑖 𝑗 is defined by formulas [60]:

𝑇1𝑖 𝑗 = 𝑇𝑖 𝑗 ,𝛽 =

2
𝑛𝑖 𝑗∑
𝑘=1

𝑇𝑖 𝑗𝑘

𝜒2
𝛾,2𝑛𝑖 𝑗

=
2𝑛𝑖 𝑗𝑇𝑖 𝑗
𝜒2
𝛾,2𝑛𝑖 𝑗

,

𝑇2𝑖 𝑗 = 𝑇𝑖 𝑗 ,𝛾 =

2
𝑛𝑖 𝑗∑
𝑘=1

𝑇𝑖 𝑗𝑘

𝜒2
𝛽,2𝑛𝑖 𝑗

=
2𝑛𝑖 𝑗𝑇𝑖 𝑗
𝜒2
𝛽,2𝑛𝑖 𝑗

,

(6)

where 𝑘 = 1; 𝑛𝑖 𝑗 – number of time 𝑇𝑖 𝑗 observations during
the test; 𝜒2

𝛽,2𝑛𝑖 𝑗 ; 𝜒
2
𝛾,2𝑛𝑖 𝑗 – critical values of rows 𝛽 and 𝛾 and

distribution 𝜒2 with 2𝑛𝑖 𝑗 degrees of freedom. Other markings
as above.

The confidence intervals for the parameters of equations
(1.1)–(1.5) are calculated according to (6) for the transition
intensities of 𝜆∧

𝑖 𝑗
, except for the parameters 𝜆∧

𝑖𝑖
, for which the

endpoints of the confidence interval are calculated according
to the following formulas (7), based on the definition (5) of
diagonal transition intensities as

𝜆∧1𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝜆∧2𝑖 𝑗 ,

𝜆∧2𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝜆∧1𝑖 𝑗 ,

𝜆∧1𝑖𝑖 < 𝜆∧2𝑖𝑖 .

(7)

The confidence intervals for the parameters 𝑎𝑖 𝑗 of models (2.1)–
(2.5) are calculated according to definition (8)

𝑃(𝑎1𝑖 𝑗 < 𝑎𝑖 𝑗 < 𝑎2𝑖 𝑗 ) = 1−𝛼, (8)

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 6, p. e155046, 2025



Research on the causes of erroneous forecast generated using the Chapman-Kolmogorov equations for the process of vehicle operation

where 𝛼 is the given confidence level; 𝑎1𝑖 𝑗 ; 𝑎2𝑖 𝑗 ends calcula-
tions can be done by many programs for analysis, like Gretl, for
example.
Stage 4 of the procedure for verifying the Chapman-Kolmo-
gorov assumption is to test the coefficient of determination and
the significance of the model parameter estimates 𝑎𝑖 𝑗 (2), and
conduct a comparative analysis of the relationship between con-
fidence intervals for parameters 𝑎𝑖 𝑗 of models (2.1)–(2.5) and
𝜆𝑖 𝑗 Chapman-Kolmogorov assumption parameters (1.1)–(1.5).
The results of the analysis may be as follows:
• If all estimates of the structural parameters of model (2) for

the difference quotient 𝑟 𝑗 (𝑡) prove to be insignificant, the
Chapman-Kolmogorov assumption is wrong.

• If all estimates of the structural parameters of model (3) for
the difference quotient 𝑟𝑖 (𝑡) prove to be significant and the
model coefficient of determination is satisfactory (minimum
0.5 or higher, for example 0.81), the Chapman-Kolmogorov
assumption for the difference quotient 𝑟𝑖 (𝑡) proves to be gen-
erally formally correct (reductio ad absurdum did not occur).
However, additional contextual validation is required, based
on investigating the confidence intervals for the intensity 𝜆𝑖 𝑗
of equations (1.1)–(1.5) and parameters 𝑎𝑖 𝑗 in the regression
model (2).

• If all pairs of confidence intervals have a nonempty common
part, the Chapman-Kolmogorov assumption for the differ-
ence quotient 𝑟 𝑗 (𝑡) proves to be correct, both formally and
contextually. This is described in (9)

(𝑎1𝑖 𝑗 ; 𝑎2𝑖 𝑗 ) ∩ (𝜆∧1𝑖 𝑗 ; 𝜆
∧
2𝑖 𝑗 ) ≠ ∅. (9)

In other cases, the Chapman-Kolmogorov assumption for the
difference quotient 𝑟 𝑗 (𝑡) is formally and/or contextually correct
only for certain structural parameters. This assumption may
also prove to be formally incorrect but contextually correct if
the coefficient of determination of the regression model (2) is
low (< 0.5) or the data sample is too small.

Formally, the correct estimation of parameters of multiple
linear regression models assumes the fulfilment of the condition
of the regressor independence (independent variables) and the
selection of an estimation method (considering the parasitic
factors) that results in a normal distribution of model residuals.

In the case of a stochastic process with a deterministic com-
ponent that occurs in real processes of operation, the condition
of independence of regressors in model (2) may not be satisfac-
torily met because the regressors may be interdependent. The
manifestation of interdependency was the strong correlations of
regressors that occurred for the operation process under study.

In such a case, the estimation of regression model (2) using
the OLS method is only a specific, not necessarily optimal fitting
of the structural parameters to the empirical data [61, 62], the
quality of which is determined by the coefficient of determina-
tion, fitting errors, the significance of the slope coefficient, and
the degree of compliance of the distribution of residuals with
the normal distribution.

The improvement of model (2) practiced in econometrics
by eliminating parasitic factors is not possible in the case of the
verification procedure, since the verified Chapman-Kolmogorov

assumption is constant and not subject to modification. One can
only perform the estimation of models (2.1)–(2.5) with correc-
tion of heteroscedasticity relative to the observation number and
compare the estimation results of models (2.1)–(2.5) without and
with heteroskedasticity correction.

