Management and Production Engineering Review

N

www.czasopisma.pan.pl ?@ www journals.pan.pl

Volume 16 e Number 3 e September 2025 e pp. 1-15

DOI: 10.24425/mper.2025.156145

2mper

Rescheduling Under Disruption: A Product-Driven Framework

with Heuristic and Reinforcement Learning Strategies

Patricio SAEZ!, JAIME RIVERAZ, PATRICIO SALAS!, VICTOR PARADA?

L Department of Statistics, Universidad de Concepcion, Chile

2 Department of Industrial Engineering, Universidad de Concepcion, Chile

3 Department of Informatics Engineering, Universidad de Santiago de Chile, Chile

Received: 14 October 2024
Accepted: 11 July 2025

Abstract

In modern manufacturing, addressing disruptions across multi-stage production requires
adaptive and intelligent scheduling. This study evaluates two rescheduling strategies within
a product-driven system for the Job Shop Scheduling Problem under disturbances: one based on
the Shifting Bottleneck Heuristic (PDS-SBH), and another using a Monte Carlo Reinforcement
Learning agent (PDS-RL). Products act as intelligent agents capable of autonomous decisions.
A total of 151 simulations were conducted across 14 benchmark instances, with machine-level
disruptions modeled as 100%, 200%, and 300% increases in processing times. PDS-SBH achieved
average makespan reductions up to 5.2%, serving as a reactive and interpretable baseline.
In contrast, PDS-RL consistently outperformed it, achieving reductions of 22.12%, 37.13%,
and 53.87%, respectively. These results highlight the superior adaptability of reinforcement
learning in uncertain production contexts. The study contributes to the understanding of how
combining product-driven architectures with heuristic and learning-based strategies enables

the development of intelligent, autonomous, and resilient scheduling systems.

Keywords

Product-driven system, Agent-based models, Manufacturing planning, shifting bottleneck
heuristic, intelligent products, Reinforcement learning.

Introduction

Job planning and scheduling in industrial settings en-
counter significant challenges due to the complex and
dynamic nature of operations. These challenges center
around the efficient allocation of resources across vari-
ous processes, prompting researchers and practitioners
to devote considerable attention to studying these prob-
lems (Rasheed et al., 2019). Specifically, the Job Shop
Scheduling Problem (JSSP), a classic combinatorial
optimization issue, has garnered focus from numerous
studies aiming to enhance efficient job allocation in
scenarios characterized by limited resources. However,
the occurrence of disturbances, such as changes in
resource availability, machinery failures, or workflow

Corresponding author: Patricio Sdez — Department of
Statistics Universidad de Concepcion, Chile, e-mail: patric-
saez@udec.cl

(© 2025 The Author(s). This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/)

Volume 16 ¢ Number 3 e September 2025

interruptions, adds an extra layer of complexity by
challenging the efficacy of the initial planning (Meyer
et al., 2011). These disturbances necessitate a dynamic
rescheduling of jobs due to the potential invalidity of
the original schedule under new conditions. While it
is feasible in some instances to adjust the operation
easily to accommodate the disruption, task reschedul-
ing is often necessary in many cases to minimize the
impact of this disruption and recover a solution as
close to the original as possible (Zhang et al., 2020).

The JSSP is a fundamental optimization challenge in
operations research and computer science, focusing on
the optimal assignment of jobs to resources at specific
times. Each job consists of a sequence of operations
that the system must process on a set of machines in
a specified order. Each machine can handle only one
operation at a time, and once an operation begins,
it must continue uninterrupted until completion. The
objective is typically to minimize the time required
to complete all jobs (makespan). However, variations
may aim to optimize other criteria, such as minimiz-
ing tardiness or maximizing resource utilization. The

mailto:patricsaez@udec.cl
mailto:patricsaez@udec.cl
http://creativecommons.org/licenses/by/4.0/

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

JSSP requires sophisticated scheduling algorithms due
to its NP-hard nature, making it computationally chal-
lenging for even modest-sized problems.

