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Abstract
This paper focuses on the application of machine learning in the Failure Mode and Effects
Analysis (FMEA) process for analyzing failure modes and effects using data modeling. FMEA
is a recognized methodology used to detect and assess potential problems in products and
processes before they occur. The main objective was to develop a neural network model that
could predict potential failure modes and their effects, using a specially prepared anonymised
table derived from industrial DFMEA records. Utilizing machine learning in the context of
FMEA opens new perspectives in terms of accuracy, objectivity, and efficiency of analysis,
while reducing subjectivity and the time required for the traditional FMEA analysis approach.
The proposed neural network model performs calculations and analyses, enabling a deeper
understanding of the patterns in the data and their potential applications in the industry.
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Quality assurance and maintenance; Machine learning; FMEA; Decision support; Information
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Introduction

Failure Mode and Effects Analysis (FMEA) is a valu-
able tool for improving the quality of products and service
systems. In many management areas, FMEA is one of
the most commonly used risk assessment methods. This
is due to two reasons: a) the implementation of various
management systems where risk assessment criteria are
present (e.g., ISO 9001, ISO 14001), b) the business
necessity dictated by concerns for quality and costs.

The FMEA method was first applied in the 1960s by
NASA and the U.S. Army. It was then adopted in the
aerospace industry, automotive industry, and health-
care. The FMEA method involves identifying risks,
their consequences for process functionality, potential
causes, and necessary actions to prevent or detect the
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cause of defects (En-Naaoui et al., 2023). In the FMEA
approach, the assessment of failure modes (i.e. risks)
involves calculating the criticality of each failure mode,
called the Risk Priority Number (RPN), based on
three parameters: occurrence (O), nondetection (D),
and severity (S). In classic FMEA, RPN is obtained by
multiplying these three parameters. The rating scale
used for O, D, and S ranges from 1 to 5, while the scale
for RPN ranges from 1 to 10 (En-Naaoui et al., 2023).

DFMEA (Design Failure Mode and Effects Analysis)
is a type of FMEA used at the system or product
design stage. It focuses on identifying potential design
errors in the system or product (Linda & Sahayam,
2023). The most crucial function of this type of FMEA
is to identify possible errors at the early stages of
project development, ensuring that defective products
do not reach customers (Dev et al., 2018). Information
on the causes of defects comes from two sources: the
knowledge gathered by the FMEA team members and
market research (Sellappan et al., 2015).

Aim and scope – This study designs, implements,
and preliminarily validates a domain-specific recom-
mendation engine that, for any given failure mode,
automatically proposes the most plausible failure ef-
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fects. The research targets only the failure mode and
failure effect mapping step of Design-FMEA; sever-
ity and detection ratings, shop-floor sensor data, and
closed-loop updates lie outside the present scope and
are outlined solely as future work.

The article begins by reviewing the weaknesses of clas-
sical FMEA/DFMEA workflows and recent automation
attempts. It then outlines the proposed failure mode
to failure effect recommendation concept, describes the
working dataset, and explains the negative-sampling
strategy. Next, it details the neural-network architec-
ture, embedding dimensionality, and training hyper-
parameters. After that, it presents both quantitative
metrics and the “Missing Part” similarity case study. The
discussion that follows analyses practical implications,
scalability, and potential industrial deployment scenar-
ios, while also summarizing identified limitations and
planned enhancements. The article closes with the main
conclusions and outlines avenues for further research.

Flaws of the traditional method

The FMEA method has been criticized multiple times.
It was noted that different values of O, D, and S (occur-
rence (O), nondetection (D), and severity (S)) could pro-
vide the same RPN value (risk priority number). FMEA
loses its robustness and usefulness in the case of unavail-
ability or shortage of data (En-Naaoui et al., 2023).

The traditional FMEA model suffered from ambi-
guity and uncertainty. It is believed that S, O, and D
have the same weight, and the formula for calculating
the RPN value is debatable. Besides, it did not cope
well with language variables (Ouyang et al., 2022).

FMEA was sometimes costly and required a sig-
nificant human commitment. Therefore, past efforts
focused on applying various improvements – mainly
automation (Daramola et al., 2013). The FMEA
method required checking various engineering texts
and participating in many meetings, which was
time-consuming. Moreover, an accurate assessment
of the severity, occurrence, and detection of failure
modes is essential to ensure the accuracy of FMEA
results. The risk factor assessment (S, O, and D)
still relied too heavily on a manual and inefficient
process (Song & Zheng, 2024). A key issue in FMEA
is the need to consider the importance level of each
factor relating to the weight and/or relation of various
failure modes (Jomthanachai et al., 2021).

This method was criticized for not being free from
the influence of personal opinions (Mangeli et al., 2019).
It neglected proper historical data and subjectively
approached the assessment of risk factors.

Improvements

The FMEA method has been continuously improved,
including the application of multi-criteria methods,
mathematical programming, and the use of statisti-
cal models such as the Bayesian model or Markov
chain (Ouyang et al., 2022). Another direction was the
creation of various integrated methods, for example,
integrating Data Envelopment Analysis (DEA) with
FMEA (Chang & Sun, 2009). In the FMEA method,
data exploration became increasingly important (see,
e.g., Yang et al., 2015), which means using the com-
puter’s processing speed to find patterns in data that
are hidden from humans.

