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Coupled 6DoF nonlinear model of tactical missiles:
an optimal autopilot design

Tadeusz MIKUTELo , Sławomir STĘPIEŃo and Jan SYKULSKIo

A fully coupled six degrees of freedom modelling of a tactical missile and an optimal
control theory-based method are presented aiming at minimizing the autopilot control effort and
improving the accuracy of reaching the target by a missile guidance system. A state-dependent
Riccati equation-based regulator of controls deflection with an infinite time horizon is employed
and its appropriateness for this type of a problem clarified. With the purpose of improving
the precision of the autopilot system using a classic three-loop approach, a nonlinear state-
dependent optimal feedback compensation with anti-windup system has been used incorporating
measurements from an accelerometer and gyro rates. The simulated results for the missile model
and optimal autopilot structure are compared with classic three-loop autopilot approach in a
guidance system.
Key words: missile; autopilot; guidance; nonlinear optimal control

1. Introduction

The modern and precise tactical missiles exhibit unprecedented performance
within a lightweight, cost-effective package. They use advanced systems of iner-
tial guidance, optimized autopilots, fast sensors and an on-board active seeker-
tracker system to find the intended target and complete the intercept [6,9]. Thanks
to continuing development and ongoing modernization, they maintain their po-
sition as important combat weapons for air dominance [12, 14]. The precision
of tactical missiles is enhanced by optimized flight control processors and al-
gorithms; there is evidence of significant recent advances in transforming this
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breakthrough concept into a practical high-precision missile system offering op-
erational flexibility in air-to-air and surface-launch engagements, for example:
AIM-120 AMRAAM (Advanced Medium-Range Air-to-Air Missile) [13], AGR-
20A APKWS (Advanced Precision Kill Weapon Systems) [15] or Piorun LZR
(Polish: Lotniczy Zestaw Rakietowy) currently under design by the Air Force
Institute of Technology in cooperation with Mesko company [17].

The ongoing modernization of military forces and their battlefield use mean
that accurate and precise control of guided missile systems continues to be an
active area of research [3]. Efforts focus on finding solutions which ensure high
immunity of the autopilot system to operational conditions, thus following pre-
scribed trajectories while minimizing associated errors in guidance and reducing
the miss distance [16]. The literature coverage in this field is immense, but some
specific topics deserve a mention, in particular the use of an optimal control the-
ory in optimized autopilot structures [1, 6, 8, 10]. The optimal State-Dependent
Riccati Equation method (SDRE) – as an emerging control design methodology
– has been used in [2, 4, 5, 7] to produce advanced guidance algorithms, in [14]
for autopilot design, in [10] for a nonlinear benchmark problem design and is
also briefly mentioned in [1, 14].

One of the best suited approaches to the optimal missile control involves using
coupled 6DoF nonlinear modelling, which enables accurate determination of an
autopilot cost function, a weighting on the acceleration error and the control rate
allowing optimal control theory with an SDRE regulator to be employed [2,7]. The
outcome is a new optimal structure autopilot for a tracking problem that allows
to minimize the miss distance to the target. The nonlinear model of the missile
and a new innovative optimal autopilot control system for flight stabilization are
applied to the guidance system and compared with a commonly used autopilot
structure. The miss distance to the target is tested and analyzed in a guidance
system [9].

2. Nonlinear state-space missile model

When considering a typical missile and establishing the equations of motion
according to Newton’s laws, the rigid body equations of motion are differential
equations that describe the evolution of basic states of an aircraft [3]. In deriving
the rigid-body equations of motion, the following assumptions are made:

• the missile body is rigid, which means that the body does not undergo any
change in size or shape,

• the missile is aerodynamically symmetric in roll, thus the aerodynamic
forces and moments acting on the missile body are assumed to be invariant
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with the roll position of the missile relative to the free-stream velocity
vector,

• the missile mass is constant.
The missile position in global (operator) and local (body) frames is presented in
Fig. 1.

Figure 1: Missile linear and angular relationships [13]

By employing GP-LV (Global Position – Local Velocity) convention [11], the
absolute linear position vector of a missile in the inertial frame (GP) is

𝝃1 =
[
𝑥 𝑦 𝑧

]𝑇
, (1)

where the three Euler angles in the inertial frame, i.e. the roll-pitch-yaw angles,
are set in a vector

𝝃2 =
[
𝜑 𝜃 𝜓

]𝑇
. (2)

The linear velocity vector in local body frame (LV) is

𝝊1 =
[
𝑢 𝑣 𝑤

]𝑇 (3)

and the angular velocity vector in the same frame is

𝝊2 =
[
𝑝 𝑞 𝑟

]𝑇
. (4)