The Job Shop Scheduling Problem with Distur-
bances (JSSP-D) extends the classical JSSP to
account for real-world operational uncertainties and
disruptions that can affect the planned schedule. These
disturbances can include machine breakdowns, unex-
pected maintenance, variations in operation times, the
arrival of urgent jobs, or the unavailability of resources,
which necessitate dynamic adjustments to the existing
schedule (Bouazza et al., 2021; Meyer et al., 2011; Wu
& Yan, 2023). The objective remains the same as the
classic JSSP, such as minimizing the makespan or other
performance metrics, but with the added complexity
of incorporating flexibility and adaptability into the
scheduling process. Solving the JSSP-D involves devel-
oping robust and resilient solutions that can quickly
respond to changes and re-optimize the schedule in
real-time or near-real-time, ensuring minimal impact
on overall productivity and efficiency. This problem is
inherently more complex than the static JSSP due to
the need for continuous adjustment and evaluation of
multiple potential future scenarios to maintain optimal
or near-optimal performance under uncertainty.

Despite the critical role of rescheduling in Job Shop
environments impacted by disturbances, existing re-
search has addressed this issue only to a limited ex-
tent. To solve a JSSP, exact methods such as integer
programming have been developed (Cui & Lu, 2017).
However, the computational burden of these methods
increases exponentially with the problem size, render-
ing the calculation time a significant constraint for
the practical application of such algorithms in JSSP-D
scenarios (Ku & Beck, 2016). Consequently, the in-
dustry often resorts to heuristic procedures, such as
the Shifting Bottleneck Heuristic (SBH), which yield
satisfactory outcomes within a reasonable timeframe
(Bozek & Werner, 2018).

The SBH proposed by Adams et al. (1988) is a highly
effective heuristic for addressing the JSSP, emphasizing
the detection and step-by-step resolution of bottleneck
operations in manufacturing. This heuristic operates
by first breaking down the complex job shop environ-
ment into individual machine-centered subproblems.
It then identifies the current bottleneck, which is the
machine or operation with the most significant impact
on the overall makespan or another specified perfor-
mance metric. Once identified, the heuristic optimally
schedules jobs for the bottleneck resource, consider-
ing the current schedules of other machines. After
resolving the bottleneck, the heuristic re-evaluates the
production environment, identifies the next bottleneck,
shifts its focus, and iteratively optimizes the schedule

until it processes all machines. This approach enables
a dynamic and focused improvement of the production
schedule, addressing the most critical constraints one
at a time to enhance operational efficiency.

Although algorithms such as SBH offer some adapt-
ability to address JSSP-D, the field still demands effec-
tive strategies that quickly and accurately reorganize
jobs in response to unexpected changes. An intelligent
system that makes dynamic decisions as difficulties
arise during machine operations can effectively tackle
this challenge. A promising approach to achieving this
is the adoption of a Product-Driven System (PDS),
which leverages the inherent intelligence and commu-
nicative capabilities of products to facilitate adaptive
and responsive scheduling processes.

A PDS is an advanced manufacturing and produc-
tion approach where the products carry information
regarding processing, handling, and movement through
the production line. For this reason, the products are
known as intelligent products (IP). This approach
leverages technologies such as RFID tags, smart sen-
sors, and embedded systems to enable products to
communicate directly with production equipment and
management systems (Zhou et al., 2021). The goal is
to enhance the efficiency, flexibility, and responsive-
ness of manufacturing operations by enabling products
to guide their production processes, reducing manual
intervention, and streamlining workflows.

In addition to metaheuristics, Reinforcement Learn-
ing (RL) has also been used in recent years to opti-
mize production scheduling (Yang & Xu, 2022). RL is
a machine learning mechanism that enables the devel-
opment of self-learning strategies through interaction
with the environment (Chang et al., 2024). An RL
agent learns a rescheduling policy after a disruption
by using feedback obtained through simulation. This
RL-based approach, within a product-driven environ-
ment, can help identify the relative strengths of each
strategy under different levels of disruption.

This study introduces a model that integrates the
PDS architecture, using the SBH to generate the initial
solution for the JSSP, under normal conditions to es-
tablish a baseline schedule. Then, the system simulates
disruptions by increasing processing times across all
machines, which deteriorates the original solution and
creates a perturbed instance of the problem (JSSP-D).
To address this new scenario, the study employs two
distinct and independent rescheduling strategies for
all remaining operations. The first approach, PDS-
SBH, multi-agents re-apply the SBH to reorganize the
affected jobs. The second approach introduces a RL
strategy, where an agent trained through Monte Carlo
simulation learns a rescheduling policy that aims to
minimize makespan after disruptions. Both strategies

Volume 16 @ Number 3 e September 2025

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

Management and Production Engineering Review

operate within a product-driven manufacturing en-
vironment, were products and machines function as
virtual agents with autonomous decision-making capa-
bilities. The study compares the performance of both
approaches under varying levels of disruption, evaluat-
ing their effectiveness, adaptability, and overall perfor-
mance in dynamic and uncertain production contexts.

