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A fully intuitionistic fuzzy multi-objective linear
fractional fixed charge optimization model

for sustainable transportation planning
in the sugar-mill industry

Sakshi DHRUV, Ritu ARORA, Shalini ARORA and S.A. EDALATPANAH

Sustainability has recently grown to be a primary focus for transport planning and policies
in both developing and developed nations. The paper focuses on the sustainability of a multi-
objective linear fractional fixed charge transportation model that utilizes trapezoidal intuitionistic
fuzzy numbers to define all the variables and parameters. A novel approach, which has three
stages, is presented based on the amalgamation of fuzzy AHP and goal programming techniques.
The first stage streamlines the proposed model by employing arithmetic operations for trapezoidal
intuitionistic fuzzy numbers, thus converting the fuzzy constraints into crisp ones. In stage two,
the model undergoes further transformation into a linear optimization model by utilizing the goal
programming approach and linearization technique. The third stage describes how the weights
are derived using fuzzy AHP, which are then assigned to objectives. To support the proposed
methodology, an application in the sugar mill industry has been illustrated by designing a
sustainable transport infrastructure. The solution of the obtained model is computed using easily
accessible software. A comparison is drawn between the proposed and existing techniques, and
it is concluded that the proposed methodology gives the minimum transportation cost compared
to the existing methods.
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Notations

• Transportation problem (TP)
• Fixed charge transportation problem (FCTP)
• Intuitionistic fuzzy set (INFS)
• Non-membership function (NMF)
• Membership function (MF)
• Multi-criteria decision-making (MCDM)
• Analytic hierarchical process (AHP)
• Fuzzy-AHP (F-AHP)
• Fuzzy technique for order performance by similarity to ideal solution (F-TOPSIS)
• Data envelopment analysis (DEA)
• Multi-objective transportation problem (MOTP)
• Multi-objective linear fractional fixed charge transportation problem (MOLFFCTP)
• Trapezoidal intuitionistic fuzzy number (TrINFN)
• Fully intutionistic fuzzy multi-objective linear fractional fixed charge transportation prob-

lem FIF-MOLFFCTP
• Linear fractional transportation problem (LFTP)
• Solid transportation problem (STP)

1. Introduction

Sustainable development is described by the World Commission in the re-
port on Development and Environment (United Nations General Assembly 1987)
as “Development that satisfies current needs without jeopardising future genera-
tions’ capacity to meet their own necessities”. Economic, social, and environmen-
tal objectives are part of sustainable development, and all three components of that
development should be made more sustainable. Sustainability has been considered
by numerous researchers in transportation. Transportation that satisfies mobility
on demands while protecting and improving human and ecological health, eco-
nomic prosperity and social justice is known as sustainable transportation [31].

1.1. Literature review

Hitchcock [19] presented the TP, also known as the cost reduction transporta-
tion problem. The goal was to develop a shipment plan with the lowest cost
possible from 𝑚 sources to 𝑛 destinations. Hirsch and Dantzig [18] presented the
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fixed charge problem. They demonstrated that the convex polyhedron determined
by the problem can have its optimal value at its extreme points. FCTP is a special
case of TP and it was presented by Balinski [7]. He provided a method of ap-
proximation where an optimal solution was obtained by determining the highest
and lowest limits for the objective value and approximating the solution between
them. Murty [34] provided an algorithm for arranging the convex polyhedron’s
vertices created by constraints in ascending order. He further emphasized that
when the problem is not degenerate and the transportation cost is greater than the
fixed cost, this algorithm works efficiently. Whereas, Gray [16] suggested differ-
ent approach in which fixed cost outweigh variable cost (transportation cost). The
given algorithm looked for optimal solution at every extreme point. The upper
and lower limits on the fixed cost were obtained to decrease the total number
of the extreme points in the search. Puri and Swaroop [36] proposed a solution
methodology for fixed charge problem. The problem was to split into two sub
problems, namely linear programming problem and 0-1 programming problem.
Authors provided an enumerative approach for exploring an extreme point to
identify a solution. Khurana et al. [22] considered the fixed charge bi-criterion
indefinite quadratic TP with restricted flow in which the solution was obtained
by breaking the problem into two smaller sub-problems.

The causes of ambiguity and vagueness in parameter values include a va-
riety of factors like weather, road condition, pace of inflation and others. As
a result, the decision variables become ambiguous and uncertain. To deal with
such uncertain situations, Zadeh [46] put forth the concept of fuzzy sets. While
formulating the problem, it is quite appropriate to take uncertainty into account.
The framework for making decisions under fuzzy environment was developed by
Bellman and Zadeh [8]. They pioneered the concepts of fuzzy constraints, fuzzy
goals and fuzzy decisions, which served as the foundation for the work of sev-
eral researchers. The concept of using the fuzzy sets in formulating and solving
the mathematical problems with fuzzy components was introduced by Zimmer-
mann [48]. Atanassov [5] established the concepts of INFS by introducing NMF
besides MF, thereby, expanding the decision space.

Li and Lai [24] presented an approach on fuzzy compromised programming
for MOTP. The approach suggested was distinctive because it involved various
objectives, evaluated them marginally for each objective. The decision-makers’
choice are also considered while assigning the weights to the objectives. Joshi
and Gupta [20] considered the mathematical structure of LFTP that involves fluc-
tuating supply and demand. They presented a solution methodology in which the
solution was found in the range where the total transportation cost would exhibit.

Prioritizing a few conflicting goals is challenging. MCDM methods, such
as AHP, can be utilized to tackle such problems. The AHP, Saaty’s [39] in-
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vention, is the method for group decision-making that divides the problem into
hierarchical simpler sub-problems that may each be analyzed separately. Fuzzy
theory and AHP are combined in formulating F-AHP. In order to determine the
factors contributing to the transmission of monkeypox virus, Garg et al. [13]
constructed the model of MCDM. They combined the approaches of trapezoidal
fuzzy numbers, fuzzy full consistency method (FUCOM) and the AHP process
and proposed a hybrid model known as the trapezoidal FUCOM-AHP to study
this. Zhou and Lu [47] presented a hybrid method for the Multi attribute decision
making (MADM) model that described a procedure for project evaluation and
selection. In order to analyze and choose the optimal project, they proposed a
methodology integrating the F-TOPSIS method with an interval-valued F-AHP
using triangle interval-valued fuzzy numbers. Ayhan [6] demonstrated how F-
AHP was used to choose the best supplier based on predetermined criteria at a
gear motor company.

Mehalawat et al. [31] formulated a three-stage FC sustainable TP and pro-
posed an integrated DEA multi-objective optimization model that took customer
to customer relation into account. Gupta et al. [17] employed DEA and AHP
techniques to construct a combined multi-objective optimization model for a sus-
tainable transport planning in the sector of coal mining. To find the compromise
solution, a fuzzy interactive approach was applied for the sustainable transporta-
tion. Maity et al. [29] took pollution minimization into account while studying
the time variant in the MOTP. The proposed methodology transforms the model
into a deterministic form and by implementing the goal programming approach,
it was solved.