The kinematic relationship between the inertial and body frame is as follows:
¤𝝃1 = R𝑧𝑦𝑥 (𝝃2)𝝊1 , (5)

where R𝑧𝑦𝑥 (𝝃2) is a rotation matrix around three axes of the inertial frame.
Moreover, the kinematic relationship between angular velocities is the following:

¤𝝃2 = 𝑇 (𝝃2)𝝊2 , (6)

where T(𝝃2) transforms local velocities into the global ones, i.e. inertial.
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Following from the above coordinate descriptions (1)–(4), the state vector of
the missile model may be assembled in 6DOF as

𝑥 =
[
𝝃𝑇1 𝝃𝑇2 𝝊𝑇1 𝝊𝑇2

]
=
[
𝑥 𝑦 𝑧 𝜑 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟

]𝑇
. (7)

Considering the missile space behavior, the six degrees of freedom consist of
three translations and three rotations, along and about the missile axes (1). These
motions are illustrated in Fig. 1, the translations being (3) and the rotations (4).
In compact form, the translation and rotation of a rigid body may be expressed
mathematically as:

F = 𝑚
d
d𝑡

( ¤𝝃1
)
= 𝑚 ¤𝝊1 + 𝑚 (𝝊2 × 𝝊1) (8)

and
T = r𝑂 × F = I ¤𝝊2 + 𝝊2 × I𝝊2 , (9)

where r𝑂 is the distance between the inertial and the body frame, 𝑚 is the missile
mass and F denotes the force vector, while I is the inertia matrix and T denotes
the torque vector.

Based on the dynamic equations (8)–(9) and considering the missile state (7),
the missile dynamics can be described in a coupled affine form with respect to
the state-space notation [9]:

¤𝝃1
¤𝝃2

¤𝝊1

¤𝝊2


=


R𝑧𝑦𝑥 (𝝃2) 𝝊1

T (𝝃1) 𝝊2

C1 (𝝊2) 𝝊1 − M−1D (𝝊1) − M−1G (𝝃2)
I−1C2 (𝝊2) 𝝊1 + I−1C3𝝊2 + I−1C4 (𝝊1)


+


0
0

M−1B1

I−1B2


u. (10)

The fully coupled 6DOF missile model (10) includes terms related to Coriolis
and centrifugal forces C1 (𝝊2) 𝝊1 and C2 (𝝊2) 𝝊1, respectively, gravity vector
G(𝝃2), drag matrix D (𝝊1), matrix C3 related to missile angular velocity and
vector C4(𝝊1) related to aerodynamic moments assumed to be functions of the
Mach number (missile velocity) and nonlinear with the flow incidence angle.
Matrices B1 and B2 are related to the control vector u =

[
𝑇 𝛿𝑒 𝛿𝑟

]𝑇 , where 𝑇 is
a thrust and 𝛿𝑒, 𝛿𝑟 are elevator and rudder deflections [6].

3. Classic longitudinal three-loop autopilot

The missile longitudinal autopilot controls acceleration normal to the missile
body. In common implementations, the autopilot structure is a three-loop design
that uses measurements from an accelerometer placed ahead of the center of
gravity [10]. Additionally, the missile sensor system includes a gyroscope, where
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a rate gyro provides information about actual pitch speed. The controller gains
are scheduled on missile incidence and speed number and are tuned for robust
performance at the altitude of flight.

A typical Pitch Autopilot consists of a main accelerometer feedback loop to
provide conversion of the commanded acceleration into the missile acceleration,
and a velocity feedback loop that provides the necessary missile speed stabiliza-
tion. In addition, to eliminate oscillations in the control system, an Anti-Windup
loop is necessary.

Figure 2 shows three autopilot inputs: 𝛼 – missile AoA (Angle of Attack) and
𝑀 – missile Mach speed, 𝑞 – pitching angular speed and 𝑒 – acceleration error
in 𝑧 direction [9]:

𝑒 = 𝑎𝑧𝑐 − 𝐾 (𝛼, 𝑀)𝑎𝑧𝑚 . (11)

Gains 𝐾1(𝛼, 𝑀), 𝐾2(𝛼, 𝑀) and 𝐾3(𝛼, 𝑀) are linear functions of 𝛼 and Mach
speed 𝑀 . The Anti-Windup gain 𝐾AW is assumed to be constant. The autopilot
output 𝛿𝑒 is a signal prepared for a fin actuator as the missile elevator deflection.

Figure 2: Classic three-loop autopilot structure

4. Optimal autopilot design

As described in [16], optimal autopilot structure has been proposed in liter-
ature. The tracking problem consists of finding optimal deflection of the missile
elevation that minimizes the objective function expressed as a weighted sum of
the square of the error between the measured acceleration and the command,
along with the control usage.