The proposed procedure for verifying the Chapman-Kolmo-
gorov assumption had to be validated by examining the regres-
sion nonlinearity of simple multiple regression components of
(2) and regression nonlinearity tests from (2), and performing
the verification procedure for a simulated stochastic process
without deterministic deformations of the stochastic matrix and
the intensity of transitions observed in the real vehicle operation
process.

For this purpose, based on its stochastic matrix and average
state durations, random coupled phase trajectories in discrete
and continuous time were generated using the programs Math-
ematica and Gretl.

3. DESCRIPTION OF THE EXAMINED PROCESS
OF OPERATION AND THE RESULTS OBTAINED

This study examined the operational process of nine military
vehicles in 2019 and 2020. Each object could be in one of five
distinct operational states. The states were: 𝑆1 – performing the
task; 𝑆2 – refueling; 𝑆3 – garage parking; 𝑆4 – ongoing mainte-
nance; 𝑆5 – periodic maintenance and repairs. States 𝑆1 and 𝑆4
occurred with equal frequency but were randomly interspersed
with states 𝑆2 and 𝑆3, and therefore could not be integrated.
Based on operational records, statistical databases were created
and then processed into collective phase trajectories for sets of
states and their durations. No significant differences were found
in the distribution of state frequencies and their durations over
the research period.

However, significant seasonality in the intensity of vehicle op-
eration was observed across hours of the day, days of the month,
days of the week, months, and quarters of the year. Nonetheless,
the multi-seasonality affected only the number of state obser-
vations, not the frequency or duration of the states. This was
advantageous for the present study, provided that the Markov
model matrix was estimated over a sufficiently lengthy period,
at least one year. Autocorrelation of states and deviations of
their durations from exponential distributions were also exam-
ined; however, their relevance to the goals of this study was not
established. The year 2019 was used as the period of expired
forecasts and model matrix estimation, while 2020 was adopted
for ex ante forecasts.

3.1. Results of the estimations of the probabilities and
intensity of the process under study transitions

Table 1 presents the matrices of interstate transition frequencies
and intensities for the vehicle sample under study.

The process under study did not show significant autocor-
relation of states, it had a nonsingular stochastic matrix [𝑤𝑖 𝑗 ]
and satisfied the conditions of stationarity and ergodicity for the
set of states over at least six-month periods, whereas the state
probabilities 𝑝 𝑗 in 2019 were very close to equilibrium with the
limit values 𝑝 𝑗∞ in discrete time (Table 2).
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Table 1
Matrices of frequencies 𝑤𝑖 𝑗 and intensities of transitions 𝜆∧

𝑖 𝑗
(in 1/day)

of the process in 2019

𝑤𝑖 𝑗 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑆1 0 0.1310 0 0.8690 0

𝑆2 0 0 0.7317 0.2683 0

𝑆3 0.6078 0.2235 0 0 0.1686

𝑆4 0 0 1 0 0

𝑆5 0.3023 0.0698 0.6279 0 0

𝜆∧
𝑖 𝑗

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑆1 –4.3236 1.8859 0 2.4377 0

𝑆2 0 –962.25 518.97 443.28 0

𝑆3 0.09901 0.32910 –0.46429 0 0.03618

𝑆4 0 0 144 –144 0

𝑆5 0.18303 0.32251 0.96214 0 –1.46767

Table 2
Frequencies𝑤 𝑗 %, limiting probabilities 𝑝 𝑗∞ % (calculated with Math-
ematica program), and their percentage deviations 𝛿% from frequencies

and quotients 𝑝 𝑗/𝑤 𝑗

Discrete time, 2019

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑤 𝑗 % 23.172 11.310 36.414 23.172 5.931

𝑝 𝑗∞ % 23.464 11.453 35.615 23.464 6.006

𝛿 % 1.26 1.264 -2.194 1.26 1.26

𝑝 𝑗/𝑤 𝑗 1.013 1.013 0.978 1.013 1.013

Continuous time, 2019

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑤 𝑗 % 2.178 0.0050 94.48 0.0355 3.2996

𝑝 𝑗∞ % 2.279 0.0378 95.18 0.1550 2.3462

𝛿 % 4.621 656 0.7414 336.3 –28.89

𝑝 𝑗/𝑤 𝑗 1.046 7.516 1.007 4.363 0.711

The assumption of exponentially distributed state durations
was also satisfactorily met.

The frequencies of states in discrete and continuous time dif-
fered significantly, which is common for operational processes.
In continuous time, the vehicle was parked 𝑆3 due to the low
intensity of operation. Several hundred percent variations of
limiting probabilities 𝑝 𝑗∞ % of some states (𝑆2 and 𝑆4) relative
to their frequency in continuous time, were found (Table 2). In
the context of forecasting a modest increase in the probability of
task performance state 𝑆1 (4.6%), the results of the Chapman-

Kolmogorov equations (1.1)–(1.7) suggested several hundred
percent increases in the probability of refueling 𝑆2 and ongoing
maintenance 𝑆4, and a significant decrease in the probability of
periodic maintenance and repairs 𝑆5. These forecasts are unre-
liable from the standpoint of vehicle operation, which in turn
makes the examined process a suitable object for verifying the
Chapman-Kolmogorov assumptions (1.1)–(1.5). To perform the
verification, the width 𝑡 − 𝑡0 and the time intervals ⟨𝑡0; 𝑡⟩ had to
be determined so that the estimation of the (d/d𝑡)𝑝𝑖 probabil-
ity derivatives using difference quotients according to formula
(2) were resistant to missing state observations in the interval
⟨𝑡0; 𝑡⟩. For this purpose, the determination of process state prob-
abilities in discrete time was examined. Satisfactory accuracy
of each probability estimate, with a deviation of less than 5%,
occurred after 15–20 steps of the process, while stabilization is
clearly visible after 30 steps. This phenomenon is illustrated by
an example graph of the function 𝑝5 (𝑡) for state 𝑆5 in Fig. 2.
This determines the starting time 𝑡0 and the width 𝑡-𝑡0 of the
time interval for estimating derivatives according to (2) as a
minimum of 15–20 steps.

