

Discovery of metamorphosed Devonian volcanic rocks in the Prypyat-Dnieper-Donets Rift

LEONID SHUMLYANSKYY^{1,2,3} and VLADYSLAV SHUMLYANSKYY⁴

¹ Institute of Geological Sciences of the Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland;
e-mail: lshumlyanskyy@yahoo.com

² M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine,
03142, Palladina ave., 34, Kyiv, Ukraine

³ School of Earth and Planetary Sciences, Curtin University, Kent St, Bentley WA 6102, Perth, Australia

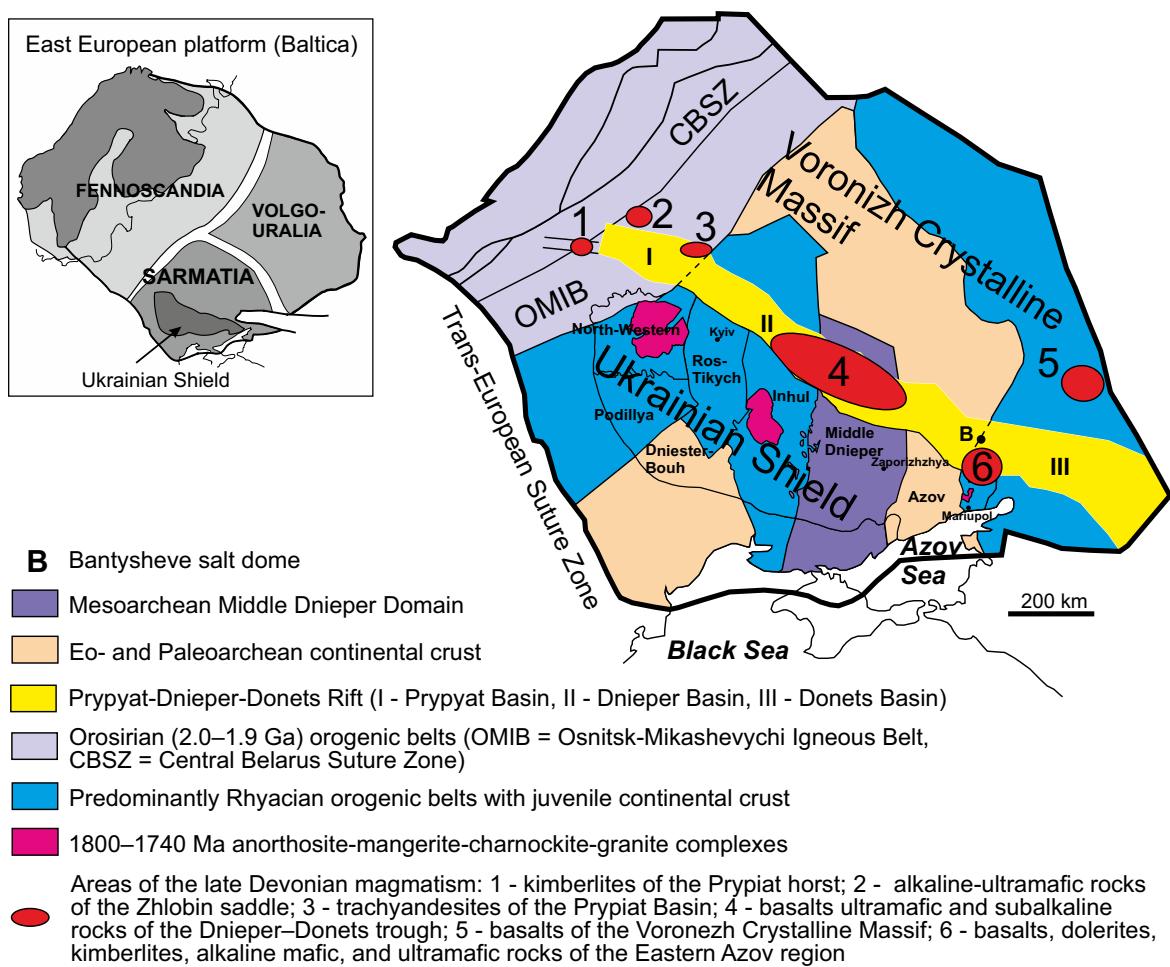
⁴ LLC "Nuclear energy systems of Ukraine" Ioanna Pavla II st., 4/6 corp. B, 01042, Kyiv, Ukraine

ABSTRACT:

Shumlyanskyy, L. and Shumlyanskyy, V. 2025. Discovery of metamorphosed Devonian volcanic rocks in the Prypyat-Dnieper-Donets Rift. *Acta Geologica Polonica*, **75** (3), e50.

The Late Devonian Prypyat-Dnieper-Donets Rift is a significant tectonic structure on the East European platform. Devonian salt domes are extensively developed within the Rift and create a system of associated traps, which often accommodate oil and gas fields. Associated with these salt domes hydrothermal deposits and occurrences of mercury and base metals are also found in the south-eastern part of the Rift, near the Donets inversion-folded structure. Diapiric breccias (cap rocks) frequently contain fragments of various rocks, which remain poorly studied. The authors examined a fragment of metamorphosed mafic rock collected from a cap rock of the Bantyshev salt dome, situated in north-western Donbas, at the transition zone to the Dnieper Basin. The rock was identified as hornblende schist, metamorphosed at a relatively high temperature of 775–730°C and low pressure of 1.4–1.0 kBar, corresponding to the hornfels facies of metamorphism. The U-Pb age of the metamorphic crystallisation of titanite from the schist was determined at 370 ± 17 Ma. This age matches the magmatism in the Prypyat-Dnieper-Donets Rift. Data obtained suggest that the most probable protolith for the studied schist is the Late Devonian picritic basalt or picritic dolerite, which is associated with the development of the Rift.

Key words: Prypyat-Dnieper-Donets Rift; Salt dome; Diapiric breccia; U-Pb age; Titanite; Hornblende schist.


INTRODUCTION

The Prypyat-Dnieper-Donets Rift is a more than 1000 km long tectonic structure that extends from northwest to southeast, separating the Voronizh crystalline massif from the Ukrainian Shield and dividing the Sarmatian segment of the East European Platform approximately in half (Text-fig. 1). Within the Rift, three main segments are distinguished: the Prypyat, Dnieper, and Donets basins, which vary in the amount and composition of sedimentary and igneous rocks, as well as in the degree of deformation (Chalot-Prat *et al.*

2007; de Boorder *et al.* 1996; Wilson and Lyashkevich 1996; Kusznir *et al.* 1996; Stephenson *et al.* 2006). The boundaries between these segments coincide with the boundaries between the main crustal blocks that form the basement for the rift and extend beneath it from the Ukrainian Shield to the Voronizh Massif.

According to Wilson and Lyashkevich (1996), alkaline-ultramafic and mafic magmatism associated with the initiation and development of the rift occurred alongside the emplacement of the mantle plume during the Late Frasnian time, while regional uplift began earlier, in the Middle Frasnian.

Text-fig. 1. Schematic map of Sarmatia according to Shumlyanskyy *et al.* (2021c) showing the position of the Prypyat-Dnieper-Donets Rift and associated magmatism.

Devonian igneous rocks are common within the rift and in adjacent areas, such as the Azov Domain of the Ukrainian Shield, the Voronizh crystalline massif, and the Prypyat horst (Korzon and Makhnach 1977; Buturlinov 1979; Mikhailov *et al.* 2011; Sheremet *et al.* 2015; Yutkina *et al.* 2017; Sazonova *et al.* 2019; Shumlyanskyy *et al.* 2021a, c).