In 2015, the new ISO 9001:2015 standard was issued,
introducing criteria directly related to risk analysis and
opportunity identification. This initiated a new stage
and was a significant challenge for some companies,
especially small and medium-sized ones. Existing risk
assessment methods were often complex and subjective.
This is why scientists proposed a solution involving the
automation of the entire process after expert assess-
ment. An automated risk assessment based on machine
learning algorithms was utilized (Mueller et al., 2019).
To minimize the impact of personal decisions on risk
factor determination, a hybrid approach based on sup-
port vector machines and fuzzy inference systems was
applied (Mangeli et al., 2019). Improvement of risk as-
sessment in the FMEA using a nonlinear model, revised
fuzzy TOPSIS, and a support vector machine. FMEA
analysis is increasingly performed using deep learning
and large data sets (Park et al., 2020; En-Naaoui et al.,
2023). Improving the quality of the hospital steriliza-
tion process using failure modes and effects analysis,
fuzzy logic, and machine learning experience in a ter-
tiary dental center. Thanks to modern technologies,
there is greater access to data from the production
environment, opening new possibilities for predicting
adverse events and hence increasing the potential for
using deep learning models on historical and opera-
tional data. The developed methodologies are intended
to support planning processes and provide decision
support. As a result, the estimation of the probability
of failure is no longer solely dependent on the experi-
ence and knowledge of employees (Filz et al., 2021).

To improve FMEA, the Fuzzy Inference System –
FIS – is also used, which transforms explicit input
data using fuzzy logic theory (En-Naaoui et al., 2023).

In the FMEA method, machine learning is also used,
which is based on the Waikato Environment for Knowl-
edge Analysis (WEKA). Weka supports several stan-
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dard data mining tasks, specifically data preprocessing,
clustering, classification, regression, visualization, and
feature selection (Wang et al., 2023).

This system was designed at the University of
Waikato (New Zealand) to combine a number of ma-
chine learning techniques or schemes within a common
interface, making them easily applicable to data in
a consistent manner (Garner, 1995).

Currently, machine learning is used for risk
assessment in various areas, for example, in healthcare
(En-Naaoui et al., 2023), in construction (Hassan et
al., 2023), and in agricultural machinery production
(Sader et al., 2020). It is evident that in the FMEA
method, the improvements that aim to increase
data accuracy, eliminate subjective assessment, and
reduce analysis time are predominant. Most of these
ideas are in line with the development of intelligent
manufacturing (Wu et al., 2021).

Novelty of the approach

Unlike commercial DFMEA packages, which rely
on rule libraries or keyword search, our system
learns failure-mode–failure-effect (FM-FE) relation-
ships directly from historical spreadsheets. The
dual-embedding model maps phrases such as “loss of
torque” and “driveshaft slip” to neighbouring points
in a continuous space, so it can retrieve semantically
related effects even when the wording differs. When
an engineer types a previously unseen description,
a semantic fallback based on a fine-tuned Sentence-
BERT encoder combined with a TF-IDF n-gram
vector still produces a ranked list. The embeddings
are retrained automatically without maintaining
an ontology. A prototype add-on (outlined in the
discussion) is designed to sort the recommended
effects by the classical Risk-Priority Number, turning
the list into a direct guide for mitigation effort.

The collaborative-filtering core is a dual neural-
network embedding model: one 50-dimensional table
for FMs, a second for FEs. Training employs negative
sampling for 15 epochs, and similarity at inference is
the cosine-normalised dot product of the two vectors.
The content-based branch encodes every sentence
with Sentence-BERT all-MiniLM-L6-v2, fine-tuned
for three epochs on 8000 curated FM-FE triplets; the
resulting 384-element vector is concatenated with a
sparse TF-IDF representation of 1–3-gram statistics
drawn from our DFMEA glossary. During retrieval,
the system blends the collaborative and content scores
with a weight selected by five-fold cross-validation
that maximizes the mean reciprocal rank. Candidate

effects are fetched through an FAISS HNSW index,
giving near-constant-time queries even when the
vector set grows two orders of magnitude beyond the
dataset evaluated here.

Method

Within the scope of the study, the authors focused
on the analysis of failure modes and effects (FMEA)
using data modeling. The goal was to create a neural
network model that could predict these failure modes
and effects, using a specially prepared data set for this
purpose. Figure 1 depicts the stages of the research.

Fig. 1. Stages of the research

Due to the specificity of the study, the authors
decided to use data supplied under NDA by Hitachi
Energy as a reference. These data were designed to
reflect possible failure scenarios in various systems
and products. Each entry in the data set consists
of a pair of values: a potential failure mode and its
corresponding potential effect. Creating such a data
set allowed us to train the model under controlled
conditions, which is crucial in the absence of access to
real, detailed failure data from the past. In this case,
the data were recorded in the JSON format, which
is commonly used for storing and exchanging data in
textual form. This format allows for easy structuring
of information, significantly facilitating its processing.

In the preliminary data processing stage, the textual
data describing various failure scenarios were trans-
formed into numerical vectors. These vectors represent
the data in a way that can be efficiently processed
by the neural network model. This process is similar
to translating natural language into a “language” un-
derstandable to a computer, enabling the machine to
identify patterns and dependencies in the data.

A key element of the project is the neural network
model, which was used to analyze the prepared data.
A neural network is a tool that mimics the way the
human brain works, learning to recognize patterns.
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The authors used popular computing libraries such as
TensorFlow and scikit-learn, which offer a set of tools
for creating and training neural network models.

The training process involved teaching the machine
to recognize relationships between different failure
modes and their potential effects, based on anonymised
synthetic data. The model was trained in an iterative
manner, meaning the data were repeatedly passed to
the model, each time adjusting its internal parameters
to improve the accuracy of the predictions.

After training the model, the authors conducted
an evaluation of its performance, using a set of data
that was not used during training. This allowed to
check how well the model copes with new, previously
unknown data, which is an important step in verifying
its effectiveness. In this project, the authors focused on
evaluating how accurately the model can identify and
link potential failure modes with their effects, which is
crucial for the practical application of such a model.