Fig. 2. Evolution of 𝑝5 (𝑡) repairs and periodic maintenance probability
after 𝑛 steps of the vehicle operation process from the garage state 𝑆3

in step 𝑛 = 0 according to Mathematica

3.2. Results of estimating confidence intervals
for transition intensities

The tested process showed a very large variation in the number
of transitions 𝑛𝑖 𝑗 between states (Table 3), and, for this reason,
the asymptotic formula (5) for the endpoints of the confidence
interval of mean times could not be used for all transitions
𝑇𝑖 𝑗 (duration of transition states 𝑆𝑖 → 𝑆 𝑗 ). Formula (6) was
used for transition numbers 10–99. For the occasional transition
𝑆5 → 𝑆2, the endpoints of the confidence interval were calcu-
lated according to (4), taking the minimum and maximum values
of observations 𝑇52 from the test.

Endpoints of confidence intervals for diagonal intensities 𝜆𝑖𝑖
were calculated as the negative sums of the endpoints of the
confidence intervals of off-diagonal row “𝑖” elements of the
intensity matrix

𝜆∧1𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝜆∧2𝑖 𝑗 ,

𝜆∧2𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝜆∧1𝑖 𝑗 ,

𝜆∧1𝑖𝑖 < 𝜆∧2𝑖𝑖 .

(10)
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Table 3
Results of estimating the endpoints of confidence intervals (0.95) of
mean times 𝑇𝑖 𝑗 (min) of the initial transition states and transition in-

tensities 𝜆∧
𝑖 𝑗

(1/min) in 2019

𝑆𝑖 𝑆 𝑗 𝑛𝑖 𝑗 𝑇𝑖 𝑗 𝑇1𝑖 𝑗 𝑇2𝑖 𝑗 𝜆∧
𝑖 𝑗

𝜆∧1𝑖 𝑗 𝜆∧2𝑖 𝑗

1 2 22 763.5697 523.3069 1218.408 0.00131 0.000821 0.001911

1 4 146 590.7192 355.1579 826.2805 0.001693 0.00121 0.002816

2 3 60 2.774722 2.187528 3.636093 0.360396 0.27502 0.457137

2 4 22 3.248485 2.226325 5.183521 0.307836 0.192919 0.449171

3 1 155 14544.02 9520.069 19567.97 6.88E-05 5.11E-05 0.000105

3 2 57 4375.526 3429.631 5777.109 0.000229 0.000173 0.000292

3 5 43 39803.42 30771.53 54999.51 2.51E-05 1.82E-05 3.25E-05

4 3 168 10 9.984878 10.01512 0.1 0.099849 0.100151

5 1 13 7867.769 4879.45 14776.32 0.000127 6.77E-05 0.000205

5 2 3 4465 4700 7220 0.000224 0.000139 0.000213

5 3 27 1496.667 1060.741 2271.096 0.000668 0.00044 0.000943

Table 4
Confidence intervals (0.95) of diagonal intensities 𝜆𝑖𝑖 of transitions

(1/min) in 2019

𝜆11 𝜆22 𝜆33 𝜆44 𝜆55

𝜆𝑖𝑖 from
the test –0.003002 –0.668232 –0.000322 –0.100000 –0.001019

𝜆1𝑖𝑖 –0.004727 –0.906308 –0.000429 –0.100151 –0.001360

𝜆2𝑖𝑖 –0.002031 –0.467940 –0.000242 –0.099849 –0.000646

3.3. Estimation results of linear regression models
for difference ratios 𝑟 𝑗

(
𝑝𝑖≠ 𝑗

)
The probability estimators 𝑝𝑖 (𝑡) of the Chapman-Kolmogorov
equations are the cumulative frequencies𝑤 𝑗 (𝑡) of the regression
model equations (2), calculated in continuous time according to
formula (11)

𝑤𝑖 (𝑡) =

𝑛𝑖 (𝑡 )∑︁
𝑗=1

𝑇𝑖 𝑗

∑︁
𝑖

𝑛𝑖 (𝑡 )∑︁
𝑗=1

𝑇𝑖 𝑗

, (11)

where
𝑛𝑖 (𝑡 )∑︁
𝑗=1

𝑇𝑖 𝑗 – sum of the durations of state no. 𝑖 to 𝑡 moment;

∑︁
𝑖

𝑛𝑖 (𝑡 )∑︁
𝑗=1

𝑇𝑖 𝑗 – of all state duration times to 𝑡 moment; 𝑗 – number

of the state observation no. 𝑖 in the data sample; 𝑛𝑖 (𝑡) – quantity
of the state observation no. 𝑖 to 𝑡 moment.

Unlike discrete time, for continuous time the sums indicated
in equation (11) refer to the duration of states, not the number of
states. Cumulative frequency plots 𝑊𝑡1–𝑊𝑡5 of the process un-
der study, as tested in Fig. 3 and Fig. 4, illustrate the obstacles in
the verification of hypotheses about continuous-in-time process

state probability distributions. Obstacle 1 – the discontinuity
of the distribution of observations – hinders the verification of
point hypotheses about the derivatives of probabilities at time 𝑡.
Only interval estimation of derivatives as difference quotients
according to formula (2) is possible. Obstacle 2 is large, random
frequency fluctuations 𝑊𝑡 𝑗 (𝑡) occurring in the initial period of
ex ante forecasts (Fig. 4). For the tested process, the fluctua-
tions died out after 15–20 steps of the discrete-time process
(Fig. 2), which corresponded to approximately 40 000 minutes
(about 28 days) of continuous time. This period was a prog-
nostically unavailable period with one data sample. It would be
available for data on hundreds of parallel processes that were
not implemented in the operation of military vehicles.

Fig. 3. Cumulative percentage frequencies 𝑊𝑡1 (𝑡)–𝑊𝑡5 (𝑡) states
of the process under study in 2020

Fig. 4. Cumulative states percentage frequencies 𝑊𝑡1 (𝑡)–𝑊𝑡5 (𝑡)
of the process under study without 𝑆3 state in 2020

Time vol (in minutes) was measured from the beginning of
2017. The dominance of garage time is visible as 𝑊𝑡3 (𝑡).