In the Prypyat-Dnieper-Donets Rift, Devonian salt domes (cryptodiapirs and diapirs) are extensively developed (e.g., Kityk 1970; Stovba 2005). Oil and gas fields are primarily associated with them, and in the southeastern part of the Rift, near the Donets inversion-folded structure, salt-dome structures host deposits and occurrences of mercury and base metals (Kyrykylytsya and Laskov 1970; Shumlyanskyy and Bezuhla 1995; Fedorchuk 1984).

The oldest rocks of the salt dome structures are clastic, evaporitic, and effusive formations of Middle and, partly, Late Devonian age. Deep boreholes have

recovered them as rock salt stocks or as fragments and blocks in diapiric tectonic breccias that surround the stocks or form their cap rocks. In some locations, fragments of volcanic rocks are found directly within the salt. In the Adamivka stock (Sloviansk anticline) area, a borehole recovered a block approximately 50 m thick of slightly altered diabase. Similar fragments and blocks have also been observed in the Bantysheve, Kurulka, Petrivske, Bilyaivka, Stepok, and other anticlines (Kyrykylytsya and Laskov 1970; Shumlyanskyy and Bezuhla 1995).

The volcanic rocks composing the fragments and blocks include diabase, basalt, trachydolerite, and porphyrite. They are typically grey and show signs of hydrothermal alteration, characterised by albitization, propylitization, and carbonatization. In addition to volcanic rocks, two large fragments of granitoids were described in the diapiric breccia of the Sloviansk structure (Fedorchuk 1984). Limestones with a Give-

tian fauna were also discovered (Kyrykylytsya and Laskov 1970).

In this paper, we explore the geochronology and petrology of a previously unreported metamorphic rock fragment. Determining the origin of these rocks is crucial for understanding the ore-forming processes associated with salt-dome structures and the formation and evolution of these structures.

RESEARCH METHODS

Titanite was extracted from the sample at the M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, Kyiv, Ukraine, using standard separation methods, including a shaking table, heavy liquids, and a magnetic separator. The titanite U-Pb isotopic age was determined at Trinity College Dublin Isotope Laboratory, Dublin, Ireland. The laser ablation system used was a Photon Machines Analyte Excite 193 nm ArF laser system, equipped with a 2-volume HelEx ablation cell, and connected to an Agilent 7900 mass spectrometer. The laser beam size was set at 36 μm . The analytical results were processed using the IOLITE package (Paton *et al.* 2011) with the VizualAge UcomPbne data reduction scheme (Chew *et al.* 2014), which can account for variations in total Pb in a standard sample.

The chemical analysis for major oxides and trace elements was performed using ICP-MS at Bureau Veritas Commodities Canada Ltd's commercial laboratory (<https://www.bvna.com>). Electron microprobe analyses, as well as backscattered electron and secondary electron images, were produced using the ZEISS Ultra Plus Scanning Electron Microscope at the GFZ Helmholtz Centre for Geosciences, Potsdam, Germany. The acceleration voltage was set at 15 kV.

The parameters of amphibole crystallisation were calculated using MagMin_PT Excel macros (Gündüz and Asan 2023), and whole-rock spidergrams were plotted with PetroGram Excel macros (Gündüz and Asan 2021).

RESULTS

Petrography

The Bantyshev anticline (dome) is situated on the northwestern edge of the Donets Basin, near its transition to the Dnieper Basin (Text-fig. 1). It forms part of a chain of anticline structures that

extends from the Holovna (Main) and Druzhkivka-Kostyantynivka anticlines of the Donbas towards the northwest (Belous and Kyrykylytsya 1975). The dome is elongated towards the northwest, with an azimuth of 320–330°. Its length along the cap rock breccia is about 2800 m, and its width varies from 900 to 1100 m. The formation of the salt dome began in the Early Permian, with salt mass movement continuing into the Neogene (Belous and Kyrykylytsya 1975). Within the Bantyshev mercury-base metal occurrence, a fragment of rock initially described as diabase was collected from borehole No. 9365 at a depth of 694 m, originating from the cap rock diapir breccia. The breccia contained mercury mineralisation.

During microscopic studies, the rock was identified as a hornblende schist. It has a fine-grained, uniform to slightly uneven-grained nematoblastic texture and schistose structure. The mineral composition is as follows (wt. %): hornblende – 80, quartz – up to 5–6, sulphides – up to 8, titanite – up to 2, plagioclase – 2, carbonate – 2, biotite – single crystals.

The rock consists of an aggregate of small (0.1–0.2 mm) short prismatic crystals of hornblende, which are pleochroic, ranging from yellow-green to grass-green. In places rather large (up to 1–1.5 mm) prismatic crystals of hornblende occur; these are partially fragmented and replaced by crystals of the same mineral. Small (0.05–0.1 mm) isometric crystals of opaque minerals and titanite, as well as larger (0.2–0.3 mm) rounded crystals of quartz, carbonate, and plagioclase, are found between hornblende grains. Biotite in the sample appears as a single crystal with intense pleochroism in brown shades.

Mineral chemistry

Amphibole, the most abundant mineral in the studied rock, is a magnesian-iron hornblende with impurities of Na, K, and Ti (Table 1).

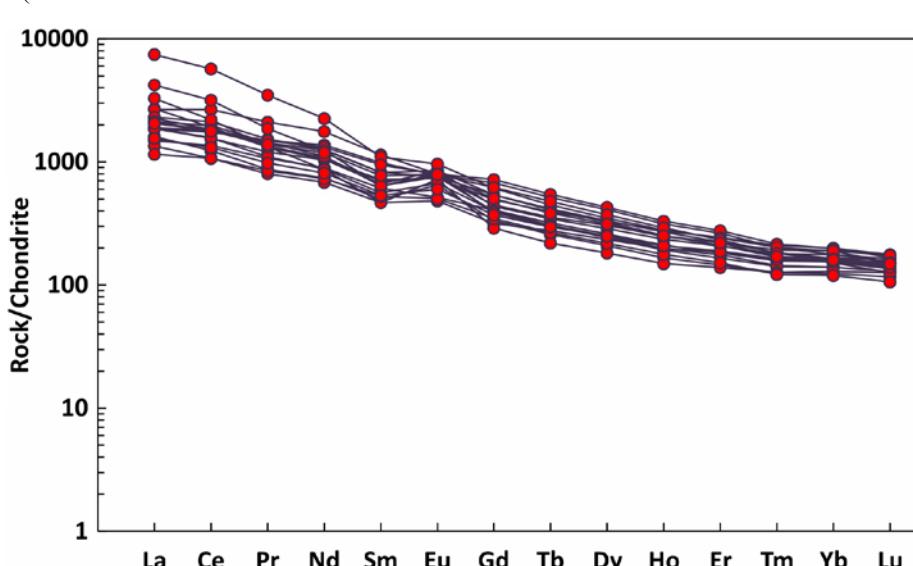
Spot #	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O
02–01	46.42	1.31	8.54	16.72	13.20	11.61	1.39	0.80
01–13	47.28	1.04	8.79	15.80	12.52	12.29	1.67	0.60
03–09	46.88	1.15	7.41	16.75	13.26	12.25	1.12	0.58

Table 1. Amphibole chemical composition, wt. %.

Spot #	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O	Ab	An
02–13	60.45	0.45	24.78	n.d.	6.76	7.56	66.9	33.1
02–17	59.30	n.d.	24.79	0.81	6.76	7.81	67.6	32.4
01–12	64.46	n.d.	22.45	n.d.	3.57	9.52	82.8	17.2
01–14	67.19	0.26	20.37	n.d.	0.83	11.35	96.1	3.9
03–04	62.06	0.33	24.94	n.d.	4.52	8.14	76.5	23.5

Table 2. Plagioclase chemical composition, wt. %.