Roy et al. [38] used fuzzy rough variables to study multiobjective multi-item
fixed charge STP. They used three distinct methods to handle the issue: extended
TOPSIS, weighted goal programming and fuzzy programming, and drew com-
parisons between them. Roy and Midya [37] analyzed the STP with product
blending in an intuitionistic fuzzy environment, whose parameters were trian-
gular IFN. They proposed a new ranking function to convert the model into a
crisp one. A new IF-TOPSIS method was proposed to solve the problem and
compared with intuitionistic fuzzy programming. Kumar et al. [23] presented
three different TP models in a pythagorean fuzzy environment. They proposed
an algorithm for finding the initial basic feasible solution and checking optimal-
ity based on some existing results. A few numerical illustrations were given to
validate the algorithm. Pratihar et al. [35] considered interval type-2 fuzzy TP.
They presented three different approaches, namely modified Vogel’s approxima-
tion method, linear programming problem, and modified MODI method to solve
the model and validate it by numerical illustration. Gosh et al. [14] presented
a multi-objective fixed charge STP under an intuitionistic fuzzy environment.
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Authors converted the model into an interval valued TP using the (𝛼− 𝛽) cut and
further reduced it into a deterministic form using the accuracy function. They
proposed an intuitionistic fuzzy programming approach for solving the model
and compared it with fuzzy programming and goal programming with the help
of numerical examples. Das [10] discussed the pentagonal neutrosophic set and
formulated a TP under this environment. He introduced the cut of a single val-
ued pentagonal neutrosophic number and described its arithmetic operations.
A new score function was proposed which was used to convert the model into
a crisp one. Das & Roy [11] considered an optimization model that integrates
the facility location problem with MOTP in a neutrosophic environment. Gosh et
al. [15] discussed multi-objective fixed charge STP incorporated with budget con-
straints under a neutrosophic environment. A numerical problem was presented
and solved using three different approaches: neutrosophic linear programming,
fuzzy programming, and the global criterion method. Akram et al. [3] proposed
the mathematical model of FTP in interval valued fermatean fuzzy environment.
The triangular interval valued fermatean fuzzy number along with its arithmetic
operations were explained. A bilevel linear programming problem that included
a fractional TP for the leader and a FCTP for the follower was examined by Bindu
et al. [21]. Two issues were raised: the first concerned a food chain company
that was turning its leftover vegetable cooking oil into biodiesel, and the second
mentioned Indore, where trash was turned into bio-CNG that powered public
transportation. This study [2] emphasized supply chain network problems by
employing the mixed-integer programming approach. A constraint method was
used to address the suggested model, and its findings were verified by studying
real-life scenarios in the Iranian food business. A multi-objective mixed integer
mathematical programming model for sustainable disaster relief logistic manage-
ment has been discussed in this study [33]. In order to navigate the uncertainties,
multi-choice goal programming was used to solve a robust fuzzy optimization
model that had been offered. By utilizing the concepts of the weighting sum
approach, Taylor’s series expansion and fuzzy cuts with varying degrees of satis-
faction, Maharana and Nayak [26] developed an approach for the multi-objective
linear fuzzy fractional programming problem in a trapezoidal fuzzy environment.
Table 1 displays the significance of the existing work of fixed charge TP in the
literature.

1.2. Motivation for this study

In light of the aforementioned discussion, more study on the TP is required
by taking into account an important aspect, sustainability. Transport systems sig-
nificantly affect the environment; for example, the road transport system is a
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substantial source of smog and air pollution. The increasing reliance on trans-
portation vehicles in daily life to meet basic necessities causes a variety of issues,
including greenhouse gas emissions, global warming, environmental degradation,
and health effects. Emissions from transport vehicles that are lethal and danger-
ous have a consequential negative impact on the health of the globe. The agency,
person, or governing body rarely takes pollution into account in these situa-
tions because their main concerns are maximizing profit or minimizing expenses.
Hence, it is essential to create a transport infrastructure that encourages energy
conservation. This study comprises of a MOLFFCTP where all the decision
variables and parameters are considered TrINFN for a sustainable transportation
plan. To promote energy efficiency, a fixed charge is imposed for exceeding the
limit of CO2 emission and it is exhibited through an illustration. Sustainable
transportation is necessary to meet social and economic demands without dam-
aging the environment, yet population increase, and growing economies create
a bottleneck. To improve the economic and social component of sustainable de-
velopment, a fixed charge is imposed for exceeding the damage of goods in the
illustrated example. The proposed methodology in this paper combines fuzzy
goal programming approach with fuzzy AHP. The methodology gives decision-
makers a practical tool for determining the significant relevance of objectives and
then interpreting them more precisely.

1.3. Novelties

The novelties of the presented work have been stated below:

• The unbalanced case of MOLFFCTP is formulated in an intuitionistic fuzzy
environment and contemplated to be solved by proposing a methodology.

• The transportation plan for the sugar mill industry is formulated with the
notion of sustainability at the forefront, and it is explained using a numerical
example.

• Fuzzy AHP is introduced for the first time in the weighted goal programming
concept, which constitutes the framework of the proposed approach.

• In order to foster a sustainable transportation plan, the fixed costs imposed
for damage to products and for exceeding the CO2 emission limit have been
included in a mathematical model.

1.4. Structure of the paper

The paper is structured as shown in Figure 1.
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Figure 1: Structure of the paper

2. Preliminaries

This section lists a few of the most important definitions and properties found
in literature that is used throughout this study [5, 25, 43].

2.1. Definitions

Definition 1. 𝐼̃ = {(𝑥, 𝜇
𝐼̃
(𝑥), 𝜓

𝐼̃
(𝑥)) |𝑥 ∈ 𝑍} be a set of ordered triplets, where

𝜇
𝐼̃
(𝑥), 𝜓

𝐼̃
(𝑥) : 𝑍 → [0, 1] are functions considered that satisfy 0 ¬ 𝜇

𝐼̃
(𝑥) +

𝜓
𝐼̃
(𝑥) ¬ 1, ∀𝑥 ∈ 𝑍 , then this is an INFS. The value of 𝜇

𝐼̃
(𝑥) act as (MF) and

𝜓
𝐼̃
(𝑥) is (NMF) of element 𝑥 ∈ 𝑍 in 𝐼̃. The degree of hesitancy can be defined as

𝛼
𝐼̃
(𝑥) = 1 − 𝜇

𝐼̃
(𝑥) − 𝜓

𝐼̃
(𝑥) for 𝑥 ∈ 𝑍 being in 𝐼̃.

Definition 2. Let 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) be a TrINFN (Fig-

ure 2). Its MF (𝜇
𝐾
(𝑥)) and NMF (𝜓

𝐾
(𝑥)) can be described as:

𝜇
𝐾 (𝑥) =


𝑥−𝑘̃11
𝑘̃12−𝑘̃11

𝑘̃11 < 𝑥 ¬ 𝑘̃12

1 𝑘̃12 ¬ 𝑥 ¬ 𝑘̃13
𝑘̃14−𝑥
𝑘̃14−𝑘̃13

𝑘̃13 ¬ 𝑥 < 𝑘̃14

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜓
𝐾 (𝑥) =



𝑘̃ ′12−𝑥
𝑘̃ ′12−𝑘̃

′
11

𝑘̃′11 < 𝑥 ¬ 𝑘̃
′
12

0 𝑘̃′12 ¬ 𝑥 ¬ 𝑘̃
′
13

𝑥−𝑘̃ ′13
𝑘̃ ′14−𝑘̃

′
13

𝑘̃′13 ¬ 𝑥 < 𝑘̃
′
14

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑘̃′11 ¬ 𝑘̃11 ¬ 𝑘̃′12 ¬ 𝑘̃12 ¬ 𝑘̃13 ¬ 𝑘̃′13 ¬ 𝑘̃14 ¬ 𝑘̃′14.
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Figure 2: Trapezoidal Intuitionistic Fuzzy Number

Remark 1. If 𝑘̃12 = 𝑘̃′12 = 𝑘̃13 = 𝑘̃′13 then TrINFN reduces to triangular intu-
itionistic fuzzy number.

2.2. Fundamental properties of TrINFN

Definition 3. The TrINFN 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) is non-

negative TrINFN iff 𝑘̃′11 ­ 0.

Definition 4. Let 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) and

𝐾2 = ( 𝑘̃21, 𝑘̃22, 𝑘̃23, 𝑘̃24; 𝑘̃′21, 𝑘̃
′
22, 𝑘̃

′
23, 𝑘̃

′
24) be two TrINFN. They are said to be

equivalent i.e. 𝐾1 ≃ 𝐾2 iff 𝑘̃11 = 𝑘̃21, 𝑘̃12 = 𝑘̃22, 𝑘̃13 = 𝑘̃23, 𝑘̃14 = 𝑘̃24, 𝑘̃′11 = 𝑘̃′21,
𝑘̃′12 = 𝑘̃′22, 𝑘̃′13 = 𝑘̃′23, 𝑘̃′14 = 𝑘̃′24.