In this section, a new approach with a simple autopilot state-space model
and a feedback optimal compensator is proposed. When defining an acceleration
error and pitching speed error

𝑒𝑎 = 𝑎𝑧𝑐 − 𝐾 (𝛼, 𝑀)𝑎𝑧𝑚 and 𝑒𝑞 = −𝑞𝑚 , (12)
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the autopilot state-space approach based on a classic three-loop structure can be
described as

¤x𝑒 = B𝑐e, (13)

where
B𝑐 =

[
𝐾1(𝛼, 𝑀)𝐾2(𝛼, 𝑀) −𝐾2(𝛼, 𝑀)

0 1

]
. (14)

When considering an optimal feedback and defining the error vector e =[
𝑒𝑎 𝑒𝑞

]𝑇 , the new input can be stated as non-optimized and optimized error

e𝑜 = e + 𝑒opt , (15)

where optimized error is also a combination of optimal feedback gain Kopt and
state x𝑒

eopt = −P−1B𝑇𝑐Koptx𝑒 . (16)

By considering (13) and (15)–(16), the autopilot closed-loop form becomes

¤x𝑒 = B𝑐e𝑜 = B𝑐e − B𝑐P−1B𝑇𝑐Koptx𝑒 , (17)

where the input e can be defined as a function of autopilot inputs

e = B𝑎u, (18)

where

B𝑎 =
[
1 −𝐾1(𝛼, 𝑀) 0
0 0 −1

]
and u =

[
𝑎𝑧𝑐 𝑎𝑧𝑚 𝑞𝑚

]𝑇
. (19)

Finally, the full closed-loop form is

¤x𝑒 = B𝑐e𝑜 = −B𝑐P−1B𝑇𝑐Koptx𝑒 + B𝑐B𝑎u (20)

with saturated output

𝛿𝑒 = sat
{
𝐾3(𝛼, 𝑀)

(
𝑥𝑒𝑎 + 𝑥𝑒𝑞

)
; ±30◦

}
. (21)

To prevent integration wind-up in the autopilot controller, when the actuator is
saturated, an anti-windup subsystem is introduced. This is helpful in situations
such as controlling the fin actuator, where the actuator will have a maximum
elevator deflection that must not be exceeded.

Thus the autopilot dynamics (Fig. 3) that includes anti-windup subsystem is

¤x𝑒 = −B𝑐P−1B𝑇𝑐Koptx𝑒 + B𝑐B𝑎u

− 𝐾AW

[
𝐾3(𝛼, 𝑀)

(
𝑥𝑒𝑎 + 𝑥𝑒𝑞

)
−sat

{
𝐾3(𝛼, 𝑀)

(
𝑥𝑒𝑎 + 𝑥𝑒𝑞

)
; ±30◦

}] . (22)
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The model (22) is nonlinear because matrices B𝑐 and B𝑎 depend on angle 𝛼 and
Mach speed 𝑀 . Therefore, the optimal feedback gain can be obtained using opti-
mal control techniques such State-Dependent Riccati Equation method (SDRE)
for nonlinear systems [2, 4, 5, 7].

Figure 3: Optimal autopilot structure

5. Optimal tracking solution

When considering the tracking problem, an obvious optimization objective [2]
would be to use a weighted sum of the square of the error between the measured
acceleration and the command, along with the control usage. The following
objective function is minimized for 𝐻∞ problem [4]:

𝐽 (u) = 1
2

∞∫
0

(
x𝑇𝑒Qx𝑒 + e𝑇optPeopt

)
d𝑡, (23)

subject to nonlinear autopilot dynamics for affine systems

¤x𝑒 = B𝑐 (x𝑒)eopt . (24)

By employing the optimal control theory, the solution results in a control law
(16). To obtain Kopt(x𝑒), which is the nonlinear optimal gain, it is assumed that
Kopt(x𝑒) is the suboptimal solution to

Kopt(x𝑒)A𝑐 (x𝑒) + A𝑐 (x𝑒)𝑇Kopt(x𝑒)
− Kopt(x𝑒)B𝑐 (x𝑒)P−1B𝑐 (x𝑒)𝑇Kopt(x𝑒) + Q = 0, (25)

where A𝑐 (x𝑒) = 0 in this case.
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6. Control system analysis

The nonlinear missile model is applied to validate the described optimal
autopilot equipped with the infinite-time SDRE control for a longitudinal tracking
problem when the required acceleration given by the guidance system must be
obtained. The missile-autopilot model consists of four principal subsystems,
controlled through the acceleration-demand autopilot [16] as shown in Fig. 4.

Figure 4: Missile-autopilot control system structure

The Atmosphere subsystem calculates the change in atmospheric conditions
in stratosphere and troposphere regions with changing altitude. The Fin Actuator
and Sensors subsystems couple the autopilot to the airframe. The Missile model
subsystem calculates the magnitude of the forces and moments acting on the
missile body with constant thrust and integrates the equations of motion.

The missile model parameters are presented in Table 1.