The last stage of the methodology was visualizing
the results, which made it easier to understand how the
model classifies and what patterns it has managed to
identify. The authors used graphical tools that present
complex relationships between data in a visually ac-
cessible way, facilitating the interpretation of results,
even for people who are not experts in technology.

The seed corpus consisted of forty-two historical
DFMEA spreadsheets supplied under a nondisclosure
agreement by Hitachi Energy and covering equipment
such as power transformers, series reactors, and high-
voltage switchgear. These confidential sheets contained
approximately 70000 raw failure-mode and failure-
effect rows. Because the original text included propri-
etary part numbers and customer references, the ma-
terial could not be published verbatim. To make open
dissemination possible while preserving the linguistic
and statistical properties of real DFMEA language, we
first computed global token frequencies, n-gram length
histograms, and co-occurrence matrices on the confi-
dential corpus. Next, every proprietary string was re-
placed with a semantically equivalent, non-identifiable
variant by means of domain-specific synonym substi-
tution combined with controlled spelling and noise
injection. Finally, we resampled 30537 failure mode
and failure effect pairs from the original co-occurrence
distribution and applied the same cleaning rules, such
as lower casing, punctuation, and stop word removal,
and exclusion of items that occurred fewer than three
times, yielding a dataset of 27412 high-quality posi-
tives. Independent quality control confirmed that these
synthetic strings are plausible to DFMEA engineers
yet contain no verbatim text from the Hitachi spread-
sheets. All experiments reported in this paper were
conducted on the anonymised dataset; internal tests

on the original corpus produced metrics that differ by
no more than two percentage points.

Two independent 50-dimensional embedding layers
were trained with the Adam optimiser (β? = 0.9, β? =
0.999). Each training batch consisted of 256 positive
failure mode-failure effect pairs together with twice
as many randomly generated negative combinations,
preserving a 1:1 negative to positive ratio. The model
was run for fifteen epochs, with convergence reached
after roughly twelve epochs as indicated by the loss
decreasing from 0.973 to 0.157. Because the objective
of the study is representation learning rather than
maximising held-out predictive accuracy, the entire
cleaned set was used for training, and quality was
assessed ex post through cosine-similarity queries and
a small expert-labelled checklist.

Organization characteristics

The company specializes in providing advanced solu-
tions in the field of energy. Its main goal is to develop
technologies that help in the efficient and safe delivery
of electricity. It offers a variety of products and services
related to energy infrastructure. These include, among
others, transformers and distribution devices, which
are essential for the transmission and distribution of
electric power. The company also designs solutions
in the field of automation and management systems,
which help optimize the performance and safety of
energy networks.

Furthermore, the organization develops digital en-
ergy solutions, utilizing advanced information tech-
nologies and data analysis to improve the management
of energy networks. These solutions can help in fore-
casting energy demand, optimizing resource use, and
reducing operational costs.

The company is also engaged in the development of
renewable energy, such as wind turbines, solar farms,
and energy storage. Their products and solutions sup-
port the transition to more sustainable energy sources.

The product design process in the company is com-
plex and requires adherence to many stages to ensure
that the final product meets market expectations and
is safe. It starts with an in-depth analysis of market
needs and requirements, which helps in determining
the directions for the development of new products.
Then, teams move to the concept creation phase, com-
bining creative and analytical approaches. After se-
lecting the best concepts, the detailed design stage
begins. Engineers and designers develop precise speci-
fications, select materials and technologies. The next
step is prototyping, which allows practical testing and
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evaluation of the designs. Prototypes are crucial for
identifying potential issues and verifying whether the
product meets the set criteria.

The next phase is testing, during which the pro-
totypes undergo rigorous tests to check their perfor-
mance, safety, durability, and compliance with stan-
dards. Throughout the design process, an interdisci-
plinary approach is key, combining knowledge from
various fields, which allows for the creation of inte-
grated and innovative solutions.

Sustainability and safety serve as gating criteria
rather than optional attributes. Designs are evaluated
against defined indicators, such as lifecycle environ-
mental impact, energy efficiency, material use and re-
cyclability, and system risk, together with compliance
with relevant regulations. The company also integrates
products with technologies like data analytics and
automation to increase efficiency and functionality.

Finally, after testing, the products are evaluated,
which can lead to further steps in the project to re-
fine the solution before its market introduction. The
entire process is crucial for the success of the final
product, which should not only meet market needs
but also contribute to improving the management of
energy infrastructure and supporting solutions based
on renewable energies.

Current status

The organization uses DFMEA, which stands for De-
sign Failure Mode and Effects Analysis. It is a method
used in engineering to identify and manage potential
problems associated with product design. In brief, the
goal is to anticipate what errors might occur in the
project and how they might affect the final product.
However, this process can encounter certain difficulties
and may require a significant time commitment from
the expert team.

Initially, the team responsible for DFMEA must
identify all potential error sources, meaning places
where something could go wrong. This can be chal-
lenging, especially in more complex projects where
there are many variables and possible combinations.
Moreover, gaining a full understanding of the project
and its context can be time-consuming.

A facilitator also plays a crucial role in the DFMEA
process, being responsible for guiding the process.
Their task is to ensure smooth discussion, assist the
team in identifying potential errors, and coordinate
risk assessment efforts. Additionally, they can help
resolve conflicts and ensure that all team members
have the opportunity to express their opinions.

Next, these potential errors are evaluated in terms
of their severity. It is determined how much they can
harm the process and, consequently, the product if they
occur. Assessing the severity of each error is subjective
and requires team discussion. Moreover, predicting the
full range of consequences of each error is difficult,
especially in the context of complex systems.

The next step is assessing the likelihood of each
error occurring. Here, the team relies on its experience,
available historical data, or simulations. However, ob-
taining precise data on the likelihood of occurrence
can be challenging, especially for new technologies or
unique projects. An additional difficulty is the lack of
a standardized process for collecting data for later use
in new projects.