2.2.1. Arithmetic Operations on TrINFN:

Let 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) and

𝐾2 = ( 𝑘̃21, 𝑘̃22, 𝑘̃23, 𝑘̃24; 𝑘̃′21, 𝑘̃
′
22, 𝑘̃

′
23, 𝑘̃

′
24) be two TrINFNs. Then

1. 𝐾1 ⊕ 𝐾2 = ( 𝑘̃11 + 𝑘̃21, 𝑘̃12 + 𝑘̃22, 𝑘̃13 + 𝑘̃23, 𝑘̃14 + 𝑘̃24; 𝑘̃′11 + 𝑘̃′21, 𝑘̃12 +
𝑘̃22, 𝑘̃

′
13 + 𝑘̃

′
23, 𝑘̃

′
14 + 𝑘̃

′
24).

2. 𝐾1 ⊖ 𝐾2 = ( 𝑘̃11 − 𝑘̃21, 𝑘̃12 − 𝑘̃22, 𝑘̃13 − 𝑘̃23, 𝑘̃14 − 𝑘̃24; 𝑘̃′11 − 𝑘̃′21, 𝑘̃12 −
𝑘̃22, 𝑘̃

′
13 − 𝑘̃

′
23, 𝑘̃

′
14 − 𝑘̃

′
24).

3. 𝐾1⊗𝐾2 = ( 𝑘̃11 𝑘̃21, 𝑘̃12 𝑘̃22, 𝑘̃13 𝑘̃23, 𝑘̃14 𝑘̃24; 𝑘̃′11 𝑘̃
′
21, 𝑘̃12 𝑘̃22, 𝑘̃

′
13 𝑘̃

′
23, 𝑘̃

′
14 𝑘̃

′
24).



464 S. DHRUV, R. ARORA, S. ARORA, S.A. EDALATPANAH

4. If 𝑘̃′21 > 0 then the division of 𝐾1 and 𝐾2 is given by
𝐾1

𝐾2
≃

(
𝑘̃11

𝑘̃24
,
𝑘̃12

𝑘̃23
,
𝑘̃13

𝑘̃22
,
𝑘̃14

𝑘̃21
;
𝑘̃′11

𝑘̃′24

,
𝑘̃′12

𝑘̃′23

,
𝑘̃′13

𝑘̃′22

,
𝑘̃′14

𝑘̃′21

)
.

2.2.2. Score function:

Let 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) be a TrINFN. By calculating

the expected interval for TrINFN, Yager [45] calculated the expected value for the
membership function, which might be discrete, continuous, or crisp. The score
function for MF (𝜇

𝐾1
) and NMF (𝜓

𝐾1
) is defined as:

𝑆(𝜇
𝐾1
) = 𝑘̃11 + 𝑘̃12 + 𝑘̃13 + 𝑘̃14

4
, 𝑆(𝜓

𝐾1
) =

𝑘̃′21 + 𝑘̃
′
22 + 𝑘̃

′
23 + 𝑘̃

′
24

4
.

2.2.3. Accuracy function:

The score functions are the defined as the expected values. The accuracy
function is explained by considering the average of score functions of MF and
NMF which represents a crisp value. It is defined as follows:

Λ(𝐾1) =
𝑆(𝜇

𝐾1
) + 𝑆(𝜓

𝐾1
)

2
=
𝑘̃11 + 𝑘̃12 + 𝑘̃13 + 𝑘̃14 + 𝑘̃′11 + 𝑘̃

′
12 + 𝑘̃1

′
13 + 𝑘̃′14

8
.

2.2.4. Ordering of TrINFN:

Let 𝐾1 = ( 𝑘̃11, 𝑘̃12, 𝑘̃13, 𝑘̃14; 𝑘̃′11, 𝑘̃
′
12, 𝑘̃

′
13, 𝑘̃

′
14) and

𝐾2 = ( 𝑘̃21, 𝑘̃22, 𝑘̃23, 𝑘̃24; 𝑘̃′21, 𝑘̃
′
22, 𝑘̃

′
23, 𝑘̃

′
24) be two TrINFNs. Then

• Λ(𝐾1) ­ Λ(𝐾2) iff 𝐾1 ⪰ 𝐾2 ,

• Λ(𝐾1) ¬ Λ(𝐾2) iff 𝐾1 ⪯ 𝐾2 ,

• Λ(𝐾1) = Λ(𝐾2) iff 𝐾1 ≃ 𝐾2 ,

• min(𝐾1, 𝐾2) = 𝐾1 iff 𝐾1 ⪯ 𝐾2 ,

• max(𝐾1, 𝐾2) = 𝐾1 iff 𝐾1 ⪰ 𝐾2 .

3. Problem formulation

In real-life scenarios of transportation problem, the data can embody uncer-
tainty due to many reasons. Consider a TP with ‘t’ sources and ‘d’ destinations.
To handle the vagueness in data, a FIF-MOLFFCTP is taken in which values of
all parameters and variables are defined as TrINFN. The mathematical model of
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FIF-MOLFFCTP is described as follows:

(C1) Min 𝐽(𝐴) ( 𝑋̌) =
𝐸(𝐴) ( 𝑋̌)
𝐷 (𝐴) ( 𝑋̌)

⊕ 𝑅(𝐴) ( 𝑋̌) 𝐴 = 1, 2, ..., 𝑁

=

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐̃𝑂𝐿 (𝐴) ⊗ 𝑋̌𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔̃𝑂𝐿 (𝐴) ⊗ 𝑋̌𝑂𝐿

⊕
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑟̃𝑂𝐿 (𝐴𝑎) ⊗ 𝑌𝑂𝐿 (𝑎)

subject to
𝑑∑︁
𝐿=1

𝑋̌𝑂𝐿 ⪯ 𝐴𝑂 , 𝑂 = 1, ...𝑡 (Supply Constraints)

𝑡∑︁
𝑂=1

𝑋̌𝑂𝐿 ⪰ 𝐵𝐿 , 𝐿 = 1, ...𝑑 (Demand Constraints)

𝑋̌𝑂𝐿 ⪰ 0, 𝑌𝑂𝐿 (𝐴) ∈ {0, 1}

where the TrINFN parameters are defined as follows:
𝑐̃𝑂𝐿 (𝐴)) : (𝑐1

𝑂𝐿 (𝐴) , 𝑐
2
𝑂𝐿 (𝐴) , 𝑐

3
𝑂𝐿 (𝐴) , 𝑐

4
𝑂𝐿 (𝐴); 𝑐

′1
𝑂𝐿 (𝐴) , 𝑐

′2
𝑂𝐿 (𝐴) , 𝑐

′3
𝑂𝐿 (𝐴) , 𝑐

′4
𝑂𝐿 (𝐴)) is de-

noting the cost per unit of transportation from 𝑂-th source to 𝐿-th destination,
𝑔̃𝑂𝐿 (𝐴) : (𝑔1

𝑂𝐿 (𝐴) , 𝑔
2
𝑂𝐿 (𝐴) , 𝑔

3
𝑂𝐿 (𝐴) , 𝑔

4
𝑂𝐿 (𝐴); 𝑔

′1
𝑂𝐿 (𝐴) , 𝑔

′2
𝑂𝐿 (𝐴) , 𝑔

′3
𝑂𝐿 (𝐴) , 𝑔

′4
𝑂𝐿 (𝐴)) is de-

noting the profit earned from 𝑂-th source to 𝐿-th destination,
𝑋̌𝑂𝐿 : (𝑋1

𝑂𝐿
, 𝑋2

𝑂𝐿
, 𝑋3

𝑂𝐿
, 𝑋4

𝑂𝐿
; 𝑋′1

𝑂𝐿
, 𝑋′2

𝑂𝐿
, 𝑋′3

𝑂𝐿
, 𝑋′4

𝑂𝐿
) is the decision variable i.e.

the quantity to be transported from 𝑂-th source to 𝐿-th destination,

𝑌𝑂𝐿 (𝐴) =

{
1 if (O,L) route is selected
0 otherwise

𝐴𝑂 : {𝐴1
𝑂
, 𝐴2

𝑂
𝐴3
𝑂
, 𝐴4

𝑂
; 𝐴′1

𝑂
, 𝐴′2

𝑂
, 𝐴′3

𝑂
, 𝐴′4

𝑂
} is the available supply at 𝑂-th source,

𝐵𝐿 : {𝐵1
𝐿
, 𝐵2

𝐿
, 𝐵3

𝐿
, 𝐵4

𝐿
; 𝐵′1

𝐿
, 𝐵2

𝐿
, 𝐵′3

𝐿
, 𝐵′4

𝐿
} is the demand at 𝐿-th destination.