Obstacle 2 described above limits forecasting to the time
for which fluctuations in cumulative state frequencies remain
smaller than the accepted forecast error. Obstacle 3 consisted
in interruptions in the operation of vehicles when they were
parked (constant frequencies in Fig. 3 and Fig. 4). These in-
terruptions were both seasonal and organizational breaks that
altered the environment of the process under study. For exam-
ple, a fivefold jump in frequency 𝑊𝑡5 around approximately
1 720 000 minutes (Fig. 4) corresponds to the end of a waiting
period of about 20 days for spare parts. Environmental factors
should also be attributed to the weekly breaks in vehicle op-
eration near 1 950 000 minutes, frequent operational pauses in
quarter 4 (for 𝑡 > 2000000 min), and the complete operational
downtime in December 2020 (𝑡 > 2060000 min), when reports
are generated and many public holidays occur. These obstacles
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Table 5
The confidence intervals (0.95) for the parameters of equations (1.1)–
(1.5) throughout 2019 and the regression model equations (2) for the

derived probabilities in the period from 10/06/2020 to 04/09/2020

According to the estimation of the intensity of transitions Common

Parameter Sample min max part

𝜆11 –0.003 –0.0047 –0.002 ∅

𝜆12 0.00131 0.00082 0.00191 ≠ ∅

𝜆14 0.00169 0.00121 0.00282 ≠ ∅

𝜆22 –0.6682 –0.9063 –0.4679 ∅

𝜆23 0.3604 0.27502 0.45714 ∅

𝜆24 0.30784 0.19292 0.44917 ∅

𝜆31 6.9E-05 5.1E-05 0.00011 ∅

𝜆32 0.00023 0.00017 0.00029 ∅

𝜆33 –0.0003 –0.0004 –0.0002 ∅

𝜆35 2.5E-05 1.8E-05 3.2E-05 ∅

𝜆43 0.1 0.0998 0.1002 ∅

𝜆44 –0.1 –0.1002 –0.0998 ∅

𝜆51 0.00013 6.8E-05 0.000205 ∅

𝜆52 0.00022 0.00014 0.00068 ≠ ∅

𝜆53 0.00067 0.00044 0.000943 ∅

𝜆55 –0.001 –0.0014 –0.0006 ∅

According to the estimation of regression models (2.1)–(2.5)

Parameter Sample min max Essence Model

𝑎11 –1.1E-05 –1.6E-05 –6.7E-06 YES (3.1)
𝑅2

0.6190
𝑎12 –0.00018 –0.00919 0.008839 NO

𝑎14 0.001108 –4.6E-05 0.002262 YES

𝑎22 4.95E-05 3.54E-05 6.36E-05 YES (3.2)
𝑅2

0.1880
𝑎23 -3.6E-09 –4.6E-09 –2.6E-09 YES

𝑎24 3.24E-07 –2.4E-07 8.9E-07 NO

𝑎31 -3.3E-06 –7.1E-06 5.09E-07 YES
(3.3)
𝑅2

0.4143
𝑎32 –0.06174 –0.08702 –0.03645 YES

𝑎33 5.49E-06 3.87E-06 7.11E-06 YES

𝑎35 –7.84E-05 –9.7E-05 –6E-05 YES

𝑎43 –1.62E-08 –2.2E-08 –1.1E-08 YES (3.4)
0.1315𝑎44 2.61E-05 1.74E-05 3.49E-05 YES

𝑎51 9.84E-06 7.94E-06 1.18E-05 YES
(3.5)
𝑅2

0.4860
𝑎52 –0.007 –0.01966 0.005667 NO

𝑎53 –8.4E-07 –1.6E-06 –2.5E-08 YES

𝑎55 5.35E-05 4.44E-05 6.26E-05 YES

Explanations for symbols:
Parameters of equations (1.1)–(1.5) according to the estimation of the intensity
of transitions (Table 3, Table 4) in 2019. Parameters of equations (2.1)–(2.5)
according to the Gretl program for 231 data from the period from 10/06/2020
to 04/09/2020.
Sample – the value of the sample parameter;
min, max – endpoints of confidence intervals.
𝑅2 – coefficient of determination.
Essence – significance of the estimate > 0.95 YES/NO.
Common Part – the common part of the confidence intervals for 𝜆𝑖 𝑗 and 𝑎𝑖 𝑗 :
∅ – empty set, ≠ ∅ nonempty set.

limited the verification of ex ante forecasts of the Chapman-
Kolmogorov system of equations for 2020 to the period from
10/06/2020 to 04/09/2020 and restricted the forecasting horizon.
Additionally, there was also obstacle 3, related to the verification
of models of military vehicle operation processes in peacetime:
a remarkably low intensity of operation and the overwhelming
dominance of the garage state 𝑆3 frequency 𝑊𝑡3 (Fig. 3). This
reduced the sample size and increased estimation errors.

OLS estimations were performed using moving variables of
model (2), as this approach utilizes the data more effectively
than reducing process fluctuations by applying a moving aver-
age smoothing method. This was confirmed by positive results
from normality tests of the residuals of models (2), which fell
within the three-sigma range for four out of five model (2) es-
timates. An example histogram of the residuals of model (2.5)
for the difference quotient 𝑟5 (𝑡) of the state probability 𝑆5, with
a positive 𝜒2 test result, is shown in Fig. 5.