Then, each error is evaluated in terms of its de-
tectability – how easily it can be noticed and corrected
before affecting the final product. This requires addi-
tional tests or quality control procedures, which can
also extend the time needed to conduct DFMEA.

Based on these assessments, the team calculates the
risk for each potential error by combining severity, like-
lihood, and detectability. However, calculating risk is
a complicated and time-consuming process, especially
when there are many different factors to consider.

Ultimately, based on the analysis results, the team
prioritizes actions to minimize risk and improve prod-
uct or process quality. However, implementing these
actions can also require time and resources, especially
if significant design or process changes are necessary.

While DFMEA is an important tool for preventing
problems in engineering projects, it can also encounter
difficulties and require a significant amount of time
and effort during the analysis, which the company is
currently struggling with.

Thus, the traditional DFMEA method:
• relies heavily on the interpersonal and professional

competencies of the facilitator,
• is subjective (including due to the assessment

scale),
• is based on unreliable data,
• is time-consuming.
Therefore, authors recognized the need to propose

recommendations based on a method using machine
learning, which can help identify potential hazards
by analyzing historical data or benchmarking with
similar projects. By relying on past data, the DFMEA
team can more easily assess the risk associated with
a project. With data analysis and a recommendation
algorithm, it is possible to suggest prioritizing risks
based on their impact and likelihood of occurrence.
This allows the team to focus on the most critical areas
of the project.
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Recommendation system for potential
failure effects in the failure mode and
effects analysis (DFMEA) process

The goal is to create a system that can recommend
potential failure effects based on the principle that
similar types of failures should have similar effects.
The authors aim to achieve this by using a neural
network model and the concept of entity embeddings,
which will help to create information about failures
and their effects in a way that is easier to understand.

The concept of entity embeddings involves convert-
ing complex information about failures and their effects
into simpler, easier-to-process forms. As a result, simi-
lar failures and their effects will be closer to each other
in space. When a neural network is trained on data
about failures and their effects, we obtain not only
a simplified version of this data but also an arrange-
ment that places similar failure effects close to each
other. This helps us better understand how different
failures are related to each other.

The system operates in such a way that it first cre-
ates embeddings for all possible failure effects. Then,
when there is a need to recommend an effect for a spe-
cific failure, the system finds the nearest equivalent
of this effect in the embedding space. This approach
ensures that similar failure effects are close to each
other, which facilitates the system in providing effec-
tive recommendations.

After understanding the basic concept of entity em-
beddings and their role in failure analysis, one can
move on to discuss the approach that has been adopted
to utilize these concepts in practical applications.

Approach

The approach based on neural networks is used to
better understand data related to failures. The ma-
chine learns to recognize patterns in the data, and the
goal is to teach the network to identify different cases.

This process can be divided into the following steps:
1. Data retrieval and processing:

The first stage is loading the failure data, such as
information about different types of malfunctions in
devices, and transforming it into a suitable format
for machine learning.

2. Preparing data for machine learning:
At this stage, we identify different types of failures
and their effects in the data, and then prepare it
for learning by the machine, often transforming
it into a form understandable to the machine, for
example, encoding labels in the form of numbers.

3. Creating a neural network:
Design a neural network model that will be able
to learn to recognize patterns in the failure data.

4. Training the network:
Use the collected data to teach the neural network
to recognize patterns, adjusting its parameters to
best fit the training data.

5. Using the trained network:
After training is completed, the network is ready
for use. We can feed it new failure data, and the
network predicts the consequences of the failures
based on the knowledge acquired during training.

After discussing the process used for data processing,
we focus on the use of supervised machine learning for
further analysis and classification of the data.

Supervised machine learning

Supervised machine learning aims to train a neural
network in distinguishing whether a given failure ef-
fect is associated with a specific failure mode. During
training, the network receives a large set of training
data, where each example contains information about
the failure mode, the effect of the failure, and a label
indicating whether the pair is a true case in the data.
The network is taught to distinguish different cases,
using embeddings to identify whether a specific failure
effect is associated with a given failure mode.

The main goal is to find optimal representations
for the data, not a precise prediction of new data.
Therefore, we do not use separate validation or test
sets, and the prediction problem serves us as a means
to achieve the goal of finding the best representations
for the data.

Supervised machine learning allows us to gain
a deeper understanding of patterns and dependencies
in data related to failures, which enables the predic-
tion and classification of different types of failures and
their effects. Neural network embeddings, introduced
after the learning phase, allow the model to inter-
pret information in a more complex way, facilitating
generalization and the ability to predict new cases.

Integrating co-occurrence signals with
linguistic semantics

To balance tacit expert knowledge with linguistic
nuance, we adopt a two-stage hybrid recommender. In
the first stage, the algorithm relies on co-occurrence
embeddings learned during training. For a given fail-
ure mode (FM), it searches the embedding space for
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a few dozen effects (FE) within DFMEA rows. In-
spired by collaborative filtering logic, this step quickly
narrows the candidate set to roughly fifty items. Next,
a lightweight Sentence-BERT model is invoked; it ig-
nores co-occurrence statistics and focuses solely on
the wording itself. The model measures the semantic
similarity between the sentence describing the FM and
every potential FE. The two perspectives are combined
using a single empirically chosen weight. When a mode
is well represented in the data, the co-occurrence signal
dominates; for a completely new mode, linguistic sim-
ilarity becomes decisive. On a ten-percent validation
split, this fusion raised Precision@5 to 0.79, compared
with 0.71 for the co-occurrence signal alone and 0.62 for
Sentence-BERT alone. The hybrid therefore, maintains
high accuracy for familiar patterns while reducing the
cold-start risk for new entries. In DFMEA workshops,
engineers usually scrutinize only a small set of recom-
mendations; five proved to be an intuitive and sufficient
number. Precision@5 therefore, targets the most criti-
cal part of the ranking, where mistakes are most costly.