Assumptions:
Some assumptions are postulated to formulate the model:

1. 𝐷 (𝐴) (𝑋) > 0, 𝐴 = 1, 2, ...𝑁 for all points of feasible region.

2. 𝐴𝑂 > 0 ∀𝑂, 𝐵𝐿 > 0 ∀𝐿.
3. The feasibility condition:

∑
𝑂 𝐴𝑂 ­

∑
𝐿 𝐵𝐿 .

4. Let feasible set of (C1) is denoted by 𝑆.

Definition 5. When the aggregate intuitionistic demand is equal to the aggregate
intuitionistic fuzzy supply i.e.,

∑𝑡
𝑂=1 𝐴𝑂 =

∑𝑑
𝐿=1 𝐵𝐿 , then FIF-MOLFFCTP is

known as balanced TP else it is known as unbalanced TP.



466 S. DHRUV, R. ARORA, S. ARORA, S.A. EDALATPANAH

4. Proposed methodology

(C1) is segregated into two sub-problems, (C2) and (C3). It is depicted as
follows:

(C2) Min 𝐽★𝐴 (𝑋) =
𝐸(𝐴) ( 𝑋̌)
𝐷 (𝐴) ( 𝑋̌)

=

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐̃𝑂𝐿 (𝐴) ⊗ 𝑋̌𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔̃𝑂𝐿 (𝐴) ⊗ 𝑋̌𝑂𝐿

subject to
𝑑∑︁
𝐿=1

𝑋̌𝑂𝐿 ⪯ 𝐴𝑂 , 𝑂 = 1, ...𝑡 (Supply Constraints)

𝑡∑︁
𝑂=1

𝑋̌𝑂𝐿 ⪰ 𝐵𝐿 , 𝐿 = 1, ...𝑑 (Demand Constraints)

𝑋̌𝑂𝐿 ⪰ 0;

(C3) Min 𝐽★★𝐴 (𝑋) = 𝑅(𝐴) (𝑋) =

𝑡∑︁
𝑂=1

𝑑∑︁
𝐿=1

𝑟̃𝑂𝐿 (𝐴𝑎) ⊗ 𝑌𝑂𝐿 (𝑎)

subject to 𝑌𝑂𝐿 (𝐴) ∈ {0, 1}.

The proposed methodology has three stages:
Stage 1. Fundamental properties and arithmetic operations:
After performing the arithmetic operations and ordering, the model (C2) is trans-
formed into (C4) and is presented as:

(C4) Min 𝐽★(𝐴) (𝑋) = (𝐽(𝐴1) , 𝐽(𝐴2) , 𝐽(𝐴3) , 𝐽(𝐴4); 𝐽′(𝐴1) , 𝐽
′
(𝐴2) , 𝐽

′
(𝐴3) , 𝐽

′
(𝐴4)),

𝐴 = 1, .., 𝑁

subject to
𝑑∑︁
𝐿=1

𝑋1
𝑂𝐿 ¬ 𝑎

1
𝑂 ,

𝑑∑︁
𝐿=1

𝑋2
𝑂𝐿 ¬ 𝐴

2
𝑂 ,

𝑑∑︁
𝐿𝐿=1

𝑋3
𝑂𝐿 ¬ 𝐴

3
𝑂 ,

𝑑∑︁
𝐿=1

𝑋4
𝑂𝐿 ¬ 𝐴

4
𝑂 ,

𝑑∑︁
𝐿=1

𝑋′1
𝑂𝐿 ¬ 𝐴

′1
𝑂 ,

𝑑∑︁
𝐿=1

𝑋′2
𝑂𝐿 ¬ 𝐴

′2
𝑖 ,

𝑑∑︁
𝐿=1

𝑋′3
𝑂𝐿 ¬ 𝐴

′3
𝑂 ,

𝑑∑︁
𝐿=1

𝑋′4
𝑂𝐿 ¬ 𝐴

′4
𝑂 ,

𝑡∑︁
𝐿=1

𝑋1
𝑂𝐿 ­ 𝐵

1
𝐿 ,

𝑡∑︁
𝐿=1

𝑋2
𝑂𝐿 ­ 𝐵

2
𝐿 ,

𝑡∑︁
𝐿=1

𝑋3
𝑂𝐿 ­ 𝐵

3
𝐿 ,

𝑡∑︁
𝐿=1

𝑋4
𝑂𝐿 ­ 𝐵

4
𝐿 ,

𝑡∑︁
𝐿=1

𝑋′1
𝑂𝐿 ­ 𝐵

′1
𝐿 ,

𝑡∑︁
𝑂=1

𝑋′2
𝑂𝐿 ­ 𝐵

′2
𝐿 ,

𝑡∑︁
𝑂=1

𝑋′3
𝑂𝐿 ­ 𝐵

′3
𝐿 ,

𝑡∑︁
𝑂=1

𝑋′4
𝑂𝐿 ­ 𝐵

′4
𝑖 ,
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𝑋′1
𝑂𝐿 ­ 0, 𝑋1

𝑂𝐿 − 𝑋
′1
𝑂𝐿 ­ 0, 𝑋′2

𝑂𝐿 − 𝑋
1
𝑂𝐿 ­ 0, 𝑋2

𝑂𝐿 − 𝑋
′2
𝑂𝐿 ­ 0,

𝑋3
𝑂𝐿 − 𝑋

2
𝑂𝐿 ­ 0, 𝑋′3

𝑂𝐿 − 𝑋
3
𝑂𝐿 ­ 0, 𝑋4

𝑂𝐿 − 𝑋
′3
𝑂𝐿 ­ 0,

𝑋′4
𝑂𝐿 − 𝑋

4
𝑂𝐿 ­ 0, 𝑂 = 1, .., 𝑡, 𝐿 = 1, .., 𝑑,

where 𝐽(𝐴1) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

1
𝑂𝐿 (𝐴)𝑋

1
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

, 𝐽(𝐴2) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

2
𝑂𝐿 (𝐴)𝑋

2
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

3
𝑂𝐿 (𝐴)𝑋

3
𝑂𝐿

,

𝐽(𝐴3) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

3
𝑂𝐿 (𝐴)𝑋

3
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

2
𝑂𝐿 (𝐴)𝑋

2
𝑂𝐿

, 𝐽(𝐴4) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

4
𝑂𝐿 𝑗 (𝐴)𝑋

4
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

1
𝑂𝐿 (𝐴)𝑋

1
𝑂𝐿

,

𝐽′(𝐴1) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

′1
𝑂𝐿 (𝐴)𝑋

′1
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

′3
𝑂𝐿 (𝐴)𝑋

′3
𝑂𝐿

, 𝐽′(𝐴2) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

′2
𝑂𝐿 (𝐴)𝑋

′2
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

′3
𝑂𝐿 (𝐴)𝑋

′3
𝑂𝐿

,

𝐽′(𝐴3) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

′3
𝑂𝐿 (𝐴)𝑋

′3
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

′2
𝑂𝐿 (𝐴)𝑋

′2
𝑂𝐿

, 𝐽′(𝐴4) =

∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑐

′4
𝑂𝐿 𝑗 (𝐴)𝑋

′4
𝑂𝐿∑𝑡

𝑂=1
∑𝑑
𝐿=1 𝑔

′1
𝑂𝐿 (𝐴)𝑋

′1
𝑂𝐿

.