Fig. 5. Histogram of residuals and 𝜒2 normality test result
of the difference quotient 𝑟5 (𝑡) model (2.5)

No other post-estimation tests were performed because the
purpose of estimating models (2) was solely to fit the parameters
to the data, and it was not possible to evaluate the models before-
hand. According to the estimation results presented in Table 5,
the Chapman-Kolmogorov assumption proved to be statistically
inconsistent with the sample data for 13 out of 16 parameters
of equations (1.1)–(1.5) and the regression models (2). Only for
three parameter pairs (𝜆𝑖 𝑗 and 𝑎𝑖 𝑗 ) were there nonempty inter-
sections of confidence intervals, and only one model (2.1) for
the difference quotient 𝑟1 (𝑡) had a coefficient of determination
𝑅2 = 0.619, indicating that the model variance predominated
over random variance. Model (2.5) nearly met this condition,
also showing a nonempty common part of the confidence in-
tervals for the parameter pairs (𝜆52; 𝑎52). The high statistical
significance of most coefficient 𝑎𝑖 𝑗 in regression models (2)
(≥ 0.95) despite small determination coefficients was a conse-
quence of the large sample size (231) and the compensation for
variable fluctuations 𝑤𝑖 (𝑡) in model (2), which are not strictly
linearly independent due to the normalization conditions (1.6)
and (11). The negative verification of the applicability of the
Chapman-Kolmogorov assumption for the examined operation
process required a fourfold validation of the proposed verifica-
tion procedure:
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• Validation of ex ante forecasts for the average probabilities
of states during the ex ante forecast period.

• Validation of ex ante forecast for the endpoints of the confi-
dence intervals of transition intensities (Tables 3, 4).

• Validation of the verification procedure results with tests of
nonlinearity for models (3) and simple regressions.

• Validation of the proposed verification procedure using a
simulated Markov process without seasonal and determin-
istic deformations of the vehicle operation process matrix
under study.

4. CHAPMAN-KOLMOGOROV ASSUMPTIONS
VERIFICATION PROCEDURE VALIDATION RESULTS

4.1. Average rates and ex ante forecasts for the average
state probabilities

For continuous time (in minutes) from the beginning of 2020,
the ex ante forecast period from 10/06/2020 to 03/09/2020
spanned the range [241 705; 356 390] minutes. According to the
Chapman-Kolmogorov system with estimates based on 2019
data, the examined process stabilized with deviations from the
limiting values 𝑝 𝑗∞ below 0.01% after 4000 minutes (𝑝1 (𝑡) in
Fig. 6). During ex ante forecast period, the state probabilities dif-
fered from their limiting values by a maximum of 0.00000001%,
meaning that the ex ante forecasts coincided with the limiting
forecasts.

Fig. 6. Evolution of 𝑆1 state probability over time from 0 to
5000 minutes, calculated using the Mathematica program

Only the forecast for the probability of state 𝑆3 (garage) met
the forecast deviation condition 𝛿% within±20%, which is com-
monly accepted in academic publications, and was within the
confidence interval for points, but not for means. Predictions
for the probabilities of state 𝑆1 (task execution) and 𝑆5 (repair
and periodic maintenance) were inaccurate and exceeded the
confidence intervals for both means and points, but they met
the deviation condition 𝛿% within ±50%, which is accepted in
econometrics. Forecasts for short-term states 𝑆2 (refueling) and
𝑆4 (ongoing maintenance) were nonsensical, with deviations of
483% and 157%, respectively.

4.2. Forecasts validation results for the endpoints
of transition intensity confidence intervals

Forecasts of the limiting state probabilities 𝑝 𝑗∞% based on the
endpoints of the confidence intervals for transition intensities
(lower and upper estimates in Table 7) proved to be similar to

Table 6
Mean condition frequencies, confidence intervals (0.95), and ex ante
forecasts for the average probabilities of states of the process under

study in the period from 10/06/2020 to 04/09/2020

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

Condition
frequency
𝑤𝑡𝑖% mean

3.777105 0.006487 94.58 0.060244 1.576165

Probability
𝑝𝑡𝑖% mean 2.27898 0.037806 95.182 0.154961 2.34622

Deviation
𝛿% (𝑝𝑡𝑖%
mean od
𝑤𝑡𝑖% mean)

–39.6633 482.8239 0.636498 157.2238 48.85626

SD% (𝑤𝑡𝑖%) 0.703123 0.000108 0.614934 0.002544 0.143637

SD% (𝑤𝑡𝑖%
mean) 0.046262 7.07E-06 0.04046 0.000167 0.009451

Endpoint of
1 confidence
interval
(0.95) 𝑤𝑡𝑖%

2.398984 0.006276 93.37473 0.055258 1.294637

Endpoint of
2 confidence
interval
(0.95) 𝑤𝑡𝑖%

5.155225 0.006697 95.78527 0.065229 1.857693

Endpoint of
1 confidence
interval
(0.95) 𝑤𝑡𝑖%
mean

3.686431 0.006473 94.5007 0.059916 1.557642

Endpoint of
2 confidence
interval
(0.95) 𝑤𝑡𝑖%
mean

3.867778 0.006501 94.6593 0.060572 1.594688

Number of
observations
𝑛𝑖

231 231 231 231 231

Explanations for symbols:
The letter 𝑡 in a parameter label indicates that the value is in continuous
time, not discrete time. Standard deviations (SD) and confidence inter-
vals are provided for both point values and mean values over the ex ante
forecast period because the Chapman-Kolmogorov system predictions
remained constant to ten decimal places throughout this period.

the previously discussed central estimates (Table 2), and con-
firmed the drastic failure to meet the Chapman-Kolmogorov
assumption for the probabilities of states 𝑆2 and 𝑆4.

Based on the data presented in Table 7, it can be assumed that
the errors in the limiting forecasts of the Chapman-Kolmogorov
system of equations are much more sensitive to deviations from
the Chapman-Kolmogorov assumption than to errors in the es-
timation of transition intensities.