Spot #	S	Fe	Ni	Si
02-14	63.84	35.74	n.d.	0.42
02-15	65.42	31.25	3.33	n.d.
02-16	64.98	35.02	n.d.	n.d.
01-15	65.24	34.34	n.d.	0.42
03-08	64.85	34.91	n.d.	0.24
04-04	64.63	35.16	n.d.	0.21
04-05	64.80	34.82	n.d.	0.38
04-08	65.63	34.09	n.d.	0.28
04-10	65.22	34.78	n.d.	n.d.
04-11	64.68	35.32	n.d.	n.d.
04-12	65.16	33.21	1.63	n.d.
04-13	64.70	35.30	n.d.	n.d.
04-14	66.30	31.02	2.68	n.d.


Table 3. Pyrite chemical composition, at. %.

The composition of plagioclase ranges from $\text{An}_{33}\text{Ab}_{67}$ to $\text{An}_4\text{Ab}_{96}$ (Table 2), with a predominance of calcium-rich plagioclase. It contains noticeable impurities of Ti and occasionally Fe. Pyrite is the only sulphide mineral in the rock. It contains small impurities of Si (Table 3), while Ni content varies from 1.6 to 3.3 at. %; these elements were detected in a limited number of analysed crystals. Titanite is characterised by a noticeable (0.6–1.9 wt. %) impurity of Al and sporadic impurities of Fe, S, and Mg (Table 4).

The trace element composition of titanite is provided in Table 5. Titanites contain significant amounts of all measured trace elements, namely P – 255–1950 ppm, V – 2050–4270 ppm, Mn – 915–213 ppm, Sr – 72–405 ppm, Y – 235–450 ppm, Zr – 520–6795 ppm, and the total of REEs – 1655–7195 ppm. Meanwhile, the levels of radioactive elements are relatively low: Th – 7–72 ppm (with isolated anomalous values reach-

Spot #	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	MgO	CaO	SO_3
02-02	31.42	37.78	1.40	1.39	0.17	27.83	n.d.
02-03	31.04	38.71	1.36	0.77	n.d.	28.13	n.d.
02-04	30.76	40.18	0.98	n.d.	n.d.	28.08	n.d.
02-05	31.44	38.95	1.47	n.d.	n.d.	28.14	n.d.
02-06	30.28	38.23	1.65	1.35	n.d.	27.67	n.d.
02-07	31.09	40.21	0.85	n.d.	n.d.	27.85	n.d.
02-08	31.34	40.39	0.86	n.d.	n.d.	27.41	n.d.
02-09	31.19	40.03	1.14	n.d.	n.d.	27.65	n.d.
02-10	31.25	40.23	0.81	n.d.	n.d.	27.70	n.d.
02-11	31.19	40.32	0.73	n.d.	n.d.	27.76	n.d.
02-12	30.92	39.85	0.91	n.d.	n.d.	28.32	n.d.
01-01	30.87	41.07	0.73	n.d.	n.d.	27.33	n.d.
01-02	30.88	40.09	1.24	n.d.	n.d.	27.78	n.d.
01-03	31.09	40.10	0.70	n.d.	n.d.	28.11	n.d.
01-04	31.35	40.14	0.71	n.d.	n.d.	27.80	n.d.
01-05	30.79	41.27	0.83	n.d.	0.02	27.09	n.d.
01-06	30.56	41.07	0.60	n.d.	n.d.	27.77	n.d.
01-08	31.16	40.27	1.02	n.d.	n.d.	27.55	n.d.
01-09	30.82	39.89	1.05	n.d.	n.d.	28.24	n.d.
01-10	31.35	40.01	1.11	n.d.	n.d.	27.53	n.d.
03-01	31.58	38.86	1.35	n.d.	n.d.	28.21	n.d.
03-02	31.37	39.50	1.94	n.d.	n.d.	27.19	n.d.
03-03	31.16	38.51	1.44	0.97	n.d.	27.92	n.d.
03-06	30.70	39.89	0.73	n.d.	n.d.	27.86	0.82
03-07	31.05	40.69	0.66	n.d.	n.d.	27.59	n.d.
03-10	31.37	38.16	1.24	1.22	n.d.	28.01	n.d.
04-02	32.20	38.80	1.54	n.d.	n.d.	27.45	n.d.
04-03	31.72	39.65	0.91	n.d.	n.d.	27.72	n.d.
04-06	31.28	40.16	1.24	n.d.	n.d.	27.33	n.d.
04-07	31.19	40.18	0.87	n.d.	n.d.	27.75	n.d.
04-09	30.03	41.48	0.78	n.d.	n.d.	27.03	0.68

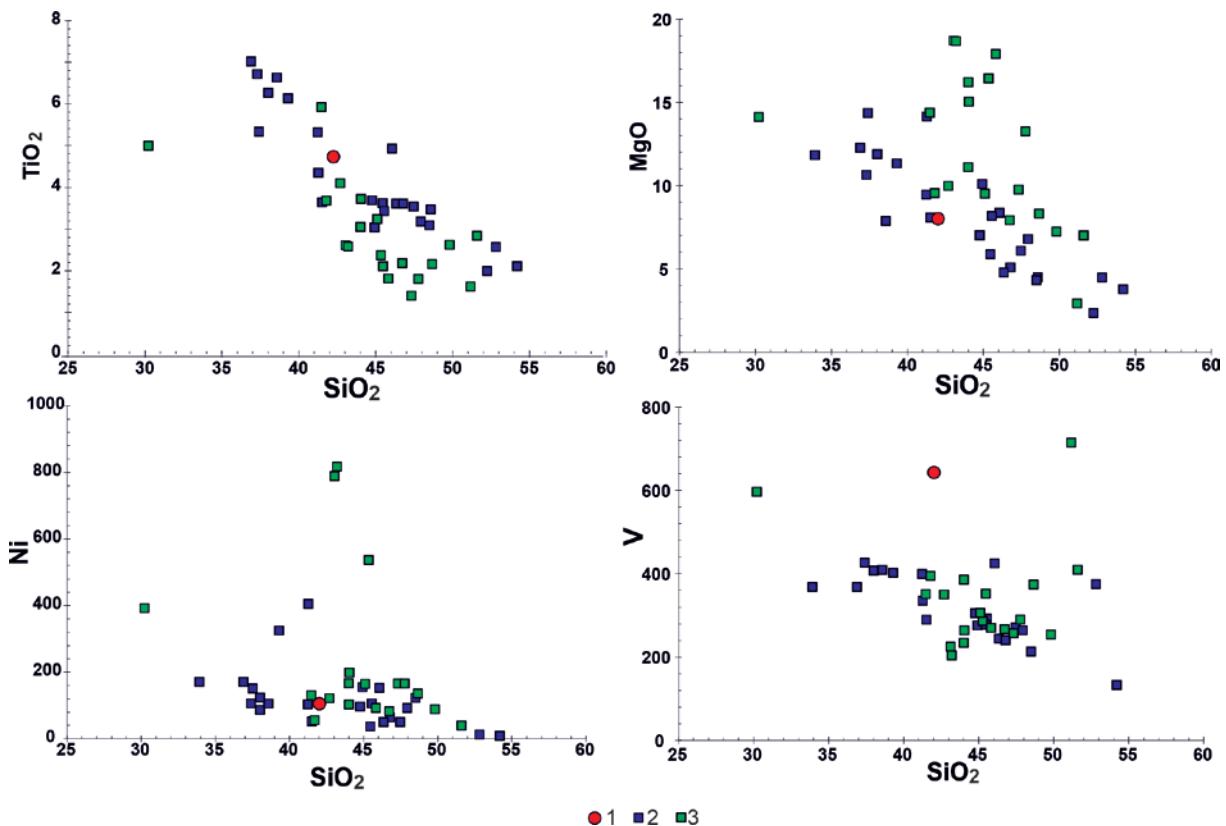
Table 4. Titanite chemical composition, wt. %.