Stage 2. Goal programming formulation:
The goal programming approach in multi-objective problems proves to be a
resilient and efficient tool. It gives decision-maker a choice to prioritize their ob-
jectives/goals. It outreaches to the solution by minimizing the deviation between
the desired goals and objective values. Let 𝑉𝐴 be the assigned fuzzy aspiration
level/goal of the 𝐴𝑡ℎ objective function (𝐽★

𝐴
(𝑥̃)). Then the relation between them

is described as:

• 𝐽★(𝐴) (𝑥̃) ⪰ 𝑉(𝐴) (when maximizing the objective function is required),

• 𝐽★(𝐴) (𝑥̃) ⪯ 𝑉(𝐴) (when minimizing the objective function is required),

where 𝑉(𝐴) = (𝑉(𝐴1) , 𝑉(𝐴2) , 𝑉(𝐴3) , 𝑉(𝐴4);𝑉 ′
(𝐴1) , 𝑉

′
(𝐴2) , 𝑉

′
(𝐴3) , 𝑉

′
(𝐴4)).

Each component of 𝑉(𝐴) will be considered to compute the value of fuzzy
goals. Solve the problem by taking each component of objective 𝐽★(𝐴) (𝑥̃) of (C4)
along with the set of constraints of the corresponding model. Hence, for better
approximation the average of least value and greatest value of the objective
function determines the fuzzy goal, for eg.,

𝑉(𝐴1) =
maximum value of 𝐽(𝐴1) + minimum value of 𝐽(𝐴1)

2
.
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According to fuzzy goal programming, the model (C4) can be restated as:

(O1) Find 𝑋1
𝑂𝐿 , 𝑋

2
𝑂𝐿 , 𝑋

3
𝑂𝐿 , 𝑋

4
𝑂𝐿; 𝑋′1

𝑂𝐿 , 𝑋
′2
𝑂𝐿 , 𝑋

′3
𝑂𝐿 , 𝑋

′4
𝑂𝐿 , 𝑂 = 1, .., 𝑡, 𝐿 = 1, .., 𝑑

such that 𝐽̃★(𝐴) (𝑋) ⪯ 𝑉(𝐴) , 𝐴 = 1, .., 𝑁
subject to the constraints set (C4)

Defining Linear Membership and Non-Membership Function:
Define the linear MF and NMF for the conflicting fuzzy goal constraints described
in the model (O1). The MF and NMF’s shape is determined by the limitations
imposed by the decision-maker in the form of aspiration level, defined as follows:

𝜇(𝐽(𝐴𝑖)) =


1 𝐽(𝐴𝑖) ¬ 𝐽

𝑙
(𝐴𝑖)

𝑉(𝐴𝑖 )−𝐽(𝐴𝑖 )
𝑉(𝐴𝑖 )−𝐽

𝑙
(𝐴𝑖 )

𝐽 𝑙(𝐴𝑖) ¬ 𝐽(𝐴𝑖) ¬ 𝑉(𝐴𝑖)

0 𝐽(𝐴𝑖) ­ 𝑉(𝐴𝑖)

𝑖 = 1, 2, 3, 4,

𝜓(𝐽′(𝐴𝑖)) =


0 𝐽′(𝐴𝑖) ¬ 𝐽′

𝑙

(𝐴𝑖)
𝐽′ (𝐴𝑖 )−𝐽′

𝑙

(𝐴𝑖 )

𝑉(𝐴𝑖 )−𝐽′
𝑙

(𝐴𝑖 )
𝐽′
𝑙

(𝐴𝑖) ¬ 𝐽
′(𝐴𝑖) ¬ 𝑉(𝐴𝑖)

1 𝐽′(𝐴𝑖) ­ 𝑉(𝐴𝑖)

𝑖 = 1, 2, 3, 4,

where 𝐽 𝑙(𝐴) and 𝐽′𝑙(𝐴) are the lower value of the objective function 𝐽(𝐴) and 𝐽(𝐴)
respectively. 𝑉(𝐴) is defined as fuzzy aspiration level for the objective 𝐽(𝐴) .

The objectives established by decision-maker must be attained by maximizing
each MF and minimizing each NMF. The maximum value of membership function
can be 1 and minimum value of each non-membership function is 0, which can
be interpreted as the complete contentment of the decision maker. Thus, after
introducing the under-deviation (𝑆−(𝐴)) and over-deviation (𝑆+(𝐴)) respectively,
from the desired goals, the fuzzified inequalities of the model (O1) can be restated
as follows:

𝜇(𝐽(𝐴)) + 𝑆−(𝐴) − 𝑆
+
(𝐴) = 1, 𝜓(𝐽′(𝐴)) − 𝑆′−(𝐴) + 𝑆

′+
(𝐴) = 0.

After substitution, the above expression will become

𝑉(𝐴𝑖) − 𝐽(𝐴𝑖)
𝑉(𝐴𝑖) − 𝐽 𝑙(𝐴𝑖)

+ 𝑆−(𝐴𝑖) − 𝑆
+
(𝐴𝑖) = 1,

𝐽′(𝐴𝑖) − 𝐽′
𝑙

(𝐴𝑖)

𝑉(𝐴𝑖) − 𝐽′
𝑙

(𝐴𝑖)

− 𝑆′−(𝐴𝑖) + 𝑆
′+
(𝐴𝑖) = 0,

𝑖 = 1, 2, 3, 4. (1)
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Also

𝑆−(𝐴𝑖)𝑆
+
(𝐴𝑖) = 0, 𝑆′−(𝐴𝑖)𝑆

′+
(𝐴𝑖) = 0,

𝑆−(𝐴𝑖) , 𝑆
+
(𝐴𝑖) , 𝑆

′−
(𝐴𝑖) , 𝑆

′+
(𝐴𝑖) ­ 0, 𝑖 = 1, 2, 3, 4.

(2)

The goal programming problem has an objective function that is fabricated on
the basis of the type of optimization problem. This is described as follows:

• minimization of under-deviation variable for maximization problem,
• minimization of over-deviation variable for minimization problem.

As the importance of all the objectives may or may not be equal. Therefore,
there emerges a need to assign weights or priorities to the objective functions
according to their importance as decided by decision-maker. Let𝑊𝐴 be a weight
(
∑𝑁
𝐴=1𝑊𝐴 = 1) in the normalized form. Hence, the model (O1) is redefined as:

(O2) 𝑀𝑖𝑛

𝑁∑︁
𝐴=1

𝑊𝐴

(
4∑︁
𝑖=1

𝑆+(𝐴𝑖) +
4∑︁
𝑖=1

𝑆′+(𝐴𝑖)

)

subject to
𝑉(𝐴𝑖) − 𝐽(𝐴𝑖)
𝑉(𝐴𝑖) − 𝐽 𝑙(𝐴𝑖)

+ 𝑆−(𝐴𝑖) − 𝑆
+
(𝐴𝑖) = 1, 𝑖 = 1, 2, 3, 4

𝐽′(𝐴𝑖) − 𝐽′
𝑙

(𝐴𝑖)

𝑉(𝐴𝑖) − 𝐽′
𝑙

(𝐴𝑖)

− 𝑆′−(𝐴𝑖) + 𝑆
′+
(𝐴𝑖) = 0, 𝑖 = 1, 2, 3, 4

and set of constraints of model (C4) and (2).