Confirming this assumption, however, would require complex
sensitivity analyses of the forecasts.
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Table 7
Limiting forecasts for the endpoints of the transition intensity confidence intervals

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5
Type of

estimation

Condition frequency 𝑤𝑡 𝑗% mean 3.777105 0.006487 94.58 0.060244 1.576165

Probability 𝑝 𝑗∞% 2.27898 0.037806 95.182 0.154961 2.34622 Central
estimationDeviation 𝐷% (𝑝 𝑗∞% od 𝑤𝑡 𝑗% mean) –39.6633 482.8239 0.636498 157.2238 48.85626

Probability 𝑝 𝑗∞% 2.51312 0.028431 95.6341 0.118114 1.70623 Lower
estimationDeviation 𝐷% (𝑝 𝑗∞% od 𝑤𝑡 𝑗% mean) –33.4644 338.2968 1.114506 96.06054 8.252004

Probability 𝑝 𝑗∞% 2.21545 0.035849 95.2503 0.223066 2.27529 Upper
estimationDeviation 𝐷% (𝑝 𝑗∞% od 𝑤𝑡 𝑗% mean) –41.3453 452.6531 0.708712 270.2731 44.3561

4.3. Results of testing the nonlinearity of multiple
and simple regression models

Nonlinearity tests of the Lagrange multiplier (LM) performed
by the Gretl program showed the significance of the coefficients
of squares and logarithms of the variables for all five multiple
regression models (2.1)–(2.5), as shown in Table 5. An example
of the test result for model (2.1) is presented in Table 8.

Table 8
The auxiliary regression equation for the nonlinearity test (squared
variables). OLS estimation, observations used 471–701 (𝑛 = 231); de-

pendent variable (Y): uhat

Coefficient Standard error t-Student Value of 𝑝

𝑤𝑡1 9.97150E-06 1.62599E-05 0.6133 0.5403

𝑤𝑡2 −0.706905 0.181267 −3.900 0.0001***

𝑤𝑡4 0.0656618 0.0195452 3.359 0.0009***

sq_𝑤𝑡1 −1.31285E-06 2.23952E-06 −0.5862 0.5583

sq_𝑤𝑡2 59.4515 13.8490 4.293 2.62E-05***

sq_𝑤𝑡4 −0.520685 0.158828 −3.278 0.0012***

Coefficient of determination. R-square = 0.301980.
Test statistics: TR^2 = 69.7575, with a value of
𝑝 = P(Chi-square(3) > 69.7575) = 4.8105e-015
***significance at 1%; **significance at 5%; *significance at 10%.

In terms of verifying the Chapman-Kolmogorov assumption,
the results of the LM tests are only guidelines for testing the
non-linearity of simple regressions, as they consider only two
specific types of nonlinearity and, due to the doubling of the
number of regressors, may distort the results of significance tests
of structural parameters and the value of the model coefficient
of determination.

An example is model (2.1), where parameter 𝑎12 of the linear
model (Table 5) proved to be significant according to the LM
test for the model with squared variables, while the coefficient
of determination of the quadratic regression model (0.302) was
more than twice as small as that of the linear regression model
(0.619 – Table 5).

A more dependable and, at the same time, demonstrative
validation of the proposed procedure is possible by comparing
the coefficients of determination of simple linear and non-linear
regressions for the dependent variables of equations (2.1)–(2.5)
in relation to individual regressors.

The comparison results are presented in Table 9. The cor-
responding plots show the dispersion of dependent variables
against regressors. Polynomial regression was tested as a more
general method than quadratic and logarithmic regression.

Validation of the proposed procedure using simple and multi-
ple regression tests demonstrated the advantage of the condition
involving the existence of a common part of the confidence
intervals for the transition intensity estimates and the slope co-
efficients of multiple regression models, as a criterion for the
satisfactory local fulfilment of the Chapman-Kolmogorov as-
sumption, over the ambiguous relationships indicated by the
determination coefficients of linear and polynomial simple and
multiple regression models.

This ambiguity results from the strong definitional sensitivity
of the determination coefficient to small but significant devia-
tions of data from mean values. This is illustrated in Fig. 7.

Fig. 7. Difference quotient of dispersion plot 𝑟1 (%/min) and frequency
𝑤𝑡2 (%) with the linear regression line

A textbook dispersion plot for linear regression, shown in
Fig. 7, illustrates the concentration of 90% of observation pairs
close to the simple linear regression line, and approximately
10% of outlier pairs, which lowered the coefficient of deter-
mination of the linear regression to an unsatisfactory value of
0.3038 < 0.5.
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Table 9
List of values of the coefficient of determination of simple linear and
nonlinear polynomial regressions for dependent variables in relation to

the regressors of models (2.1)–(2.5)
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(3.1)
𝑅2

0.6190

𝑟1 𝑤𝑡1 0.087 0.618 5 YES ∅

𝑟1 𝑤𝑡2 0.3038 0.3334 6 YES ≠ ∅

𝑟1 𝑤𝑡4 0.0194 0.1778 5 YES ≠ ∅

(3.2)
𝑅2

0.1880

𝑟2 𝑤𝑡2 0.1585 0.1963 6 YES ∅

𝑟2 𝑤𝑡3 0.014 0.1725 5 YES ∅

𝑟2 𝑤𝑡4 0.0128 0.0963 6 YES ∅

(3.3)
𝑅2

0.4143

𝑟3 𝑤𝑡1 0.031 0.5179 5 YES ∅

𝑟3 𝑤𝑡2 0.2428 0.2642 5 YES ∅

𝑟3 𝑤𝑡3 0.0279 0.4666 6 YES ∅

𝑟3 𝑤𝑡5 0.1875 0.387 4 YES ∅
(3.4)
𝑅2

0.1315

𝑟4 𝑤𝑡3 0.0008 0.251 6 YES ∅

𝑟4 𝑤𝑡4 0.1815 0.2247 5 YES ∅

(3.5)
𝑅2

0.4860

𝑟5 𝑤𝑡1 0.0761 0.5407 5 YES ∅

𝑟5 𝑤𝑡2 0.0116 0.0934 6 ? ≠ ∅

𝑟5 𝑤𝑡3 0.1493 0.794 3 YES ∅

𝑟5 𝑤𝑡5 0.0865 0.6696 5 YES ∅

Explanations for symbols:
Degree – The highest degree of polynomial regression that does not
significantly increase the value 𝑅2.
Validation – Yes – empty or nonempty common part of confidence in-
tervals as given in Table 5, according to the following validation criteria
for the values and relations of the coefficient of determination of simple
linear and polynomial regression and the coefficient of determination
of multiple regression:

• Nonempty part common to 𝑅2 multiple regression > 0.5 and 𝑅2

polynomial regression < 0.5.
• Empty shared area for 𝑅2 multiple regression < 0.5.