The comparative evaluation between established
heuristics and machine learning tools, as conducted in
this study, represents a significant methodological con-
tribution. Such analyses help identify the strengths,
limitations, and preferred application scenarios for
each approach, while laying the groundwork for devel-
oping hybrid or complementary strategies aligned with
the flexibility, autonomy, and resilience demanded by
Industry 5.0. Therefore, this research contributes not
only from a technical perspective but also by propos-
ing a clear agenda for future scientific exploration in
the field of intelligent production scheduling.

The paper is structured as follows: Section 2 reviews
the literature related to rescheduling in job shop envi-
ronments, SBH, PDS and RL. Section 3 details materi-
als and methods. Section 4 concentrates on the results,
whereas Sections 5 and 6 discuss and draw conclusions.

Literature review

Rescheduling is a crucial aspect of modern manu-
facturing, vital for enhancing operational efficiency in
various settings such as Job Shops and Flow Shop Flex-
ible Environment (Gao et al., 2020; Kim & Kim, 2021;
Li et al., 2017). This area has been explored from mul-
tiple perspectives, focusing on diverse configurations,
methodologies, and performance measures to address
the dynamic challenges of production scheduling. Re-
searchers have explored various strategies, ranging
from mathematical models to heuristic approaches,
to optimize production flow, minimize downtime, and
enhance overall productivity (Bi et al., 2023; Pérez-
Salazar et al., 2019). The study of rescheduling encom-
passes developing and applying innovative solutions
to adapt to changes and maintain a competitive ad-
vantage in the manufacturing sector.

The classification of rescheduling problems provides
a structured framework for understanding the multi-
faceted nature of scheduling challenges in manufac-
turing (Muhuri & Biswas, 2020). This classification
encompasses divisions into specific environments, such
as Job and Flow Shops, and extends to various manu-
facturing processes. It further categorizes rescheduling
problems based on analysis policies, which dictate how
and when rescheduling should occur, and resolution

Volume 16 ¢ Number 3 e September 2025

methods, which involve the specific strategies or al-
gorithms employed to achieve optimal rescheduling.
This comprehensive classification scheme facilitates
the identification of unique characteristics and require-
ments for different rescheduling scenarios, highlighting
the complexity and variability inherent in optimiz-
ing production schedules in the face of dynamic and
unforeseen changes.

One of the foundational contributions to the
study of rescheduling in dynamic manufacturing
environments was presented by Yamamoto and
Nof (1985). Their work introduced a scheduling
and rescheduling procedure within a computerized
manufacturing system (CMS), emphasizing the
need for real-time schedule revision in response to
operational disruptions, such as machine breakdowns.
The authors proposed a structured rescheduling
framework integrated into a Manufacturing Operating
System (MOS), demonstrating through case studies
that this approach could reduce total production
time by up to 7% compared to fixed sequencing and
dispatching rules. This early integration of intelligent
control mechanisms and heuristic rescheduling laid
the groundwork for subsequent developments in
adaptive production planning, making it a seminal
reference for modern rescheduling strategies that
combine rule-based and autonomous decision-making.

Various rescheduling methods have been explored
to optimize manufacturing processes, including integer
programming, constraint-based rescheduling, genetic
algorithms, and heuristic rescheduling (Bhongade
et al., 2023; Gao et al., 2019; Liang et al., 2023;
Upasani & Uzsoy, 2008). Each method offers distinct
advantages: integer programming provides exact
solutions but can be computationally intensive for
large-size problems; constraint-based rescheduling
allows for flexibility in handling complex constraints;
genetic algorithms offer robust solutions across diverse
scenarios with their ability to navigate vast search
spaces; and heuristic rescheduling provides quick,
practical solutions that, while may not always be
optimal, are effective for real-time decision-making.
Together, these methods form a comprehensive
toolkit, enabling tailored approaches to meet the
specific rescheduling needs of different manufacturing
environments, balancing efficiency and adaptability.