Text-fig. 2. Chondrite-normalised plot of REE in titanite from hornblende schist.

Spot #	P	V	Mn	Sr	Y	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Th	U	Pb
1	1124	2301	1018	173	368	1210	498.9	1099.6	135.7	580.3	125.4	49.5	110.8	15.6	84.7	15.2	37.0	4.7	28.0	3.7	40	63	3.4
2	1220	3032	1000	148	346	687	640.3	1168.8	125.2	488.4	101.4	49.5	89.7	12.9	73.0	13.3	34.3	4.6	30.0	4.1	39	86	3.6
3	588	2589	914	190	413	670	443.1	950.4	114.1	484.6	110.2	42.6	101.3	14.7	83.9	15.6	40.4	5.3	33.9	4.5	40	50	3.1
4	1262	2049	935	156	443	716	441.4	1065.1	141.9	638.0	150.6	45.4	138.6	19.3	104.5	17.7	43.6	5.1	30.1	3.9	48	42	3.2
5	1256	2137	915	153	451	6793	632.3	1630.5	199.8	825.7	174.4	46.0	148.2	20.4	109.2	18.7	45.8	5.5	33.7	4.3	243	81	6.7
6	409	2553	970	141	305	1046	354.1	830.4	101.8	417.5	93.5	29.8	83.3	11.9	65.7	11.9	30.1	4.0	26.1	3.5	35	36	3.0
7	255	2895	986	154	303	622	318.2	655.2	76.3	319.4	71.4	28.0	65.0	10.4	59.7	11.2	30.8	4.2	28.3	4.0	34	38	2.8
8	1364	2687	999	176	367	756	536.8	1113.0	127.9	504.8	106.2	43.7	92.1	13.3	77.5	14.0	36.7	4.9	32.2	4.4	49	65	3.6
9	1084	3205	1082	116	247	3134	380.8	755.0	82.6	346.4	75.9	37.5	68.8	9.6	53.1	9.4	24.1	3.2	21.0	3.0	27	88	4.2
10	596	2270	1045	118	364	1206	545.8	1293.2	145.3	586.1	125.9	43.8	110.9	15.2	82.3	14.3	34.7	4.3	25.7	3.2	36	48	3.4
11	298	2883	1076	122	290	1059	446.9	963.5	104.2	410.7	85.8	38.8	81.8	11.4	63.6	11.2	29.1	3.7	23.8	3.3	27	37	2.8
12	437	2470	989	405	288	1211	503.9	1204.3	136.8	518.4	97.8	43.9	81.6	11.4	61.6	10.9	27.4	3.6	23.7	3.3	41	43	4.6
13	1949	2763	1037	72	414	1998	1764.2	3498.9	331.0	1047.9	167.2	55.7	125.8	16.8	89.2	15.7	40.0	5.2	32.2	3.9	265	188	9.2
14	1449	4267	2133	123	233	925	779.1	1343.4	126.0	405.4	71.6	41.8	59.6	8.2	46.3	8.4	23.0	3.2	22.0	3.2	30	110	4.2
15	730	2417	1176	178	409	557	446.5	1108.1	141.0	614.2	145.0	45.6	127.0	17.8	94.3	16.4	38.7	4.6	27.0	3.5	51	43	3.5
16	295	3182	1084	121	249	712	273.2	653.6	80.6	340.0	80.0	29.1	71.0	10.0	55.3	10.0	25.0	3.1	20.3	2.7	32	26	2.9
17	724	2599	929	168	317	1063	1000.0	1940.2	177.3	578.5	97.7	46.5	79.6	11.3	63.2	11.8	31.3	4.2	27.6	3.8	72	95	4.4
18	733	2604	995	194	316	678	369.6	798.2	92.9	379.7	81.6	34.8	76.0	11.1	63.4	11.8	31.0	4.1	26.3	3.8	48	52	3.4
19	557	2182	990	236	369	521	486.7	1089.2	131.9	553.4	118.8	45.9	103.7	14.4	79.6	14.2	36.4	4.4	27.3	3.8	42	40	3.6

Table 5. Trace element composition of titanite, ppm.

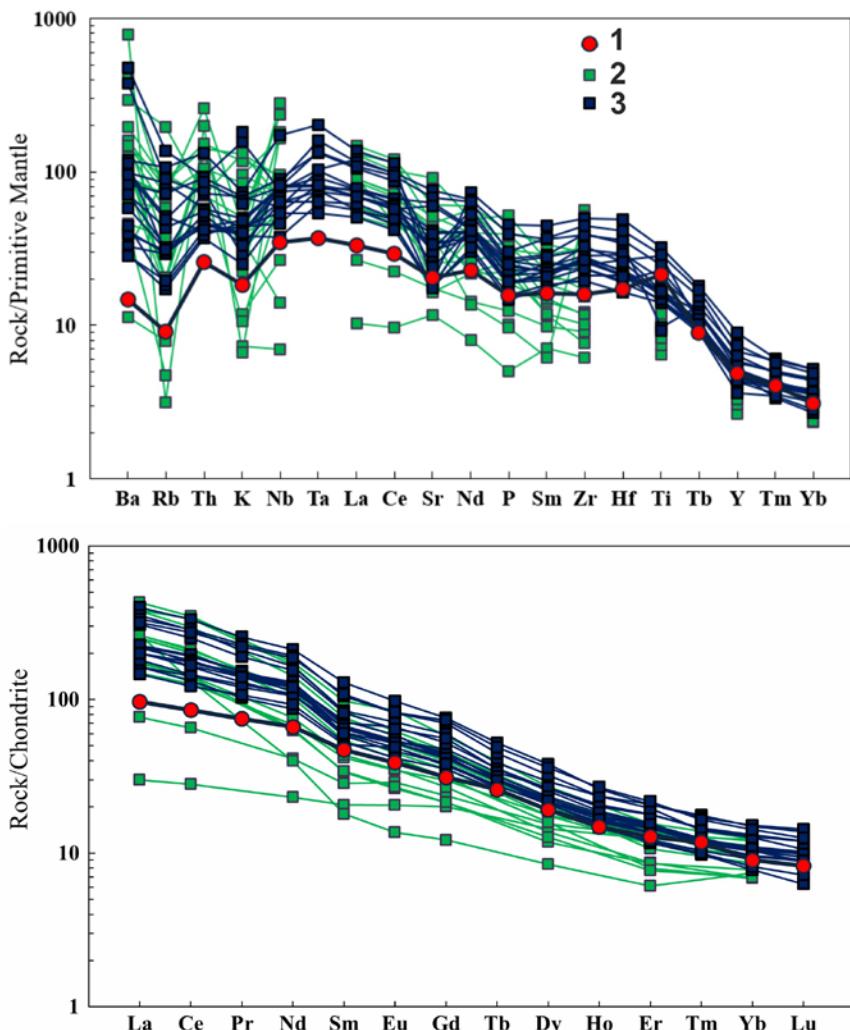
ing up to 265 ppm), U – 26–88 ppm (with anomalous values up to 188 ppm). REEs are relatively poorly fractionated – the (La/Yb)N ratio ranges from 8.1 to 25.5, increasing in one instance to 39.4. Titanites exhibit a weak positive europium anomaly (Text-fig. 2).