Validation – ? – Too few transitions 𝑛52 = 3 (Table 3) for the existence
of a nonempty common part could be considered reliable, which may
have been the result of a small sample.

After eliminating the outlier pairs, the coefficient of deter-
mination increased to 0.725 > 0.5, confirming the Chapman-
Kolmogorov assumption according to the relationship between
the confidence intervals.

The dispersion plot in Fig. 8 illustrates the concentration
of 80% observation pairs close to the simple linear regression
line and approximately 20% of outlier pairs, which lowered
the coefficient of determination of the linear regression to an
extremely low value of 0.0194.

Once the outlier pairs are eliminated, the coefficient of de-
termination increases to 0.638 > 0.5, confirming the Chapman-

Fig. 8. Difference quotient of dispersion plot 𝑟1 (%/min) and frequency
𝑤𝑡4 (%) with the linear regression line

Kolmogorov assumption according to the relationship between
the confidence intervals.

The proposed procedure therefore replaces the burdensome
elimination of outlier observations that lower the coefficient of
determination by filtering them through estimation formulas for
the endpoints of confidence intervals at a given confidence level.

In the case of significant nonlinear simple regression (Fig. 9),
the proposed procedure detected local nonfulfillment of the
Chapman-Kolmogorov assumptions, as indicated by the empty
intersection of confidence intervals, despite the satisfactory co-
efficient of determination of the multiple regression model (2.1)
(Table 5). According to the list of determination coefficients for
multiple and simple linear and polynomial regression models in
Table 9, the Chapman-Kolmogorov assumption was considered
not fulfilled if the coefficient of determination of the simple poly-
nomial regression model was greater than 0.5, or greater than 0.3
and at least twice as high as that of the simple linear regression.
The assumption was considered fulfilled if the coefficient of
determination of the multiple linear regression model exceeded
0.5 and the coefficient of determination of the simple polyno-
mial regression was below 0.5. In other cases, the relationship
between the coefficients of determination and the results of non-
linearity tests did not provide a decisive criterion for the degree
of fulfilment of the Chapman-Kolmogorov assumptions due to
the strong influence of outlier data on the coefficients of deter-
mination of regression models (Fig. 8). A criterion less sensitive
to outliers was the product of the confidence intervals for tran-
sition intensities and the parameters of the regression models,
calculated according to the proposed procedure (Table 5).

Fig. 9. Difference quotient of dispersion plot 𝑟1 (%/min) and frequency
𝑤𝑡1 (%) with the power regression line
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4.4. Validation results of the proposed verification
procedure based on a simulation

To eliminate deterministic deformations of the stochastic ma-
trix and the transition intensities in the real vehicle operation
process, random and coupled phase trajectories of 1000 steps
in discrete and continuous time were generated using Mathe-
matica and Gretl programs, based on its stochastic matrix and
average state durations, with exponential distributions of state
durations. The section of steps 1–500 constituted the ex-post pe-
riod for estimating the matrix of the simulated Markov process.
The section of steps 501–687 was the period of process stabi-
lization (Figs. 2–4), and the ex ante section of steps 688–1000
was the continuous-time validation period of the proposed pro-
cedure. The real and simulated process matrices did not differ
significantly, but the phase trajectories simulated in continuous
time for the ex post and ex ante periods were approximately
twice as long as the real trajectory due to significant deviations
in the “tail” of the real parking time distribution (state 𝑆3) from
the simulated exponential distribution.

Compared to the real process (Table 2 and Table 5), the sim-
ulated process exhibited the following:
• Significant changes in frequency, limited state probabilities

for 𝑆2, 𝑆4, and 𝑆5, and reduced percentage deviations (𝛿%)
of the limited probabilities of states 𝑆2 and 𝑆4 from their
frequency. These effects were a consequence of seasonality,
which caused the distributions of the durations of these states
to deviate from the simulated exponential distributions.

• Decreases in the coefficient of determination (𝑅2) for the
multiple regression models (2.1)–(2.5) to exceptionally low
values, invalidating the Chapman-Kolmogorov assumption
for the simulated process. This was confirmed by the absence
of overlapping confidence intervals, as shown in Table 5.
This result can be considered a positive validation of the
proposed procedure using Markov process simulation.

Table 10
Simulation results of the Markov process 1 and determination of model

coefficient (2.1)–(2.5)

Determination of the model coefficient of simulation and real models

Model (3.1) (3.2) (3.3) (3.4) (3.5)

𝑅2 sim 0.2018 0.1103 0.1983 0.0079 0.0815

𝑅2 real 0.6190 0.1880 0.4143 0.1315 0.4860

|𝜆𝑖𝑖 | 0.0029 0.6059 0.0002 0.1035 0.0010

𝛿% –11.68 251.06 -0.529 149.94 18.10

Continuous time. Simulation. Forecast periods ex ante

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑤𝑡𝑖% 2.338 0.0054 93.72 0.0329 3.9023

𝑝𝑖∞% 2.065 0.0191 93.23 0.0823 4.6084

𝛿% –11.679 251.1 –0.5294 149.9 18.10

𝑝𝑖/𝑤𝑖 0.883 3.511 0.995 2.499 1.181

Designations as in Table 5, Table 6, Table 7, and Table 9.

The data in the lower left rows of Table 10 suggest an increase
in deviations corresponding to the magnitude of the diagonal
intensities of limiting transitions (|𝛿%|) between Chapman-
Kolmogorov forecasts and observed frequencies. However, this
could be a result of the dominance of the frequency of state 3.
To verify this assumption, a Markov process simulation was
performed using the matrix structure of the observed operation
process, with higher transition probabilities (1/3, 1/2, and 1) and
constant nondiagonal elements of the transition intensity matrix
𝜆𝑖 𝑗≠𝑖 = 1. The results are presented in Table 11.