Within the context of the JSSP-D, the research by
Mahmoodjanloo et al. (2022) and Miguel A. Salido
(2017) significantly advances our understanding of dy-
namic scheduling. These studies examine innovative
approaches to rescheduling, with a primary focus on
how adjustments to machine speed can significantly
enhance the effectiveness of rescheduling efforts. By
examining these strategies within the JSSP-D frame-

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

work, their work highlights the potential for adaptive
scheduling solutions to mitigate disruptions and main-
tain production efficiency, demonstrating the impor-
tance of flexibility and quick responsiveness in modern
manufacturing environments.

Integrating artificial intelligence and innovative tech-
nologies into production systems is increasingly cen-
tered around IPs and PDS. This trend emphasizes the
role of IPs and PDS in enhancing the adaptability and
agility of rescheduling capabilities within manufactur-
ing (Meyer et al., 2011; Wu et al., 2019). By embedding
intelligence directly into products, these systems en-
able real-time, autonomous decision-making that can
dynamically adjust to changes and disruptions in the
production process. This approach enhances the ef-
ficiency and flexibility of manufacturing operations,
significantly reducing the need for manual intervention
and paving the way for more resilient and responsive
production environments.

Agent-Based Modeling (ABM) for PDS harnesses
the power of simulation to create a responsive produc-
tion environment. By representing various elements
of the manufacturing process as agents with distinct
levels of intelligence, ABM facilitates the emulation of
complex, collective behaviors (Séez et al., 2023). These
agents can dynamically interact, make decisions, and
adapt to changing circumstances, significantly enhanc-
ing the flexibility and efficiency of production systems.
This approach enables granular analysis and optimiza-
tion of production processes, enhancing operational
resilience and responsiveness to unforeseen challenges.

In PDS, task rescheduling is pivotal for effectively
managing operational disturbances. Studies by
Bhongade et al. (2023) and de Guimaraes et al.
(Campos et al., 2020) stand out, showcasing the
practical application and efficacy of PDS in over-
coming rescheduling challenges. These investigations
demonstrate how PDS, leveraging real-time data
and autonomous decision-making capabilities of
intelligent products, can dynamically adjust schedules
in response to unexpected events. This approach
minimizes downtime and optimizes production flow, il-
lustrating PDS’s substantial contribution to enhancing
operational resilience and efficiency in manufacturing
environments (Pannequin & Thomas, 2012).

The convergence of PDS and SBH into a hybrid
model represents a strategic evolution in addressing
the complexity of rescheduling in industrial environ-
ments, particularly within JSSP-D with disturbances.
This hybrid model leverages the dynamic adaptability
of PDS, with its intelligent, autonomous products, and
the focused efficiency of SBH in pinpointing and alle-
viating bottlenecks. Such integration offers a promis-
ing pathway to agile, practical strategies for dynamic

adaptation to unforeseen changes, ensuring optimized
scheduling and enhanced production flow despite the
inevitable disruptions.

Despite recent advances in production scheduling
methods, their direct application in industrial environ-
ments remains a considerable challenge. One of the
main obstacles lies in the need to apply these tech-
niques in online scheduling contexts, which imposes
critical constraints such as the need to generate al-
ternative solutions quickly (Hwangbo et al., 2024). In
this context, several studies have begun to explore the
use of RL as an effective tool to address rescheduling
problems under uncertainty.

Yang & Xu (2022) investigated, for the first time,
intelligent scheduling and reconfiguration of Recon-
figurable Flow Lines with dynamically arriving jobs
using Deep Reinforcement Learning (DRL). The au-
thors proposed a smart manufacturing architecture
that integrates real-time scheduling and reconfigura-
tion decisions through the design of state features,
actions, and reward structures for specialized agents.
Their approach proved capable of minimizing the total
tardiness cost, demonstrating DRL’s ability to make
intelligent decisions based on current system status
and order information.

Similarly, Roesch et al. (2019) applied multi-agent
reinforcement learning for industrial load management,
with a focus on energy-oriented rescheduling. Through
a simulation study, they compared their approach to
a simulated annealing metaheuristic, showing that the
RL-based model achieved reasonable solutions with
low computational cost, making it suitable for real-
time applications.