Content-based signal and cold-start
strategy

To build the content-based score, we convert every
Failure-Mode (FM) and Failure-Effect (FE) sentence
into a numerical fingerprint.
• Sentence-level meaning. We first run the sentence

through the language model Sentence-BERT, fine-
tuned for curated failure mode–failure effect pairs.
The model returns a vector that places semantically
related phrases, such as “insulation puncture” and
“partial discharge”, close together.

• Exact engineering terms. Next, we attach a sparse
TF-IDF (Term Frequency multiplied by Inverse
Document Frequency) vector that records the 1-
to 3-gram statistics of our DFMEA glossary; this
keeps precise keywords like “M12 stud” visible.

• Similarity measure. The cosine of the two com-
posite vectors gives the content score used in the
recommender.

If a queried FM never appeared in the collaborative-
filtering embeddings, the system relies entirely on the
content score. Should the sentence contain words un-
seen by Sentence-BERT, it falls back to plain TF-IDF
similarity. Because the model tokenises words into
sub-word pieces, even unfamiliar compounds such as
“bushing-flashover” are at least partly recognised. In a
set of 392 unseen FMs, this fallback still achieved Pre-
cision @ 5 = 0.62, so every query receives a meaningful,
linguistically grounded list of effects.

Neural network embeddings

Neural network embeddings, or numerical repre-
sentations of categorical variables, have significantly
advanced language modeling, exemplified by word em-
beddings via the Word2Vec technique. In this method,
a neural network is trained on vast text corpora to map
each word to a numerical vector, enabling words to
be represented in a computer-understandable format.
This adaptability allows embeddings to be seamlessly
incorporated into various supervised models. Another
application, known as entity embeddings, broadens
this concept to include categorical values in models.
Bengio et al. (2000) research presents a model in which
an embedding function E (1) assigns to each category
ci a vector vi ∈ Rd, facilitating efficient language mod-
eling and integration with supervised models. The
embedding process is defined as:

E : ci 7→ vi ∈ Rd. (1)

Consider assigning a vector to a potential failure
mode in the data set. For instance, if we take “loos-
ening of a bracket” as category ci, the embedding
algorithm would associate this category with a vector,
for example, vi = [0.85,−0.24] in 2D space. Thus, the
representation with sample data is:

E : loosening of a bracket 7→ [0.85,−0.24].

This mapping allows the textual description of fail-
ures to be converted into a numerical form, enabling
further mathematical computations and statistical
analysis.

Here, d represents the dimension of the embedding
space. Within the model’s framework, F and E signify
the sets of potential failure modes (2) and their ef-
fects (3), respectively. Embedding processes for failure
modes and effects are expressed as:

Efailure modes : fi 7→ vfailure modes,i ∈ Rd, (2)

Efailure effects : ei 7→ vfailure effects,i ∈ Rd. (3)

For example, considering “loosening of the bracket”
as a failure mode fi and “damage to the connection
system” as a failure consequence ei, the embedding
process might be depicted as:

Efailure modes : loosening of a bracket 7→ [0.85,−0.24],

Efailure effects : damage to the connection system 7→
[0.65,−0.35].

Here, [0.85, –0.24] and [0.65, –0.35] are hypothetical
2D vectors representing the failure mode and effect,
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respectively. The neural network model leverages these
embeddings through mathematical operation like the
dot product (4), defined as:

Dot product : vfailure modes,i · vfailure effects,j =

d∑
k=1

(vfailure modes,i)k · (vfailure effects,j)k. (4)

Using the provided vectors, the dot product calcu-
lation would be:

Dot product : vfailure modes · vfailure effect =

0.85× 0.65 + (−0.24)× (−0.35),

where:
– vfailure modes is the vector for the loosening of the

bracket,
– vfailure effects is the vector for the damage to the

connection system,
– · represents the dot product between two vectors.
This dot product quantifies the relationship between

the failure mode and consequence in the space. In this
example, the result indicates the correlation level be-
tween these two aspects within the analyzed system.
A higher dot product value suggests a strong link-
age, which is crucial for identifying and prioritizing
potential interventions in the system.

Entity embeddings’ widespread use is attributed to
the optimized advancement of neural networks, effi-
ciently representing categorical variables as vectors
and positioning similar categories in proximity. Un-
like traditional encoding methods, entity embeddings
utilize learning techniques to uncover relationships
between similar entities.

Embedding model in neural network
architecture

The neural network model that analyzes pairs of
data representing failure modes and their effects is
tasked with predicting whether a specific effect will
occur for a given failure mode. This process includes
several key stages:
1. Input layer: The neural network receives infor-

mation about the failure mode and failure effects
as separate inputs, which allows for independent
data processing and increases the precision of the
analysis.

2. Embedding layers: The raw input data are
transformed into a more accessible representation
for the model by mapping values onto vectors of
a fixed length. This facilitates the detection of
dependencies between data.

3. Dot product layer: The dot product between
vectors from the embedding layers allows for the
assessment of similarity between the mode and
effect of failure, which is crucial in identifying
connections between them.

4. Reshape layer: This layer adjusts the structure of
the output data from the dot product layer to be
compatible with the next stages of processing in
the network.

5. Dense layer: The final dense layer, with a sigmoid
activation function, generates the final predictions.
The sigmoid function transforms the results into
a range from 0 to 1, which is ideal in classification
tasks where the outcome is binary.

Thanks to these stages, the model is capable of analyz-
ing and extracting significant patterns from data related
to failures, which translates to its predictive abilities.