Whole-rock chemical composition of the hornblende schist

With 42.02% SiO₂ and 8.01% MgO (Table 6), the rock plots within the picroitic basalt field in the classification diagrams of Cox *et al.* (1979) and LeBas *et al.* (1986). Other features include high concentrations of TiO₂ (4.66%), Fe₂O₃ (18.44%), and alkalis (Na₂O = 2.27%, K₂O = 0.55%). Consequently, the diagrams of Irvine and Baragar (1971), Winchester and Floyd (1977), and Pearce (1996) classify the studied schist as part of the alkaline basalt or alkaline series. The Ni concentration (105 ppm) is moderate, while the Cu concentration (292 ppm) is elevated, and the V concentration (643 ppm) is high. In the diagrams used to determine the tectonic setting, the hornblende schist plots within the fields of either intraplate basalts (Pearce 1982; Wood 1980) or oceanic island basalts (Pearce 2008; Hollocher 2012).

Wt. %	9365/694	ppm	9365/694	ppm	9365/694
SiO ₂	42.02	Ni	105	Gd	6.4
TiO ₂	4.66	V	643	Tb	0.97
Al ₂ O ₃	10.08	Sc	41	Dy	4.85
Fe ₂ O ₃	18.44	Cu	292	Ho	0.84
MnO	0.17	Zn	39	Er	2.12
MgO	8.01	Sr	430	Tm	0.30
CaO	11.08	Rb	5.8	Yb	1.53
Na ₂ O	2.27	Ba	103	Lu	0.21
K ₂ O	0.55	Zr	180	U	0.6
P ₂ O ₅	0.34	Nb	24.8	Pb	2.1
Cr ₂ O ₃	0.04	Th	2.2	Co	73
LOI	1.90	Y	22.3	Ga	24
Total	99.63	La	22.9	Mo	0.7
C	0.22	Ce	52.2	Cs	0.2
S	0.42	Pr	7.11	Hf	5.3
		Nd	31.0	Ta	1.5
		Sm	7.2	W	0.7
		Eu	2.25	Sn	2.0

Table 6. Chemical composition of the hornblende schist.

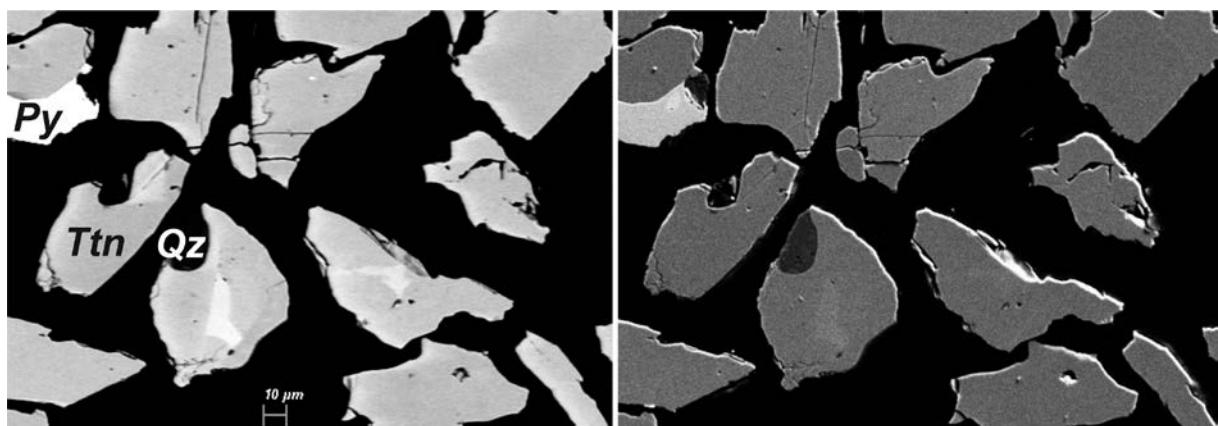

Compared with other Devonian rocks associated with the Prypyat-Dnieper-Donets Rift, the studied sample plots within the field of Devonian dykes in the Azov region of the Ukrainian Shield, as well as

Text-fig. 3. Selected plots of the chemical composition variations in mafic and ultramafic rocks related to the Prypyat-Dnieper-Donets Rift. 1 – hornblende schist; 2 – Devonian dykes of the Azov Domain of the Ukrainian Shield (Yutkina *et al.* 2017); 3 – basalts of the Dnieper-Donets basin (Wilson and Lyashkevich 1996).

Analysis #	$^{207}\text{Pb}/^{235}\text{U}$	2σ	$^{206}\text{Pb}/^{238}\text{U}$	2σ	ρ	$^{238}\text{U}/^{206}\text{Pb}$	2σ	$^{207}\text{Pb}/^{206}\text{Pb}$	2σ	ρ
1	4.7564	0.2475	0.0950	0.0021	0.07	10.5611	0.4264	0.3603	0.0117	0.47
2	3.7041	0.2644	0.0839	0.0025	0.15	11.7784	0.7142	0.3174	0.0150	0.34
3	5.8464	0.2782	0.1044	0.0037	0.72	9.6722	0.4350	0.4130	0.0175	0.12
4	6.5693	0.3920	0.1110	0.0033	0.10	9.0010	0.3422	0.4300	0.0190	0.47
5	4.0697	0.3643	0.0904	0.0042	0.54	11.2908	0.6606	0.3227	0.0152	0.87
6	7.5459	0.3993	0.1224	0.0062	0.76	8.3104	0.3838	0.4540	0.0164	0.21
7	7.1071	0.3684	0.1155	0.0030	0.22	8.7044	0.3739	0.4474	0.0167	0.43
8	4.6642	0.2582	0.0960	0.0028	0.25	10.4864	0.4762	0.3552	0.0159	0.33
9	5.2925	0.5984	0.1030	0.0046	0.72	9.8838	0.5505	0.3641	0.0267	0.87
10	8.2340	0.9801	0.1287	0.0083	0.18	7.9964	0.6698	0.4429	0.0320	0.19
11	7.7329	0.4656	0.1262	0.0033	0.03	7.9677	0.3514	0.4445	0.0190	0.52
12	10.9630	0.7328	0.1566	0.0067	0.26	6.5038	0.3912	0.5064	0.0183	0.78
13	3.9466	0.9072	0.0872	0.0068	0.90	11.8963	0.9117	0.2896	0.0417	0.96
14	3.4190	0.2862	0.0872	0.0025	0.51	11.5387	0.5205	0.2819	0.0179	0.72
15	7.0721	0.4466	0.1189	0.0073	0.42	8.4666	0.3959	0.4382	0.0205	0.87
16	10.9047	0.5628	0.1491	0.0053	0.22	6.7091	0.2806	0.5366	0.0220	0.43
17	3.3500	0.1754	0.0868	0.0018	0.03	11.5419	0.4527	0.2798	0.0097	0.52
18	5.7024	0.4196	0.1025	0.0025	0.08	9.7325	0.3614	0.4034	0.0240	0.06
19	8.2775	0.4777	0.1228	0.0041	0.02	8.1370	0.4470	0.4767	0.0171	0.66

Table 7. Results of the U-Pb dating of titanite.

Text-fig. 4. Spidergrams of the trace element and REE composition of mafic and ultramafic rocks related to the Prypyat-Dnieper-Donets Rift. 1 – hornblende schist; 2 – Devonian dykes of the Azov Domain of the Ukrainian Shield (Yutkina *et al.* 2017); 3 – basalts of the Dnieper-Donets basin (Wilson and Lyashkevich 1996).


basalts from the Dnieper-Donets basin (Yutkina *et al.* 2017; Wilson and Lyashkevich 1996). However, the studied schist slightly differs from these rock groups by having higher V, Sc, and Cu contents and lower Zn, Rb, Ba, and REE contents (Text-fig. 3).