Kardos et al., (2020) introduced a Q-learning ap-
proach to reduce the average lead time in job-shop
production systems. In their model, intelligent prod-
uct agents choose machines for each production step
based on real-time information. Compared to stan-
dard dispatching rules, the RL approach significantly
reduced average processing time, highlighting its poten-
tial in dynamic scheduling scenarios. The application
of RL to dynamic scheduling has shown promising
results (Zhang et al., 2020); however, its integration
into product-driven architectures remains very limited.
Moreover, few studies have conducted systematic com-
parisons between RL-based agents and well-established
heuristics such as the SBH under equivalent experi-
mental conditions.

The relevance and contribution of the proposed
PDS-RL model lie in the fact that no previous
studies have reported the integration of Monte Carlo
simulation with RL to solve scheduling problems in
Job Shop environments. This combination proves
particularly valuable, as it enables the agent to learn

Volume 16 @ Number 3 e September 2025

www.czasopisma.pan.pl P

=

% www.journals.pan.pl

Management and Production Engineering Review

rescheduling policies through simulated feedback,
fostering fast, experiential learning that adapts to
changing conditions. Also, while existing literature
has explored heuristic techniques such as SBH and
more conventional uses of RL, it has not sufficiently
addressed intelligent manufacturing environments
that incorporate autonomous learning, distributed
decision-making, and real-time adaptability. In this
regard, the proposed model opens a new research
avenue by demonstrating how an agent trained under
this framework can make informed and context-aware
decisions in the face of severe disruptions.

Materials & Methods

Product-Driven Architecture

The proposed model integrates the decision-making au-
tonomy of intelligent products within a PDS framework
to address rescheduling challenges in the JSSP-D. Within
this architecture, the system differentiates between two
types of agents: product agents and machine agents.
Product agents act as intelligent, autonomous entities
capable of dynamically determining their production
paths. Machine agents, in contrast, represent resources
with fixed capabilities and availability constraints.

Each agent operates within a virtual environment
that mirrors the physical layout of the production sys-
tem. Product agents transition through four distinct
states: “free” (available for processing), “in process’
(currently being processed), “rescheduled” (adjusted
due to a disruption), and “completed” (production
cycle finished). Machine agents adopt the states “avail-
able,” “in process,” and “disturbed,” the latter reflecting

M

malfunctions or unplanned downtimes. These defined
states enable agents to interact dynamically, allow-
ing for real-time schedule adjustments in response to
disruptions and thereby enhancing system resilience.
Figure 1 illustrates the architecture’s dual-layer inter-
action: a virtual plane where intelligent agents operate
and a physical plane where actual production occurs. The
virtual representation facilitates seamless synchroniza-
tion and decision-making, empowering product agents
to autonomously navigate and adjust within the system
in response to real-time conditions. Furthermore, we
initially used SBH as a solution to the problem.

Problem Definition and Disturbance Modeling

The model addresses the classic JSSP. In the JSSP,
a set of jobs, each with a predefined sequence of oper-
ations, must be processed on specific machines. The
model’s objective is to minimize the makespan, the
total time needed to complete all jobs.

To simulate real-world variability, we extend the
JSSP to include disruptions, creating the JSSP-D.
We model these disruptions as increases in machine
processing times, simulate breakdowns or severe
slowdowns. We define three levels of disturbance:
Distygp (a 100% increase), Distagp (a 200% increase),
and Distgoo (a 300% increase) in the processing time
for each affected machine.

The model first generates a baseline solution using
SBH. When the cumulative execution time reaches
50% of an instance’s lower bound, a disturbance
triggers altering a selected machine’s processing time.
The model then reschedules the remaining operations
using either the SBH or a RL strategy to mitigate the
disruption and restore an optimized makespan.

P1

Virtual Plane

M2

“7 SBH Application

Scheduling

| []

M4 M3

M1 P2
B
/
V
M3
R X . M1
epresentation o
Physical Environment M2 :Ij
M1 M2 M3
b

— M w B 1]
Product Entry / e ‘q Physical Plane
; N, / %
y\ Planification of
P3 P oo .
& —

Production

Fig. 1. PDS-SBH application sequence diagram for JSSP programming

Volume 16 ¢ Number 3 e September 2025

www.czasopisma.pan.pl P

N

N www.journals.pan.pl

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

The experimental setting utilizes problem instances
described in Table 1, characterized by the number
of jobs, machines, and their respective operations.
For instance, the abzb instances comprise ten jobs
and ten machines, amounting to 100 operations
with varying processing times. This specification
provides a structured framework for assessing the
model’s efficiency across various scenarios, enabling
a comprehensive evaluation of its performance under
diverse operational complexities.