Linearization procedure:
As it can be seen that membership goals defined in the expression (1) are non-
linear in nature; therefore, the linearization process is required. Consider the
following equation for linearization, and the rest of the equations will be dealt on
the same lines:

Consider the model (O2). After substituting the value of 𝐽(𝐴1) , the expres-
sion (1) can be rewritten as:
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𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑐1
𝑂𝐿 (𝐴)𝑋

1
𝑂𝐿

)
+ 𝑆−(𝐴1) (𝑉(𝐴1) − 𝐽 𝑙(𝐴1))

(
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

)
−

𝑆+(𝐴1) (𝑉(𝐴1) − 𝐽 𝑙(𝐴1))
(
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

)
=(

𝑡∑︁
𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

) (
(𝑉(𝐴1) − 𝐽 𝑙(𝐴1)) + 𝐽

𝑙
(𝐴1)

)
Let 𝑄−

(𝐴1) = 𝑆
−
(𝐴1) (𝑉(𝐴1) − 𝐽 𝑙(𝐴1))

(
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

)
,

𝑄+
(𝐴1) = 𝑆

+
(𝐴1) (𝑉(𝐴1) − 𝐽 𝑙(𝐴1))

(
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

)
,

and 𝐴1 =

(
𝑡∑︁

𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂 𝑗

) (
(𝑉(𝐴1) − 𝐽 𝑙(𝐴1)) + 𝐽

𝑙
(𝐴1)

)
then equation (3) is reduced as:(

𝑡∑︁
𝑂=1

𝑑∑︁
𝐿=1

𝑐1
𝑂𝐿 (𝐴)𝑋

1
𝑂𝐿

)
+𝑄−

(𝐴1) −𝑄
+
(𝐴1) = 𝐴1 . (3)

The objective of the model (O2) includes the non-linear term i.e.,

𝑆+(𝐴1) =
𝑄+

(𝐴1)∑𝑡
𝑂=1

∑𝑑
𝐿=1 𝑔

4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿

. (4)

Since 𝑆+(𝐴1) is an over-deviational variable, therefore, 𝑆+(𝐴1) = 1 is interpreted as
full achievement and 𝑆+(𝐴1) = 0 is interpreted as zero achievement. Hence, this
implies that 0 ¬ 𝑆−(𝐴1) ¬ 1 and equation (5) reduces as:

0 ¬ 𝑄+
(𝐴1) ¬

𝑡∑︁
𝑂=1

𝑑∑︁
𝐿=1

𝑔4
𝑂𝐿 (𝐴)𝑋

4
𝑂𝐿 (𝑉(𝐴1) − 𝐽 𝑙(𝐴1)). (5)

Hence the model (O2) is equivalent to:

(O3) 𝑀𝑖𝑛

𝑁∑︁
𝐴=1

𝑊𝐴 (𝑄+
(𝐴1) +𝑄

+
(𝐴2) +𝑄

+
(𝐴3) +𝑄

+
(𝐴4) +𝑄

′−
(𝐴1) +𝑄

′−
(𝐴2) +𝑄

′−
(𝐴3) +𝑄

′−
(𝐴4))

subject to the set of constraints of (2), (4), (6) and constraints of model (C4).
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Stage 3. Fuzzy Analytical Hierarchy Process (F-AHP):
F-AHP integrates the fuzzy set theory with AHP. AHP is an extensively used
technique in problems involving MCDM. In AHP, generally, there are three
different levels. The first level deals with the description of the objective for
problem. In the second level, criteria or attributes are described on the basis of
which the solution is to be searched. At the third level, based on the criteria,
the available options or alternatives or solutions are presented. Using fuzzy
full consistency method (FUCOM-AHP), the computational steps may increase
and get more intricate. F-AHP will hence simplify the computation. Thus, the
procedure is described as follows:

Step 1: Construct the comparison matrix in pairs using the linguistic terms as
illustrated in Table 2.

Table 2: Linguistic terms along with corresponding TrIFN

Saaty
scale Linguistic terms Fuzzy trapezoidal scale Reciprocal

1 Equally important (1, 1, 1, 1; 1, 1, 1, ) (1, 1, 1, 1; 1, 1, 1, 1)

3 Weakly important
(
2, 5

2 ,
7
2 , 4; 3

2 , 2,
15
4 ,

9
2

) (
1
4 ,

2
7 ,

2
5 ,

1
2 ; 2

9 ,
4
15 ,

1
2 ,

2
3

)
5 Fairly important

(
4, 9

2 ,
11
2 , 6; 7

2 , 4,
23
4 ,

13
2

) (
1
6 ,

2
11 ,

2
9 ,

1
4 ; 2

13 ,
4

23 ,
1
4 ,

2
7

)
7 Strongly important

(
6, 13

2 ,
15
2 , 8; 11

2 , 6,
31
4 ,

17
2

) (
1
8 ,

2
15 ,

2
13 ,

1
6 ; 2

17 ,
4

31 ,
1
6 ,

2
11

)
9 Absolutely important

(
8, 17

2 , 9, 9; 15
2 , 8, 9, 9

) (
1
9 ,

1
9 ,

2
17 ,

1
8 ; 1

9 ,
1
9 ,

1
8 ,

2
15

)
Scale for Intermittent values i.e. for Υ = {2, 4, 6, 8} is:(

Υ − 1, Υ − 1
2
, Υ + 1

2
, Υ + 1; Υ − 3

2
, Υ − 1, Υ + 3

4
, Υ + 3

2

)
.

Let 𝑡̃𝑢𝑟 represent preferences using TrINFN by the decision-makers for 𝑢𝑡ℎ
criterion over 𝑟 𝑡ℎ criterion.

Step 2: Determine the geometrical mean of each criterion’s fuzzy comparison
values. Let 𝑔̃𝑢𝑚𝑒𝑎𝑛 be the TrINFN value for the same described as follows:

𝑔̃𝑢𝑚𝑒𝑎𝑛 =

(
𝑁∏
𝑟=1

𝑡̃𝑢𝑟

) 1
𝑁

, 𝑢 = 1, 2, ..., 𝑁.

Step 3: Compute the sum of each vector of 𝑔̃𝑢𝑚𝑒𝑎𝑛.
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Step 4: Obtain the summation matrix’s inverse i.e. (−1) power of the above
obtained summation vector.

Step 5: Arrange the inverse of summation obtained in above step in ascending
order.

Step 6: Multiplying each 𝑔̃𝑢𝑚𝑒𝑎𝑛 by the reverse vector acquired in the previous
step will yield the fuzzy weights. It is described as follows:

𝐹𝑊𝑢 = 𝑔̃
𝑢
𝑚𝑒𝑎𝑛 ⊗

(
𝑔̃1
𝑚𝑒𝑎𝑛 ⊕ 𝑔̃2

𝑚𝑒𝑎𝑛 ⊕ 𝑔̃3
𝑚𝑒𝑎𝑛 ⊕ ... ⊕ 𝑔̃𝑁𝑚𝑒𝑎𝑛

)−1
.

Step 7: Defuzzify the obtained trapezoidal fuzzy weights 𝐹𝑊𝑢. It can be accom-
plished by averaging weights (Centre of area method) and let it be denoted
by 𝑛̃𝑢𝑤𝑔𝑡 .

Step 8: Normalize the non-fuzzy numbers 𝑛̃𝑢𝑤𝑔𝑡 by using following formula:

𝑁𝑊𝑢 =
𝑛̃𝑢𝑤𝑔𝑡∑𝑁
𝑢=1 𝑛̃

𝑢
𝑤𝑔𝑡

𝑢 = 1, ..., 𝑁.

Hence, the averaged and normalized weights will be obtained.