In the primitive mantle-normalised trace element spidergram, hornblende schist exhibits relatively low concentrations of the most incompatible elements, with negative anomalies in Rb and K (Text-fig. 4). Moderately incompatible elements form a relatively flat plateau with concentrations around 20–30 primitive mantle norms. The normalised concentrations of HREE and Y decrease sharply, being only 3–5 times higher than in the primitive mantle. The chondrite-normalised REE pattern gradually declines

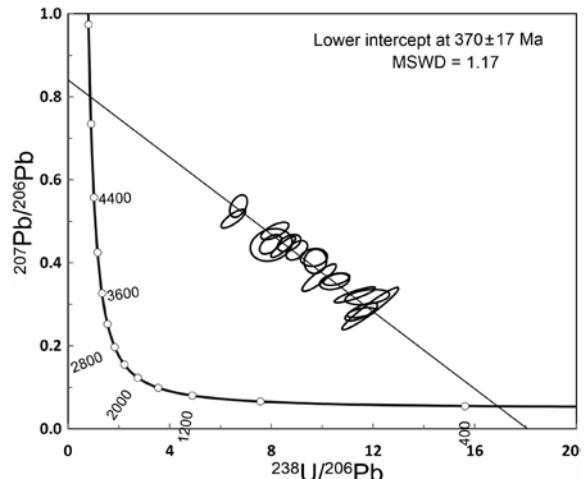
from 100 chondrite norms for La to 10 for Lu. There is no europium anomaly.

The comparison of the normalised graphs for the hornblende schist with those for the Devonian dykes of the Azov Domain of the Ukrainian Shield and basalts of the Dnieper-Donets Basin demonstrates a similarity in their patterns. The primary difference lies in the low content of the most incompatible trace elements in the hornblende schist compared to other rocks. Only some dolerites from the rift (including one found in the Dmytrivka salt dome; Wilson and Lyashkevich 1996) and alkaline basalts have lower trace element concentrations than the studied hornblende schist (Text-fig. 4).

The average oceanic island basalt (OIB, after Sun

Text-fig. 5. Images of titanite crystals in backscattered (left) and secondary (right) electrons. Mineral symbols: Ttn – titanite, Qz – quartz, Py – pyrite.

and McDonough 1989) normalised patterns occur as gently inclined lines, with a slow increase from 0.1–0.3 OIB norms for the most incompatible elements to 0.7–0.8 OIB norms for the least incompatible elements (not shown). At the same time, there are weak positive anomalies of Th and Ti, and a weak negative anomaly of Rb. The OIB-normalised REE content increases slightly from 0.6 norms for light REEs to 0.8 for heavy REEs.


Isotopic age

Titanite in the studied hornblende schist forms isometric or rhombohedral crystals, mostly irregular in shape, which are found in intergrowths with other minerals. The internal structure of titanite is mainly homogeneous, although in some cases lighter areas, apparently enriched in iron, are visible in electron microscopic images (Text-fig. 5).

The results of the U-Pb isotopic dating of titanite are presented in Table 7 and Text-fig. 6. Based on the data obtained, the age of titanite is 370 ± 17 Ma, which corresponds to the time of metamorphic transformation.

DISCUSSION

The development of the Prypyat-Dnieper-Donets Rift began in the Late Frasnian (Wilson and Lyashkevich 1996), which, according to the International Chronostratigraphic Chart (Cohen *et al.* 2013), corresponds to an age of 375–372 Ma. However, the oldest magmatic activity associated with the formation of the rift is represented by kimberlites located in the junction zone of the Donets Basin and Azov Domain

Text-fig. 6. Results of the U-Pb dating of titanite from hornblende schist.

of the Ukrainian Shield. These rocks were dated at 383–384 Ma (Yutkina *et al.* 2004; Shumlyanskyy *et al.* 2021a). The kimberlites, in turn, are overlain by the alkaline mafic volcanic rocks of the Middle to Late Devonian Antonivka Formation. Signs of volcanic activity in the Dnieper Basin as early as the Middle Devonian were also observed by Lyashkevych (1987).

Using the K-Ar method, the Prypyat-Dnieper-Donets Rift volcanic rocks were extensively dated in the 1950s to 1970s. The results were summarised by Lyashkevich (1987), who demonstrated that, for the lower effusive-pyroclastic section, the isotopic ages ranged from 414 to 298 Ma, while for the upper section, ages ranged from 399 to 234 Ma. Two age groups were identified among the dyke rocks: the older diabases dated between 600 and 497 Ma,

and a younger group with ages varying from 408 to 220 Ma. The Ediacaran K-Ar ages (610–540 Ma) obtained for diabases in the 1950s (Usenko *et al.* 1958) were used to support the idea that the Rift development began at the same time as the formation of the Volyn continental flood basalt province (Semenenko *et al.* 1977). However, given the limitations of the analytical equipment of that period and the shortcomings of the methodology for determining K-Ar isotopic ages using bulk rock samples, these dates cannot be regarded as reliable.

The age of the Rift sediments was determined using faunal data (e.g., Manukalova-Hrebenyuk 1974; Khomenko 1986; Bilyk and Ivanyshyn 2000; Kotlyar 2008; Konstantynenko *et al.* 2013). Volcanogenic formations are confined to two main stratigraphic levels: the Frasnian complex, which developed beneath the salt formation, and the Famennian complex, which overlies the salt formation (e.g., Belyaev *et al.* 1977; Voloshyna 1977). Some researchers (e.g., Halitskyi 1977; Lyashkevich 1987) have noted that the age of the complexes gradually decreases from the Donbas to the Prypyat Basin, indicating a gradual migration of volcanism from east to west. Intrusive diabase bodies are often observed at different levels of the salt formation. According to the stratigraphic position of the volcanic rocks, their age can be defined as 375–360 Ma. Thus, the obtained titanite age of 370 ± 17 Ma is contemporaneous with the age of volcanism in the Prypyat-Dnieper-Donets Rift. However, as mentioned above, it is regarded as a metamorphic age, rather than magmatic emplacement or outpouring. This prompts several questions, which are discussed below.

Rift volcanic rocks are often extensively altered by post-magmatic (or late magmatic) processes, including carbonatization, chloritization, epidotization, albitization, and the formation of actinolite hornblende after clinopyroxene (Bernadskaya 1961; Savchenko 1977). However, amphibolization is poorly developed. According to Bernadskaya (1961), amphibole almost completely replaces clinopyroxene in exceptional cases only. Hydrothermal alteration such as propylitization, argillitization, and sometimes the development of secondary quartzites, was also observed (Savchenko 1977). All researchers noted the presence of accessory titanite. However, in the literature, we could not find evidence of the transformation of volcanic rocks into hornblende schists.

The pronounced schistosity of the studied rock indicates it has undergone moderate dynamic metamorphism, which, however, did not result in the formation of cataclastic structures. According to the Ridolfi (2021) model, the hornblende in the studied rock crys-

tallised under conditions including a temperature of 730–760°C, a pressure of 1.0–1.4 kBar, and an oxygen fugacity of $\Delta\text{NNO} = 1.2\text{--}2.0$. These conditions correspond to the hornfels facies of metamorphism, characterised by low pressure at high temperature. According to Frost *et al.* (2000), titanite cannot form under such conditions, giving way to ilmenite + plagioclase paragenesis. However, in quartz-undersaturated rocks, plagioclase is unstable, leading to the formation of edenitic amphibole, and excess calcium can stabilise titanite instead of ilmenite. The hornblende in the studied rock contains significant amounts of Na and K, supporting this model. Additionally, the rock is mafic (belonging to picritic basalt) and contains high levels of TiO_2 , which should stabilise titanite under high temperatures and low pressures.

The average crystallisation temperatures of the studied titanite, calculated using the Hayden *et al.* (2008) formula, are 775°C at a pressure of 1.5 kBar and 795°C at 3 kBar. Therefore, the studied hornblende schist results from moderate dynamic metamorphism of a volcanic rock with a picritic basalt composition at high temperature and low pressure.