Table 11
Simulation results of the Markov process 2 and determination

of the model coefficient (2.1)–(2.5)

Probabilities 𝑝𝑖 𝑗 and ∥ transition intensity matrix 𝜆𝑖 𝑗

State 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑆1 0∥ −2 1/2∥1 0∥0 1/2∥1 0∥0

𝑆2 0∥0 0∥ −2 1/2∥1 1/2∥1 0∥0

𝑆3 1/3∥1 1/3∥1 0∥ −3 0∥0 1/3∥1

𝑆4 0∥0 0∥0 1∥ 0∥ −1 0∥0

𝑆5 1/3∥1 1/3∥1 1/3∥1 0∥0 0∥ −3

Parameter 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑤𝑡𝑖% 17.6 22.8 34.4 16.0 9.2

𝑝𝑖∞% 14.29 21.43 21.43 35.71 7.14

𝛿% −18.83 −6.02 −37.71 123.21 −22.36

|𝜆𝑖𝑖 | 2 2 3 1 3

Model (3.1) (3.2) (3.3) (3.4) (3.5)

𝑅2 sim 0.1633 0.2300 0.4173 0.3547 0.2347

Designations as in Table 5, Table 6, Table 7, and Table 10.
The matrix element before the ∥ sign is the probability 𝑝𝑖 𝑗 .

A nonmonotonic relationship between |𝛿%| and |𝜆𝑖𝑖 | was
found, indicating that the relationship observed in Table 10 is
specific to the operational process under study and cannot be
extrapolated to other Markov processes.

5. SUMMARY

The research presented in this publication aimed to develop
a method for verifying the applicability of the Chapman-
Kolmogorov assumption for users and researchers of opera-
tional processes, which is as simple as possible and feasible
using commonly available software. The authors are aware of
the preliminary nature of the research and the need for its further
development in the future.

According to the cited validation results, the proposed ver-
ification procedure for the Chapman-Kolmogorov assumption
is equivalent to a set of analyses of the coefficient of deter-
mination and the nonlinearity of multiple, simple linear, and
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nonlinear regression models. By reducing the impact of outlier
data, it is reliable and simpler to implement, without requir-
ing database filtering. The results of the Chapman-Kolmogorov
assumption verification using the proposed procedure are pre-
sented in a compact form, with an indication of the parameters
that do not satisfy the assumption. For the operational process
under study and two simulations of the Markov process, the
Chapman-Kolmogorov assumption was therefore found to be
80–100% incorrect and appeared to serve more as a theoretical
affirmation of the surrounding reality.

Unsatisfactory coefficients of determination with high statis-
tical significance are a manifestation of the well-known large
sample size effect, referred to in the life and medical sciences
as the collision of effect size (Cohen’s) with test significance.
This effect means that, with a sufficiently large sample, even an
insignificant parameter can appear statistically significant in a
population. An example of this effect is the verification of the
hypothesis on the significance of the model coefficient of deter-
mination (2) for the dependent variable 𝑟4, equation (2.4), which
had a clearly unsatisfactory value of 𝑅2 = 0.1315 (Table 9): the
model variance accounted for only 13.15% of the variance of
the dependent variable. With a sample size of 231, the critical
significance level of the 𝐹-test for 𝑅2 had a 𝑝-value < 10−19,
meaning that the decidedly unsatisfactory value of 𝑅2 = 0.1315
was found to be statistically highly significant due to the large
sample effect. The criterion of an applicational significant value
𝑅2 > 0.5 proved to be valid, while the criterion of statistical sig-
nificance of the 𝑅2 value proved to be meaningless for assessing
the quality of model (2.4). The regression analyses discussed in
this publication were conducted for sample sizes greater than
200; for this reason, the negligible critical significance levels of
the 𝐹-test for 𝑅2 (𝑝 < 10−10) were not reported. For satisfactory
𝑅2 values above 0.5, statistical significance was automatically
achieved. The OLS estimators were fully sufficient for this study,
as the consistency between the results of the two transition in-
tensity estimation methods was verified across wide confidence
intervals (Table 5, Table 9). It was also confirmed that the MLR
and OLS estimators did not differ significantly.

The authors were granted permission to access military vehi-
cle operation records. In peacetime, vehicle usage is, by defini-
tion, of extremely low intensity, as these vehicles are designed
for wartime operations. To overcome the limitations affecting
the reliability of the results – particularly those related to down-
time – it would be more beneficial to verify the proposed method
using data from a regular vehicle operation process, such as in
public transportation or commercial delivery fleets. Only after
confirming the methodological effectiveness for regular opera-
tion processes could it be applied to the design and optimization
of civilian vehicle operation systems. However, such confirma-
tion would require access to civilian databases, such as those
used in urban public transport systems.

Discontinuous observations shortened the time intervals of
scheduled vehicle operation and reduced the number of obser-
vations suitable for reliable estimation of the regression model
parameters (2) from 833 to 231. This led to a loss of approxi-
mately 72% of the operational process data and nearly doubled
the width of the confidence intervals for transition intensities.

Eliminating the impact of outages on the results would require
repeating the study for a regular vehicle operation process, such
as public transport buses. Fluctuations in the frequency of ve-
hicle states were caused by the multi-seasonality of social life,
which cannot be avoided in peacetime. These fluctuations con-
tributed to the widening of confidence intervals for transition
intensities. Moreover, the low intensity of vehicle operation may
have resulted in an underestimation of the frequency of 𝑆5 state
observations (vehicle maintenance and repair) compared to the
operational design assumptions.

For the five-state operation process studied, there were five
state durations and 11 transition intensities (Table 1). According
to the factors influencing the Chapman-Kolmogorov predictions
(Fig. 2), there was an inevitable and complex interference of each
estimated intensity with the other ten when estimating the in-
tensities. Unraveling this interference would require conducting
a sensitivity analysis. This task is so difficult that predictions
from the Chapman-Kolmogorov system in continuous time are
considered unreliable, and the evolution of the facility opera-
tion process is instead predicted directly from the distributions
of state durations.
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