5. Proposed algorithm

The above explained methodology is pronounced in the steps of proposed
algorithm which has the following description:
Step 1. Construct the problem (C1) with variables defined as TrINFN. Segregate

the model (C1) into two models (C2) and (C3).
Step 2. Apply the fundamental arithmetic operations, ordering function and ac-

curacy function on (C2) to mutate into (C4).
Step 3. Calculate the aspiration level𝑉(𝐴) for all objective functions 𝐽★(𝐴) . Hence,

formulate the goal programming model (O1).
Step 4. Formulate the model (O2) by constructing the constraints using the

concept of linear membership function.
Step 5. Apply the linearization technique to construct the weighted goal pro-

gramming model (O3).
Step 6. Employ F-AHP to compute the weights of the model obtained in the

above step.
Step 7. Find the optimal solution by solving the obtained crisp LPP model (O3)

by using the available software packages.
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Step 8. Examine the solution obtained from above step to derive the solution of
the model (C3).

Step 9. Substitute the answers of the models (O3), (C2) and (C3) to attain the
solution of the model (C1).

6. Application in sugar mill industry

The applicability and resilience of the proposed methodology are substanti-
ated by the following problem for a sustainable transportation model from three
sources to two destinations.

Consider the problem of company XYZ, which owns three sugar mills in three
different localities in Uttar Pradesh. They transport sugar packed in polypropylene
(PP) bags to two different distributors in Rajasthan and Chhatisgarh, respectively.
The goal of the company is to

• maximize the no. PP bags of sugar to be transported,
• maximize total profit,
• maximize the incentive received from government for using the biodegrad-

able packaging,
• minimize the total transportation cost,
• minimize the carbon emission from transport,
• minimize the damage of goods.

For the company to provide sustainable transportation, there are a number of
guidelines that must be adhered to, which are defined as follows:

• If the CO2 emission of the shipment plan exceeds 250 gm/km, then the
penalty cost/fixed charge will be imposed.

• If the damage of goods in shipping exceeds 4 PP bags then the penalty
cost/fixed charge will be imposed.

Hence, using the above information the model can be constructed using the below
notations as:
Indices:
𝑂 Denotes the number of sources (𝑂 = 1, 2, ..., 𝑡)
𝐿 Denotes the number of destinations (𝐿 = 1, 2, ..., 𝑑)
Parameters:
𝑐̃𝑂𝐿 TrINFN cost of transporting one unit of good from 𝑂-th source to 𝐿-th

destination (𝑂, 𝐿) route
𝑝𝑂𝐿 TrINFN profit from transporting one unit of good on (𝑂, 𝐿) route
𝑑𝑂𝐿 TrINFN deterioration rate of one unit of good on (𝑂, 𝐿) route
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𝑙̃𝑂𝐿 maximum TrINFN no. of units transported on (𝑂, 𝐿) route
𝑒̃𝑂𝐿 TrINFN CO2 emission rate by vehicle on (𝑂, 𝐿) route
𝑟̃𝑂𝐿 TrINFN incentive received from government to use biodegradable pack-

aging on (𝑂, 𝐿) route
𝐴𝑂 TrINFN supply available at 𝑂-th source
𝐵𝐿 TrINFN demand at 𝐿-th destination
𝐷 total damage of goods on (𝑂, 𝐿) route
𝐸 total carbon emission on (𝑂, 𝐿) route
Decision variables:
𝑥̃𝑂𝐿 quantity of units to be transported on (𝑂, 𝐿) route
𝑦̃𝑂𝐿 Binary variables have a value of 1 if the damage of goods exceeds 4 PP

bags on (𝑂, 𝐿) route
𝑛̃𝑂𝐿 Binary variables have a value of 1 if the CO2 emission exceeds

250 gm/km on (𝑂, 𝐿) route

Figure 3: Pictorial depiction of the model

The values of parameter is given as:

𝑐11 = (3, 3, 4, 5; 1, 2, 4, 5), 𝑐12 = (2, 4, 6, 7; 2, 3, 7, 8),
𝑐21 = (1, 2, 3, 3; 0, 1, 3, 4), 𝑐22 = (0, 2, 2, 4; 0, 1, 2, 4),
𝑐31 = (0, 5, 7, 8; 0, 4, 8, 10), 𝑐32 = (5, 5, 7, 9; 3, 4, 8, 10),
𝑝11 = (2, 2, 3, 3; 1, 1, 4, 4), 𝑝12 = (1, 1, 1, 1; 1, 1, 1, 2),
𝑝21 = (0, 0, 0, 0; 0, 0, 0, 1), 𝑝22 = (1, 2, 3, 4; 0, 1, 3, 4),
𝑝31 = (3, 4, 6, 7; 1, 2, 6, 8), 𝑝32 = (2, 4, 5, 7; 1, 3, 6, 8),
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𝑑11 = (0.1, 0.2, 0.4, 0.4; 0, 0.1, 0.4, 0.5),
𝑑12 = (0.2, 0.3, 0.3, 0.5; 0.1, 0.2, 0.4, 0.5),
𝑑21 = (0.4, 0.5, 0.6, 0.6; 0.3, 0.4, 0.6, 0.7),
𝑑22 = (0.3, 0.3, 0.4, 0.4; 0.2, 0.2, 0.5, 0.5),
𝑑31 = (0.1, 0.3, 0.4, 0.5; 0.1, 0.2, 0.5, 0.6),
𝑑32 = (0.5, 0.5, 0.6, 0.7; 0.5, 0.5, 0.6, 0.7),

𝑙22 = (4, 6, 8, 9; 3, 5, 8, 10), 𝑙31 = (5, 6, 8, 10; 4, 5, 9, 11),
𝑙32 = (3, 5, 5, 6; 2, 4, 6, 8),
𝑒11 = (10, 12, 14, 15; 10, 12, 15, 18), 𝑒12 = (5, 7, 8, 10; 5, 6, 8, 11),
𝑒21 = (12, 14, 15, 18; 11, 13, 15, 9), 𝑒22 = (15, 16, 18, 20; 15, 16, 20, 22),
𝑒31 = (10, 15, 17, 18; 8, 10, 1, 20), 𝑒32 = (20, 22, 24, 25; 18, 20, 25, 28),
𝑟11 = (2, 4, 5, 6; 1, 3, 5, 7), 𝑟12 = (1, 3, 5, ; 1, 2, 6, 8),
𝑟21 = (4, 5, 6, 8; 3, 4, 6, 9), 𝑟22 = (0, 1, 4, 5; 0, 0, 4, 6),
𝑟31 = (1, 2, 5, 6; 1, 1, 5, 7), 𝑟32 = (3, 5, 5, 7; 2, 4, 6, 8),
𝐴1 = (8, 20, 21, 25; 8, 20, 25, 25), 𝐴2 = (15, 22, 27, 30; 10, 20, 30, 35),
𝐴3 = (7, 8, 10, 12; 7, 8, 15, 20), 𝐵1 = (15, 25, 27, 30; 15, 25, 35, 40),
𝐵2 = (15, 25, 30, 35; 10, 24, 35, 40),
𝑓11 = (1, 3, 3, 5; 0, 3, 6, 6), 𝑓12 = (0, 0, 0, 0; 0, 0, 0, 0),
𝑓21 = (6, 7, 9, 10; 5, 6, 10, 12), 𝑓22 = (4, 5, 6, 7; 3, 5, 6, 7),
𝑓31 = (4, 5, 7, 8; 3, 4, 8, 10), 𝑓32 = (3, 5, 5, 8; 2, 5, 6, 9),
𝑔11 = (2, 3, 4, 6; 1, 2, 5, 7), 𝑔12 = (2, 3, 4, 7; 0, 3, 5, 7),
𝑔21 = (5, 5, 5, 6; 4, 5, 5, 6), 𝑔22 = (4, 5, 6, 8; 4, 4, 7, 9),
𝑔31 = (1, 1, 1, 2; 0, 1, 2, 3), 𝑔32 = (6, 6, 7, 8; 5, 6, 8, 9).