Heuristic-Based Rescheduling Strategy:
PDS-SBH

The heuristic-based strategy uses SBH, which is in-
tegrated into the product-driven system, to address
reprogramming needs after disruptions. Initially, prod-
uct agents are assigned to machines following a pre-
defined sequence. The model then identifies critical
machines whose schedules have a significant impact
on the overall makespan. It prioritizes these machines
to resolve bottlenecks iteratively.

In the event of a disturbance, product agents dy-
namically reassess their current positions and interde-
pendencies within the production sequence. They seek
alternative processing paths, reprioritize jobs, or adjust
sequences to mitigate the impact of the perturbation.
SBH is reapplied to the remaining operations to iden-
tify and resolve the most significant bottlenecks in the
updated context. Figure 2 presents a UML diagram
that meticulously outlines the experimental design
process, capturing the model’s sequence of operations
and interactions. It begins with loading the problem
instance into the model and calculating the job se-
quence using SBH. This step involves determining the
makespan by applying SBH to devise a sequence that
minimizes it, thereby establishing a baseline schedule
without disturbances. Each product agent receives de-

tails on processing time and operation sequence, lever-
aging this information to craft a production schedule
informed by SBH principles.

Agent-
Proq uct

>o

Instance

. :
i SBH aplication
i Scheduling
i Makespan
... Makespan) e
Disturbance) \
i Information about i \
» Machine : breakdown o 4
breakdown: | | \
i + Machine SEH aplication |
'+ Time of ocurrence ‘
i+ Time increment %
<

Fig. 2. UML sequence diagram in the model PDS-SBH

The process unfolds in three stages: (1) initial
scheduling using SBH, (2) activation of a reschedul-
ing protocol upon detection of a disturbance, and (3)
reapplication of SBH to optimize the disrupted sched-
ule. Figure 2 outlines the flow of activities for prod-
uct agents during a disturbance, demonstrating the
model’s capacity for localized, agent-based adaptation
in line with SBH principles.

Table 1
Problem instances used in experimentation
Instance | Jobs | Machine | Operation | Instance | Jobs | Machines | Operations
Ft06 6 6 36 La21 15 10 150
La01 10 5 50 La29 20 10 200
La06 15 5 75 La38 15 15 225
Abz05 10 10 100 Abz07 20 15 300
Abz06 10 10 100 Abz08 20 15 300
Lal6é 10 10 100 Abz09 20 15 300
Lall 20 5 100 Yno04 20 20 400

Volume 16 @ Number 3 e September 2025

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

Management and Production Engineering Review

Learning-Based Strategy:
PDS-RL with Monte Carlo

RL, the agent’s decisions rely on a policy represented
by an action-value function. That function estimates
the expected return for each action in each state and
guides the agent to choose actions that maximize fu-
ture outcomes. Combining those return estimates and
decision rules gives us the policy.

Learning an optimal policy can be categorized into
two main approaches: model-based and model-free.
Model-based methods, such as dynamic programming,
assume complete knowledge of the environment’s tran-
sition probabilities and reward function. Model-free
methods, exemplified by Monte Carlo, derive policies
directly from episodic experience of states, actions,
and rewards without constructing an explicit model
of the dynamics.

Monte Carlo methods (MC) update action-value
estimates based on complete episodes, which enables
efficient learning even when the system experiences
disturbances. By leveraging complete trajectories, the
method recursively updates values through a process
known as back-up, solving the Bellman equation incre-
mentally. The agent aims to approximate the optimal
action-value function that maximizes cumulative re-
ward. The update rules for terminal and non-terminal
states are expressed (1) terminal and (2) non-terminal
states as follows (Sutton & Barto, 1998):

Q(s,a) < Q(s,a) + a[R; + yRr — Q(s,a)] (1)
Q(Sv a) — Q(S, a) +a [Rz +ymax, R, — Q (8/7 a/)] (2)

Where Q(s,a) denotes the current state—action value,
Q(s',a’) the value of the next state-action pair, « the
learning rate (extent to which new information over-
rides old), R; the immediate reward, R; the terminal
reward, and ~ the discount rate (influence of future
rewards).