Since the obtained titanite age corresponds to metamorphic transformation rather than primary magmatic crystallisation, the source rock does not necessarily originate in the volcanism associated with the Prypyat-Dnieper-Donets Rift. It may also represent metamorphosed Precambrian rocks of basic to ultrabasic composition or a hypothetical Ediacaran igneous rock, which, according to Semenenko *et al.* (1977), underlies the rift. This possibility is supported by the presence of fragments of granitoids (Fedorchuk 1984) and Givetian limestone (Kyryklytsya and Laskov 1970) in the diapiric breccia.

The geochemistry of the Ediacaran rocks that form the Volyn continental flood basalt province is now well-documented (Shumlyansky 2008, 2012). In terms of chemical composition, intrusive bodies of high-titanium gabbro-dolerites (Tsymbal and Samborska 2006; Shumlyansky *et al.* 2011) show the most significant similarity to hornblende schist. However, these rocks differ in the content of the main components and trace elements. Specifically, the studied schist contains significantly less SiO_2 , Al_2O_3 , and K_2O , as well as the most incompatible trace elements, and more FeO_{tot} , CaO , and V. These differences indicate a more mafic source composition for the schist source rock. There are no direct geochemical equivalents of hornblende schist among the rocks of the Azov Domain of the Ukrainian Shield. Meanwhile, in terms of chemical composition, it is a complete analogue of the Devonian dykes (Yutkina

et al. 2017) and basalts of the Dnieper Basin (Wilson and Lyashkevich 1996). The effects of metamorphism can account for minor compositional differences.

CONCLUSIONS

The isotopic age and chemical composition of a fragment of hornblende schist from the diapiric breccia in the Bantyshev Dome, Donbas, have been studied. It was found that the U-Pb age of metamorphic crystallisation of titanite from the schist is 370 ± 17 Ma, matching the age of volcanism in the Prypyat-Dnieper-Donets Rift. The schistosity of the rock suggests it experienced moderate dynamic metamorphism. The mineral association that makes up the rock formed at a high temperature of $775\text{--}730^\circ\text{C}$ and a relatively low pressure of 1.4–1.0 kBar, indicating the hornfels facies of metamorphism. The oxygen fugacity was ΔNNO 1.2–2.0. The most probable protolith for the studied schist is the Late Devonian picritic basalt or picritic dolerite linked to the development of the Rift.

Acknowledgements

The authors are grateful to the reviewers, Paweł Poprawa and Alvar Soesso, for their useful and insightful comments, which significantly improved the article.

REFERENCES

Belous, I.R. and Kyrykylytsya, S.I. 1975. Bantyshev ore occurrence. In: Geology of mercury deposits and ore occurrences in Ukraine, 109–121. Naukova Dumka; Kyiv [In Russian].

Belyaev, V.S., Britchenko, A.D., Skachyshyn, S.V. and Khmel, F.F. 1977. Characterisation of the Devonian volcanogenic formations of the northwestern part of the Dnieper-Donets Basin in connection with oil and gas prospecting. In: Savchenko N.A., Semenenko N.P. (Eds.), Volcanism and ore formations of the Dnieper-Donets Basin and Donbas, 46–55. Naukova Dumka; Kyiv. [In Russian]

Bernadskaya, L.G. 1961. Volcanic rocks of the Dnieper-Donets Basin, 190 pp. Publishing house of the Academy of Sciences of the Ukrainian SSR; Kyiv. [In Russian]

Bilyk, A.A. and Ivanyshyn, V.A. 2000. Stratigraphy, correlation and oil and gas potential of Devonian and transitional (boundary) Devonian–Carboniferous deposits of the Dnieper-Donets Basin, 84 pp. RIO; Chernihiv. [In Russian]

Buturlinov, N.V. 1979. Magmatism in the graben-like basins of the Southern East European Platform in Phanerozoic. Unpublished PhD Thesis, 484 pp. Donetsk Polytechnic Institute; Donetsk. [In Russian]

Chalot-Prat, F., Tikhomirov, P. and Saintot, A. 2007. Late Devonian and Triassic basalts from the southern continental margin of the East European Platform, tracers of a single heterogeneous lithospheric mantle source. *Journal of Earth System Science*, **116**, 469–495.

Chew, D.M., Petrus, J.A. and Kamber, B.S. 2014. U-Pb LA-Q-ICPMS dating using accessory mineral standards with variable common Pb. *Chemical Geology*, **363**, 185–199.

Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.-X. 2013; updated. The ICS International Chronostratigraphic Chart. *Episodes*, **36**, 199–204.

Cox, K.G., Bell, J.D. and Pankhurst, R.J. 1979. The Interpretation of Igneous Rocks, 450 pp. George, Allen and Unwin; London.

de Boorder, H., van Beek, A.J.J., Dijkstra, A.H., Galetsky, L.S., Koldeve, G. and Panov, B.S. 1996. Crustal architecture of the Donets Basin: Tectonic implications for diamond and mercury-antimony mineralization. *Tectonophysics*, **268**, 293–309.

Fedorchuk, V.P. 1984. Methodical recommendations for exploring hidden mineralisation of the salt-dome type, 110 pp. IMS; Simferopol. [In Russian]

Frost, B.R., Chamberlain, K.R. and Schumacher, J.C. 2000. Sphene (titanite): phase relations and role as a geochronometer. *Chemical Geology*, **172**, 131–148.

Gündüz, M. and Asan, K. 2021. PetroGram: An Excel-based petrology program for modeling of magmatic processes. *Geoscience Frontiers*, **12**, 81–92.

Gündüz, M. and Asan, K. 2023. MagMin_PT: An Excel-based mineral classification and geothermobarometry program for magmatic rocks. *Mineralogical Magazine*, **87**, 1–9.

Halitskyi, I.V. 1977. Connection of the Devonian volcanism with tectonics of the Dnieper-Donets aulacogen. In: Volcanism and ore formations of the Dnieper-Donets Basin and Donbas, 35–46. Naukova Dumka; Kyiv. [In Russian]

Hayden, L.A., Watson, B. and Wark, D.A. 2008. A thermobarometer for sphene (titanite). *Contributions to Mineralogy and Petrology*, **155**, 529–540.

Hollocher, K.E. 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. *American Journal of Science*, **312**, 357–416.

Irvine, T.N. and Baragar, W.R.A. 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. *Canadian Journal of Earth Science*, **8**, 523–548.

Khomenko, V.A. 1986. Devonian of the Dnieper-Donets Basin, 114 pp. Naukova Dumka; Kyiv. [In Russian]

Kityk, V.I. 1970. Salt tectonics in the Dnieper-Donets Basin, 204 pp. Naukova Dumka; Kyiv. [In Russian]

Konstantynenko, L.I., Kotlyar O.Y. and Berchenko, O.I. 2013. Devonian system. In: Hozhyk, P.F. (Ed.), Stratigraphy of

Upper Proterozoic and Phanerozoic of Ukraine, Vol. 1, pp. 200–246. [In Ukrainian].

Korzun, V.P. and Makhnach, A.S. 1977. The Upper Devonian alkaline association of the Prypyat Basin, 154 pp. Nauka i Tekhnika; Minsk. [In Russian]

Kotlyar, O.Y. 2008. On the elaboration of the boundary between the Carboniferous and Devonian systems in the Dnieper-Donets aulacogen. *Paleontological Collection*, **40**, 117–126. [In Ukrainian].

Kusznir, N.J., Kovkhuti, A. and Stephenson, R.A. 1996. Syn-rift evolution of the Pripyat Trough: constraints from structural and stratigraphic modelling. *Tectonophysics*, **268**, 221–236.