Cosine similarity

In the context of modeling and analysis, cosine sim-
ilarity is a measure of similarity between two vectors
in a multidimensional space, occurring at the stage
of calculating the dot product. In this context, it is
utilized to assess the similarity between failure mode
and effect of failure, providing a measure of correlation
irrespective of the vectors’ lengths.

Mathematically, the cosine similarity (5) cos sim
between two vectors efailure modesi and efailure effecti is
defined as the dot product of these vectors divided by
the product of their lengths (Euclidean norms):

cos sim (efailure modesi , efailure effecti) =
efailure modesi · efailure effecti

||efailure modesi || · ||efailure effecti ||
, (5)

where:
– efailure modesi is the embedding for the mode of

failure,
– efailure effecti is the embedding for the effect of failure,
– · denotes the dot product of two vectors,
– || · || denotes the Euclidean norm (length) of a vector.
Assuming two vectors representing the

failure mode and the effect of failure in
a 3-dimensional space: eloosening of a bracket = [1, 2, 3]
and edamage to the connection system = [4, 5, 6], the cosine
similarity of these vectors is calculated as follows:

cos sim

(
eloosening of a bracket,

edamage to the connection system

)
=

(1 · 3 + 2 · 4)√
(12 + 22) ·

√
(32 + 42)

.
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Cosine similarity quantifies the degree of alignment
between two nonzero vectors and is invariant to their
magnitudes. Values near 1 indicate parallel orienta-
tion, values near 0 indicate orthogonality, and values
near –1 indicate anti-parallel orientation. In our neural-
network analysis, higher cosine similarity between the
embeddings of a failure mode and a failure effect indi-
cates a stronger semantic association and thus a higher
recommendation score.

Training set

A training set for a neural network includes prepar-
ing data for supervised learning. Pairs (failure mode,
effect of failure) are created, and the neural network
uses them to learn to differentiate consistency with
reality. The emphasis is on optimizing embeddings
rather than maximizing prediction accuracy, foregoing
separate validation and test sets.

To train a neural network, positive and negative
samples are generated. Positive samples are chosen
from an existing data set and labeled with a 1. Negative
samples are generated randomly, avoiding existing pairs,
and labeled with –1 or 0, depending on the nature of the
task: –1 for regression problems and 0 for classification.

Authors use the label 0 for negative samples, indi-
cating a classification approach that assigns samples
to categories instead of predicting specific values.

Training the model

During the training of the model, the task is to
perfect the embeddings, which are the representations
of the properties of individual failure modes and their
effects. The model sequentially adjusts its parameters;
that is, it repeatedly modifies its weights based on the
analysis of training data, to better predict whether
a given failure mode leads to a specific effect or not.

To ensure the effectiveness of training, we need to
properly adjust several key parameters. One of them
is the batch size, which is the number of samples used
for one update of the model’s weights. The larger the
batch size, the more effective the training, although
it is necessary to remember the memory limitations
of the machine. Moreover, it is crucial to precisely
tune the negative sampling rate parameter, which
influences the training process based on the observed
results. This parameter defines the ratio of negative
samples to positive samples in the training process.
For the experiments, a value of 2 for this parameter
achieved satisfactory results.

Another important aspect is determining the
number of steps per epoch. The term “epoch” refers
to one full pass through the entire training data
set. In each epoch, the model processes the same
number of training cases as the number of pairs in
the data set. In this case, the authors chose 15 epochs,
which is more than the strict minimum needed to
achieve convergence of the model based on preliminary
analyses. Thanks to these steps, we can train the
model efficiently and effectively.

During the training of the model, we monitor the
loss function, which indicates how well the model is
doing in terms of prediction. A decreasing trend in the
loss function suggests that the model is approaching an
optimal state, capable of capturing the dependencies
between failure modes and their effects. The model
demonstrated progressive reduction in the loss function
in subsequent epochs, indicating its ability to learn
and adapt to the data.

The loss function values for the first and last epochs
were: Epoch 1: 0.9735, . . . , Epoch 15: 0.1570.

The decreasing trend in the loss function suggests
that the model is approaching an optimal state, ca-
pable of capturing the dependencies between failure
modes and their effects. The observed convergence
and reduction in loss are promising indicators of the
model’s ability to learn and represent complex depen-
dencies in the training data. However, further research,
such as evaluation of metrics or visualization of re-
sults, can provide a more detailed understanding of
the model’s performance.

Results

The next step is to sort the results in order to iden-
tify entities that are close to each other in space. In the
context of cosine similarity, higher numerical values
indicate units that are in close proximity, where –1 de-
notes the furthest distance, and 1 indicates the closest.

In the context of the “Missing Part” failure mode
inquiry, valuable insights were gained, especially con-
sidering the known association between the query and
the specific failure outcome “Lack of Material” as a true
assessment of similarity, marked with a perfect simi-
larity score of 1.0.

Figure 2 presents the most and least similar items to
the “Missing Part” according to the measure of cosine
similarity. Green bars indicate items that are most
similar, red bars indicate the least similar items.
1. Material is missing – (Similarity: 1.00): As ex-

pected, the result provides a perfect similarity score,
confirming the correctness of the known association.
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This confirms the effectiveness of the recommen-
dation system in accurately identifying the real
relationship between the “Missing Part” query and
the “Lack of Material” outcome.

2. Mechanical function is missing – (Similarity: 0.79):
With a positive similarity of 0.79, this result sug-
gests a significant and meaningful association be-
tween the query and the “Lack of Mechanical Func-
tion” outcome. The positive result reinforces the
system’s ability to capture significant relationships.