Table 1: Missile model parameters

Parameter Value [quantity]
𝑚 204.0227 kg
𝐼𝑦 247.4366 kg·m2

The autopilot parameters are presented in Table 2. Parameters for both the
classic and the optimal case are generally the same, but the optimal is enhanced
by an additional feedback compensator, whose parameters are computed from
Eq. (25) for Q = 0.01 · I2×2 and P = I2×2, where I2×2 is the 2 × 2 identity matrix.
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Table 2: Classis and optimal autopilot parameters

Parameters Value [quantity
𝐾 (𝛼, 𝑀) 0.28|𝛼 | + 0.3𝑀
𝐾1 (𝛼, 𝑀) 0.0025|𝛼 | + 0.025𝑀
𝐾2 (𝛼, 𝑀) 20|𝛼 | + 50𝑀
𝐾3 (𝛼, 𝑀) 0.025|𝛼 | + 0.225𝑀

First, the aim is to check the missile-autopilot control system step response (with-
out the guidance system) when prescribed acceleration 𝑎𝑧𝑐 = −10𝑔 is applied.

Figures 5a and 5b show expected and achieved normal acceleration in both
cases. As can be seen, the optimal feedback compensator (optimal autopilot

(a)

(b)

Figure 5: (a) The step response for classic autopilot case;
(b) The step response for optimal autopilot case



450 T. MIKUTEL, S. STĘPIEŃ, J. SYKULSKI

variant) significantly reduces the overshoots, eliminates the steady state error and
makes the control process faster.

Both variants of the autopilot are applied to the guidance system [9, 16],
employing the strongly coupled 6DoF missile model described in Section 2. The
full guidance system structure is presented in Fig. 6.

Figure 6: Guidance system structure

The Guidance Processor generates demands during the closed-loop tracking
and performs an initial search to locate the target position. Once the seeker
has acquired the target using the line-of-sight (LOS), a proportional navigation
guidance (PNG) law is used to guide the missile until impact [14].

As an example, the model of the missile airframe presented above has been
used in advanced control methods applied to the missile optimal autopilot design.
The example represents a tail-controlled missile traveling between 2–4 Mach
speed, at altitudes ranging between 3–20 km, with typical angles of attack (AoA)
ranging between±20 degrees [16]. The results are presented and compared for the
classic three-loop autopilot structure and the optimized structure. The missile is
powered by a constant thrust 10 kN. A missile and target trajectory are presented
in Fig. 7a. The fins control effort, i.e. fins deflection, is presented in Fig. 7b.

(a)

Figure 7
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(b)

Figure 7: (a) Missile and target trajectory – classic autopilot;
(b) Fins deflection – classic autopilot

Finally, to show the missile trajectory and fins effort when optimal autopilot
structure is applied, the trajectory is presented in Fig. 8a and fins deflection in
Fig. 8b.

When looking at Figs. 7a and 8a, the missile trajectories appear to be the
same. Indeed, they are similar, but the difference is visible in the context of target
kill precision when the intercept is completed. For the classic autopilot approach
the miss distance to target is 0.167 m, but for the optimal one it is reduced by
about 50%. As the detonate algorithm depends on the intercept precision, thus the
missile can detonate the load more closely to the target. The difference between
the missile guidance systems is more visible in Figs. 7b and 8b. The missile is
more precisely stabilized by the optimal feedback control, although the effort of
the autopilot controller is slightly bigger to achieve the improved precision. The
efficiency of the control system has an impact on the missile-target miss distance,
as demonstrated in Table 3.

Table 3: Miss distance comparison

Autopilot structure Value
Look-up-Table [16] 0.268 m
Classic 0.167 m
Optimal 0.077 m

From the results presented in Table 3, it is clear that the optimal autopilot is
more precise.
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(a)

(b)

Figure 8: (a) Missile and target trajectory – optimal autopilot;
(b) Fins deflection – optimal autopilot

7. Conclusions

The paper has proposed and completed the missile autopilot design by solving
an optimal control problem for nonlinear systems. The optimal control technique
has been applied and analyzed using the nonlinear feedback compensator for
computation of the control input that minimizes the quadratic objective function,
thus performing a stabilization task. The results are compared with the classic
three-loop autopilot topology as well as those reported in literature. The effec-
tiveness of the proposed technique is demonstrated using a numerical example
where optimal missile controls are found for prescribed acceleration. Moreover,
the proposed GP-LV missile model and the optimized autopilot structure have
been applied in the missile guidance system. The presented results suggest that
the proposed SDRE-based autopilot provides better accuracy in terms of the miss
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distance criterion. Interestingly, it appears that autopilot designers – who decades
ago used the classic three-loop approach – already knew that this was a good
topology to be used in missile guidance industry. However, today’s challenge is
to design and build new control systems employing optimal SDRE techniques for
advanced autopilots and guidance processors to increase accuracy.
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