Kyrykylytsya, S.I. and Laskov, V.O. 1970. New structural type of mercury deposits in the Ukrainian SSR, 34 pp. Publishing house of the Academy of Sciences of the Ukrainian SSR; Kyiv. [In Russian]

LeBas, M., Maitre, R.L., Streckeisen, A. and Zanettin, B. 1986. IUGS Subcommission on the systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology*, **27**, 745–750.

Lyashkevych, Z.M. 1987. Magmatism of the Prypyat-Dnieper-Donets Paleorift, 176 pp. Naukova Dumka; Kyiv. [In Russian]

Manukalova-Hrebenyuk, M.F. 1974. Foraminifers of the Upper Devonian deposits of the Dnieper-Donets and Prypyat basins, 64 pp. Nedra; Moscow. [In Russian]

Mikhailov, N.D., Laptsevich, A.G. and Vladykin, N.V. 2011. Sr and Nd isotope composition in the Devonian alkaline igneous rocks. *Litasfera* **35**, 113–122. [In Russian]

Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic Spectrometry*, **26**, 2508–2518.

Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks, 252–548. John Wiley and Sons; Hoboken.

Pearce, J.A. 1996. A user's guide to basalt discrimination diagrams. In: Wyman, D.A. (Ed.), Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. *Geological Association of Canada, Short Course Notes*, **12**, 79–113.

Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, **100**, 14–48.

Ridolfi, F. 2021. Amp-TB2: An updated model for calcic amphibole thermobarometry. *Minerals*, **11**, 324.

Savchenko, N.A. 1977. Evolution of composition and the sequence of magmatic (volcanic) intrusions. In: Savchenko N.A., Semenchenko N.P. (Eds.), Volcanism and ore formations of the Dnieper-Donets Basin and Donbas, 137–149. Naukova Dumka; Kyiv. [In Russian]

Sazonova, L.V., Nosova, A.A., Yutkina, E.V., Kondrashov, I.A. and Shumlyansky, L.V. 2019. Genesis and evolution of mantle melts of the Devonian mafic-ultramafic rocks from the Eastern Azov region (Dnieper-Donets rift, Ukraine): Evidence from clinopyroxene geochemistry. *Petrology*, **27**, 633–654.

Semenenko, N.P., Savchenko, N.A. and Britchenko, A.D. 1977. Volcanism cycles in the Dnieper-Donets Basin and Donbas and the problem of metal-bearing potential of the northern slope of the Ukrainian Shield. In: Savchenko N.A., Semenchenko N.P. (Eds.), Volcanism and ore formations of the Dnieper-Donets Basin and Donbas, 5–14. Naukova Dumka; Kyiv. [In Russian]

Sheremet, E.M., Kryvdik, S.G., Kozar, N.A., Strekozov, S.N., Vovkotrub, N.V., Setaya, L.D., Nikolayev, I.Y., Agarkova, N.G., Dubina, A.V., Gatsenko, V.A. and Lunov, E.S. 2015. Phanerozoic magmatism of the Eastern Azov area of the Ukrainian Shield and related useful minerals (petrology, geochemistry, and ore potential), 318 pp. Comprint Publisher; Kyiv. [In Russian]

Shumlyansky, L.V., Kamenetsky, V. and Borodynya, B.V. 2021a. Age and composition of zircons from the Devonian Petrivske kimberlite pipe of the Azov Domain, the Ukrainian Shield, *Mineralogical Journal (Ukraine)*, **43** (4), 50–55.

Shumlyansky, L.V., Kamenetsky, V.S., Tsymbal, S.M., Wilde, S.A., Nemchin, A.A., Ernst, R.E. and Shumlianska, L.O. 2021b. Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts. *Lithos*, **406–407**, 106528.

Shumlyansky, L., Tsymbal, S., Kusiak, M.A., Wilde, S.A., Nemchin, A.A., Tarasko, I., Shumlianska, L. and Hofmann, M. 2021c. U-Pb age and Hf isotope systematics of zircon from eclogite xenoliths in Devonian kimberlites: preliminary data on the Archaean roots in the junction zone between the Sarmatian and Fennoscandian segments of the East European platform. *Geosciences*, **11**, 487.

Shumlyansky, L.V. 2008. Geochemical features and origin of basalts of the Ratne Formation of the Vendian Volyn continental flood basalt province. *Mineralogical Journal (Ukraine)*, **30** (1), 48–65. [In Ukrainian].

Shumlyansky, L.V. 2012. Evolution of the Vendian Volyn continental flood basalt magmatism. *Mineralogical Journal (Ukraine)*, **34** (4), 50–68. [In Ukrainian].

Shumlyansky, L.V., Kuzmenkova, O.F., Tsymbal, S.M., Melnychuk, V.G. and Tarasko, I.V. 2011. Geochemistry and Sr and Nd isotopic composition of intrusive bodies of high-Ti dolerites of the Volyn region. *Mineralogical Journal (Ukraine)*, **33** (2), 72–82. [In Ukrainian].

Shumlyansky, V.O. and Bezuhr, M.V. 1995. Ore-bearing potential of salt domes, 66 pp. Proceedings IFS; Kyiv. [In Russian]

Stephenson, R.A., Yegorova, T., Brunet, M.-F., Stovba, S., Wil-

son, M., Starostenko, V., Saintot, A. and Kusznir, N. 2006. Late Palaeozoic intra- and pericratonic basins on the East European Craton and its margins. *Geological Society, London, Memoirs*, **32**, 463–479.

Stovba, S.N. 2005. On the mechanisms of salt tectonogenesis in the Dnieper-Donets Depression. *Geologist of Ukraine*, **1**, 23–29.

Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds), *Magmatism in the ocean basins*. *Geological Society, London, Special Publications*, **42**, 313–345.

Tsymbal, S.N. and Samborska, I.A. 2006. Subalkaline gabbro-diabases of the Late Riphean of the northern Volyn-Podillya plate. In: *Geochemistry, petrology, mineralogy and genesis of alkaline rocks: Proceedings of the conference (18–23 September 2006)*, 276–278. Ural RAS; Miass. [In Russian]

Usenko, I.S., Bernadskaya, L.G. and Kotlovska, F.I. 1958. New data for determining the absolute age of post-Proterozoic effusive rocks. *Geological Journal (Ukraine)*, **18**, 5. [In Ukrainian]

Voloshyna, Z.G. 1977. Devonian volcanogenic formations of the central part of the Dnieper-Donets Basin. In: Savchenko N.A., Semenenko N.P. (Eds.), *Volcanism and ore formations of the Dnieper-Donets Basin and Donbas*, 55–75. Naukova Dumka; Kyiv. [In Russian]

Wilson, M. and Lyashkevich, Z.M., 1996. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift, East European platform. *Tectonophysics*, **268**, 65–81.

Winchester, J.A. and Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology*, **20**, 325–343.

Wood, D.A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. *Earth and Planetary Science Letters*, **50**, 11–30.

Yutkina, E.V., Kononova, V.A., Bogatikov, O.A., Knyazkov, A.P., Kozar, N.A., Ovchinnikova, G.V. and Levsky, L.K. 2004. Kimberlites of the eastern Priazovye (Ukraine) and geochemical characteristics of their sources. *Petrology*, **12**, 134–148.

Yutkina, E.V., Nosova, A.A., Sazonova, L.V., Larionova, Yu.O., Kondrashov, I.A., Shumlyansky, L.V., Albekov, A.Y. and Savko, K.A. 2017. Devonian volcanics in the Voronezh Crystalline Massif, East European Platform: evolution of the melts and characteristics of crustal contamination. *Petrology*, **25**, 241–271.

Manuscript submitted: 5th April 2025

Revised version accepted: 15th July 2025