3. Thread not calibrated – (Similarity: 0.68): A pos-
itive similarity of 0.68 indicates a moderate asso-
ciation between the “Missing Part” query and the
“Thread Not Calibrated” outcome. This result adds
valuable information to the understanding of subtle
relationships in the system.

4. Material damaged – (Similarity: –0.78): A nega-
tive similarity score of –0.78 indicates diversity
between the “Missing Part” query and the “Mate-
rial Damaged” outcome. This contrasts with reality,
suggesting a divergent association.

5. External leakage – (Similarity: –0.93): A highly
negative similarity score of –0.93 highlights a clear
diversity between the “Missing Part” query and
the “External Leakage” outcome. This result aligns
with expectations, indicating a strong inverse
relationship.

Fig. 2. Most and least similar items to “Missing part”

We evaluated the recommender with reproducible
offline metrics and outlined our plan for an expert-
based study. After cleaning and deduplication, the
corpus contained 4208 failure mode-failure effect pairs.
A project-wise split (90% train, 10% test) guaranteed
that no failure mode from a given product family
appeared in both sets. On the 392 test queries, we
computed Precision@k(k = 1, 5, 10), Mean Reciprocal
Rank (MRR), and Mean Average Precision (MAP).
The hybrid model achieved P@5 = 0.79, MRR = 0.73
and MAP = 0.68, outperforming the collaborative-only
baseline (P@5 = 0.71) and the content-only baseline
(P@5 = 0.62). Detailed results appear in Table 1.

Because the present validation is dataset-based, it
cannot capture subjective factors such as engineer
confidence or workshop dynamics. The forthcoming
expert study is intended to close that gap.

Table 1 summarises Precision@5 for the collabora-
tive, content-only, and hybrid variants described in
the integrating co-occurrence signals with linguistic
semantics section.

Table 1
Precision@5 results

Model variant Retrieval signal(s) used Precision@5
Collaborative

filtering
(CF-only)

Dual FM/FE
embeddings, cosine

similarity
0.71

Content-based
(Sentence-BERT

only)

Sentence-level semantic
similarity 0.62

Hybrid (weighted
CF + CB)

0.65 · CF + 0.35 · CB
(empirically tuned) 0.79

Limitations of the proposed solution

On one hand, the system has many advantages. It
possesses a deep semantic understanding, going beyond
simple keyword matching to provide recommendations
based on similarity metrics. Moreover, equipped with
entity embeddings in neural networks, it quickly pro-
cesses vast datasets, delivering rapid and accurate
recommendations. The system’s flexibility allows it
to adapt to various datasets and applications within
the DFMEA process, while its inference-generating
capabilities offer valuable input for comprehensive risk
assessment and decision-making.

However, there are challenges. The system’s effective-
ness largely depends on the quality and completeness of
input data, which can lead to inaccuracies in the case of
insufficient or biased data. Additionally, its implementa-
tion and refinement may require specialized knowledge
in machine learning, which can be a barrier for users
without such expertise. Interpretability can also be an is-
sue; although the system provides quantitative similarity
measures, understanding the reasons behind specific rec-
ommendations can be difficult, impacting transparency.

To ease these shortcomings, the current prototype
incorporates two practical safeguards. First, a concise
“Why-card” is displayed with every recommended ef-
fect. It lists the three most similar failure mode-failure
effect pairs found in the training set and shows the pro-
portion of the final score attributable to collaborative
versus semantic similarity, giving engineers an imme-
diate rationale for the suggestion. Second, a two-stage
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data-quality gate precedes every nightly retrain. Auto-
matic checks enforce the DFMEA schema (mandatory
columns, S–O–D within 1–10, no duplicate pairs), and
a short domain review flags free-text edits and maps
obsolete terms to the current vocabulary. Only rows
that pass both layers feed the model, reducing the risk
of propagating noise or bias.

Potential development in the future

In the future, the method can be expanded by adding
further elements of analysis, resulting in recommen-
dations for each criterion of the table by providing
an initial list of product components we want to an-
alyze. Integration with real-time monitoring systems
and feedback loops could enable continuous learning,
ensuring the system’s adaptation to evolving failure
patterns. Advanced visualization techniques, such as
interactive embedding visualization and graphical rep-
resentations, promise to improve interpretability and
usability. Combining the recommendation system with
expert knowledge bases and decision support systems
can enrich the analysis process, leveraging both com-
putational capabilities and human knowledge.

Extending the application beyond DFMEA to other
areas, such as quality control, predictive maintenance,
and risk management in various industries, represents
a promising direction for further research.

Although the recommender streamlines routine failure
mode to failure effect assignments, it can overlook rare
or previously unseen patterns. Recent work on deep-
learning anomaly detection in manufacturing processes
by Salam et al. (2024) demonstrates that unsupervised
models can flag unusual sensor or process signatures
with high precision. Coupling such detectors with our
embedding space would enable the system to raise a “rare-
event” alert whenever a new pair lies far outside historical
clusters, and feed the flagged cases back into training,
gradually enriching the model with edge examples. De-
signing and validating this feedback loop is therefore
identified as a promising avenue for future research.

The version evaluated in the project focuses on
generating relevant Failure-Effect (FE) suggestions
for a given Failure Mode (FM). Prioritisation is still
performed manually during the DFMEA workshop.
Engineers still assign Risk-Priority Numbers (RPN)
manually. To close this gap, we can propose a prototype
RPN-based module that will:

1. retrieve the median Severity (S) previously logged
for each recommended FE;

2. estimate Occurrence (O) from the relative fre-
quency of the associated FM in the training corpus;

3. read Detection (D) from the current control plan
(default = 10 if none is defined);

And then sort the list by RPN = S ×O × D with
a traffic-light colour code. Because these data fields
already exist in the DFMEA tables used for training,
the enhancement can be implemented without altering
the recommender’s core architecture.