The aspiration level of the objectives is obtained as:

𝑉1 = (1.5, 3.25, 16.21, 26.4; 0.315, 2.125, 20.4, 125.4),

𝑉2 = (0.032, 0.045, 0.21, 0, 54; 0.02, 0.044, 0.28, 1, 04) and

𝑉3 = (1.38, 2.04, 18.04, 102.63; 1.0, 1.81, 60.72, 128.25).

Hence, the equivalent goal programming model will be obtained. The weights in
the objective function will be evaluated by using F-AHP. The matrix of pairwise
comparison in the corresponding TrINFNs are shown in Table 3. Hence, the
averaged and normalized relative weights of the objectives are derived and shown
in Table 4.
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Table 3: Comparison matrix in the corresponding trapezoidal fuzzy numbers

Objectives 𝐽★1 𝐽★2 𝐽★3

𝐽★1 (1, 1, 1, 1; 1, 1, 1, 1)
(
2, 5

2 ,
7
2 , 4; 3

2 , 2,
15
4 ,

9
2

) (
4 9

2 ,
11
2 , 6; 7

2 , 4,
23
4 ,

13
2

)
𝐽★2

(
1
4 ,

2
7 ,

2
5 ,

1
2 ; 4

15 ,
1
2 ,

2
3

)
(1, 1, 1, 1; 1, 1, 1, 1)

(
4, 9

2 ,
11
2 , 6; 7

2 , 4,
23
4 ,

13
2

)
𝐽★3

(
1
6 ,

2
11 ,

2
9 ,

1
4 ; 2

13 ,
4

23 ,
1
4 ,

2
7

) (
1
6 ,

2
11 ,

2
9 ,

1
4 ; 2

13 ,
4
23 ,

1
4 ,

2
7

)
(1, 1, 1, 1; 1, 1, 1, 1)

Table 4: Averaged and normalized weights

Objectives 𝑛̃𝑖𝑤𝑔𝑡 𝑁𝑊 𝑖

𝐽★1 0.67 0.603

𝐽★2 0.315 0.308

𝐽★3 0.09 0.08

Solving the obtained optimization model by using the software “LINGO –
20.0”, the following values of decision variables are obtained:

𝑥11 = (15, 15, 15, 15; 15, 15, 15, 15), 𝑥12 = (20, 20, 20, 20; 20, 20, 20, 20),
𝑥21 = (0, 0, 0, 0; 0, 0, 0, 5), 𝑥22 = (6.64, 10, 10, 15; 0, 6.64, 10, 15),
𝑥31 = (20, 20, 20, 20; 20, 20, 20, 20), 𝑥32 = (0, 0, 0, 0; 0, 0, 0, 0),

Fixed charge for damage = (7, 8, 9, 13; 4, 8, 10, 13).

Hence, the solution of the problem is:

𝐽∗1 (𝑥̃) = (0.34, 1.4, 2.26, 3.72; 0.4, 0.7, 4.65, 9.36),
𝐽∗2 (𝑥̃) = (0.01, 0.04, 0.07, 0.14; 0.006, 0.03, 0.12, 0.4),
𝐽∗3 (𝑥̃) = (1.92, 2.4, 5.23, 15.5; 0.75, 1.81, 8.8, 24).

7. Comparison and discussions

To the best of the authors’ knowledge, the formulation and development
of the solution methodology, which incorporates the GP technique along with
the F-AHP technique for an unbalanced MOLFFCTP under an intuitionistic
fuzzy environment, have not yet been discussed. To manage the uncertainty
with efficacy, all parameters and variables have been considered as TrINFN
along with their MF and NMF. The novelty of the proposed approach is that
it blends the GP technique with F-AHP. This provides decision maker with a
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simple and effective mathematical programming tool to interpret the uncertainty
more precisely. This study emphasizes sustainability as well by enforcing a fixed
charge for exceeding the limit of carbon emissions and damage to sugar bags. An
application in the sugar mill industry has been presented to provide a thorough,
step-by-step explanation of the proposed approach. The robustness and credibility
of the proposed methodology have been described by examining it with existing
ones.

Two existing methods, namely weighted Tchebycheff metrics programming
[32], goal programming (GP) [30], have been applied to check the legitimacy of
the proposed technique. “LINGO 20.0” software is used to find the solution of
the numerical. A comparison between the optimal solutions obtained from the
approaches is done by using the accuracy function. Table 5 and Figure 4 illustrate
the value of objective functions employing different approaches.

Table 5: Comparison using Accuracy function between the objective values from different
approaches

Objective values Tchebycheff approach [32] GP approach [30] Proposed approach

𝐽1 4.71 2.8 2.8

𝐽2 8.22 6.22 6.22

𝐽3 13.69 12.35 7.5

Figure 4: Comparison between the approaches
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Upon comparing the results, it is important to note that the proposed ap-
proach outperforms the existing methodologies by giving better value to all the
objectives. Hence, it can be inferred that the proposed technique provides a lower
transportation cost than the current methods.

8. Managerial insights

The idea of sustainable transport encourages striking an equilibrium between
a necessity to preserve the environment and the benefits that mobility provides
on an economic and social level. The three pillars of sustainable development are
social, economic, and ecological, and every single one is required to be solidified.
All the three perspectives are defined as follows:

• Economic perspective
Affordable, efficient, providing a variety of modes of transportation, and
fostering a thriving economy are all features of sustainable transportation
systems.

• Social perspective
Humans and society as a whole may meet their requirements safely, reason-
ably, and throughout generations with the help of sustainable transportation
networks.

• Environmental perspective
Sustainable transportation reduces pollutants and emissions, uses less non-
renewable resources, takes up less space on the land, and produces less
noise pollution.

9. Concluding remarks

This study considers a multi-objective linear fractional fixed charge trans-
portation model where all variables are TrINFNs. The novelty of the proposed
methodology is that it takes into consideration a fuzzy goal programming ap-
proach along with Fuzzy-AHP, which equips decision-makers by providing a
useful tool that not only evaluates the significance of objectives but also interprets
them more precisely. Application in sugar mill industry, which aim to construct a
sustainable transport infrastructure that encourages energy efficiency, have been
provided as an illustration in which a fixed cost is imposed for exceeding the limit
of CO2 emissions and damage of bags of sugar. A comparison between the pro-
posed methodology and the existing ones, namely, weighted Tchebycheff metrics
programming and goal programming technique, is also taken into consideration
in order to check its credibility and applicability. Therefore, it can be concluded
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that compared to the current approaches, the proposed approach offers a lower
transportation cost.

• Advantages of proposed work

1. The proposed methodology considers unbalanced case of transporta-
tion. Therefore, there is no need to impose any transportation-related
parameters which expand the proposed algorithm’s usefulness for a
broad spectrum of problems.

2. All parameters and variables have been treated as TrINFN alongside
their MF and NMF to control the uncertainty effectively, as it can hold
more fuzzy information because of expanded decision space.

3. The goal programming method minimizes the deviation between the
desired values and the objectives values while simultaneously max-
imizing the acceptability level of objectives. As a measure of the
decision maker’s degree of satisfaction, this offers a better answer to
the problem.

4. When it comes to evaluating and interpreting the significance of the
objectives, the fuzzy-AHP is a more reliable tool.

• Future research scope

1. The possible extension of the proposed methodology can be extended
to hyperbolic, parabolic and exponential membership functions as the
non-linear membership function works more effectively in interpreting
the decision maker’s satisfaction level.

2. For more flexibility, the model can be formulated under Pythagorean
fuzzy, fermatean fuzzy or neutrosophic environment.

• Limitations

1. The problem will become a challenge to solve if its constraints are
non-linear.

2. If the uncertainty in the data increases, then the intuitionistic fuzzy
environment may fail to yield satisfactory solutions.

3. If the decision variables of the model (O3) are restricted to integer
values, then the computational steps would increase.

4. In some instances, gathering data in real world situations might be
practically challenging. This can be the information required to create
the pairwise comparison matrix of objectives or the values of the
parameters.
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