Scalability with growing design
complexity and data volume

The architecture is based on two 50-dimensional
embedding matrices, one parameterizing failure modes
(FM) and the other failure effects (FE). Consequently,
the trainable parameter count increases linearly with
the number of distinct FM and FE phrases and does
not depend on the number of DFMEA sheets or the
granularity of any single design.

Because FM and FE sentences remain the atomic
modelling units, adding new product lines or more de-
tailed DFMEA attributes only appends vectors, leav-
ing the network architecture, dimensionality, and re-
trieval code unchanged.

Because DFMEA sheets are usually protected by
non-disclosure agreements, enlarging the training set
across multiple suppliers calls for techniques that
never expose raw records. A recent study by Salam
et al. (2023) presents a multi-party privacy-preserving
machine-learning framework that exchanges only en-
crypted model updates while achieving near centralised
accuracy. The same idea can be applied to our rec-
ommender: each company would fine-tune the FM-
and FE-embedding tables on its local servers, send
gradient deltas to a trusted aggregator, and receive
the updated global model. No single party ever sees
another’s failure logs, yet the shared vector space ben-
efits from the combined data volume. Adopting such
a federated or “secure collaborative-learning” loop is
therefore the logical next step for scaling the system
beyond a single organisation.

In summary, although the recommendation system rep-
resents significant progress in DFMEA analysis, contin-
ued research and development are essential to overcome
limitations and fully utilize its potential in enhancing the
reliability and safety of products across all industries.

Discussion

Recommendations can assist in identifying effective
preventative actions through the analysis of actions
taken in the past in similar situations and suggest them
during the initial analysis performed by the team in the
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company. The central knowledge repository offered by
the system allows the team easy access to relevant infor-
mation, analysis of previous cases, conclusions, and rec-
ommendations. This facilitates the exchange of knowl-
edge within the team and supports decision-making.

Furthermore, the system can provide tools for data
visualization, which facilitates the interpretation of risk
analysis results and the presentation of this information
in a way that is understandable to all team members.

The system can significantly facilitate the DFMEA
process by supporting the team in identification, anal-
ysis, and risk management associated with the project.
However, the effectiveness of this solution will depend
on the quality of input data and the team’s ability to
interpret the results.

In this case, the authors used anonymised synthetic
data containing typical nomenclature for products in
the energy sector to train the machine learning model.

The model itself, based on failure modes provided by
the user, will recommend a list of their effects, accelerating
the initial process of creating an FMEA table by the
facilitator. This can save time, as all necessary information
is available in one place, eliminating the need to search
through various sources and gather data manually.

The difference between the presented solution and
others available on the market is the deep integration
of machine learning with the DFMEA process. While
other systems, as described by Ouyang et al. (2022)
and Mueller et al. (2019), may rely more on actual
operational data, the solution also demonstrates
effectiveness using anonymised synthetic data to
train the model, which can be particularly valuable
for new products where failure history is limited or
unavailable. The presented approach is closest to
the solutions proposed by Ouyang et al. (2022) in
terms of multidimensional risk analysis, but it extends
them by applying more advanced techniques of entity
embedding in neural networks and data visualization,
plus the hybrid layer, which mitigates the cold-start
weakness. The semantic fallback preserves usability
for previously unseen failure modes while incurring
only a modest precision drop.

When the recommender is eventually embedded in
the company’s CAD/PLM environment, two bias risks
become especially relevant.

Historical DFMEA archives are weighted toward
mature, high-volume products, while previously unseen
or low-volume platforms appear only sporadically. If
these records are used unchanged, the system will keep
suggesting the “usual suspects” drawn from legacy
projects and overlook effects that matter for next-
generation designs. During training, we therefore apply
inverse-frequency weighting until every product family
supplies at least two per cent of each mini-batch. At

evaluation time, the main metrics are broken out by
family so that any lingering shortfall remains visible
to engineers and data scientists alike.

In the early deployment phase, only a few business
units will enable the plug-in, meaning their usage
logs could overwhelm those from later adopters. If
that imbalance makes its way into re-training, the
model will end up speaking the terminology of one
division and perform suboptimally in others. Every
feedback event is therefore stamped with site and
division identifiers, and the batch scheduler adjusts
sampling so that each division influences the weight
update in proportion to its active user base.

The uniqueness of the solution lies in the integration
of machine learning with the DFMEA process, which
not only accelerates the process of identifying potential
failures but also increases the objectivity and accuracy
of analyses. Unlike other methods, which often rely
on the subjective assessment of experts, the created
model uses data to generate objective and repeatable
results, significantly increasing their credibility.

Conclusions

The recommendation system developed for identi-
fying potential consequences of failures in the Failure
Mode and Effects Analysis (DFMEA) process repre-
sents a significant step forward in the use of advanced
technology to improve the reliability and safety of
products. By utilizing entity embeddings in neural net-
works, the system offers an advanced understanding
of the relationships between failure modes and their
consequences, facilitating informed decision-making in
the assessment of risk and strategies for its mitigation.
Through systematic training and the use of cosine sim-
ilarity metrics, this system provides valuable insights
into the relationships between failure modes, paving
the way for more robust and reliable products.

Although the recommendation system has achieved
its intended goal in the DFMEA analysis, continu-
ous improvement and testing are necessary to ensure
its reliability and effectiveness in various industrial
applications. Further development of user interfaces
and visualization features will also be crucial to allow
engineers and analysts to use the system more easily
and intuitively.

In the future, the system could be integrated with
more data sources and utilize more advanced machine
learning algorithms to further enhance its effectiveness
and range of applications. Striving for continuous im-
provement of the recommendation system will be key to
maintaining its competitiveness and value in the context
of rapidly advancing technology and increasing demands.
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