On-policy Monte Carlo control underpins this RL-
MC implementation for flexible job shop scheduling.
An agent dispatches operations to achieve a minimized
final makespan given the specified job shop config-
uration. The framework begins by defining the core
components of the systems — state representation, ac-
tion set, transition dynamics, and reward scheme — to
formalize the scheduling environment.

The state space S consists of vectors s =
(n1,...,n5,b1,...,bn), where n; denotes the index of
the next pending operation for job j and b, indicates
whether machine m is busy (1) or idle (0). The action
space A(s) comprises all operations whose predeces-
sors have been completed and that are not currently in
progress. Upon selecting action an in state s, the tran-

Volume 16 ¢ Number 3 e September 2025

sition function P[s’|sa] advances the simulation clock
to the next operation completion or machine release
event, producing the subsequent state s’. Each episode
ends when the agent has dispatched and completed all
operations in the job-shop configuration.

Building on the System specification, we design the
exploration—exploitation stage as an epsilon-greedy
strategy that balances discovery and performance.
With probability e the agent picks a random action,
uncovers new state—action pairs, and prevents biased
@-value estimates. With probability 1 — ¢ it selects
the action with the highest Q(s, a), and as Q) improves
and e decays, the agent exploits its growing knowledge.
This method sustains steady learning while avoiding
early convergence on suboptimal choices.

After defining how the agent balances exploration
and exploitation, we describe how it updates its action-
value estimates, shapes rewards, and measures perfor-
mance. We apply a first-visit Monte Carlo update:
we reverse the recorded (s,a,r) trace, set G =0 and
clear the visited set, then for each tuple compute
G < Ryy1+7G and, if (s', a’) lies outside visited, add
it, increment N (s, a;) by one, and perform (3):

1

Q(s,0) < Qls,0) +

[G-Q(s,a)] (3)

This procedure drives Q(s, a) toward the running aver-
age of all observed returns for each state—action pair.

To drive makespan minimization, we structured the
reward function and evaluated the final policy under
pure exploitation. We assign zero reward at every inter-
mediate step (R; = 0 for ¢ < T') and Ry = —makespan
at episode end, where makespan equals the maximum
completion time across all machines. With v = 1, each
return G, ..., Gr_1 = —makespan. For evaluation we
set ¢ = 0, dispatch actions by argmax,c 4(s)Q(s, a)
run the episode to completion, and record the result-
ing makespan as the performance metric. Figure 3
presents a UML diagram that meticulously outlines
the experimental design process.

This learning process continues iteratively until con-
vergence to a policy that yields minimal makespan
under dynamic job shop scheduling with disruptions.

Comparative Schematic of Heuristic-
and Learning-Based Rescheduling

To contextualize the comparison, we examine how
each rescheduling strategy fits within the broader PDS
framework and responds to identical disruptions. By
aligning both approaches on the same baseline — and
subjecting them to the same perturbation event — this
schematic highlights their respective decision-making

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

www.czasopisma.pan.pl w www journals.pan.pl

IS

POLSKA AKADEMIA NAUK

L.

User

Environment ‘

| RL-Agent

Send Instance

1 Initial I

Generate Schedule

Ret Schedul
< eturn Schedule

ISatuaiancar]
1 Disturb; f

Motify Breakdown

Retum State Breakdown

| Overall Episodes (i = 1..N) }

Episode Start

[t ioooit= ol
MC Loop (t = 0..T)

—_

loop / [until all ops done]

alt J [Explore vs Exploit]
r = random(0,1)

if r < e: explore | select action randomly

exploit: argmax Q(s_t,a)

select best action

Step Action
_State, Reward, Done
alt / [Done?]
Episode End
ITanrming Lindita |
1 Learning Update i

Reverse Trace & Update Q

1

Epsilon Decay

i

Q and e updated =

ll Final R ll

Reschedule

New Schedule

Return New Schedule
<

U_ss_:r Environment
L

heduling

RL-Agent

Fig. 3. UML sequence diagram in the model PDS-RL

processes, resource interactions, and adaptation mecha-
nisms. Specifically, it shows how SBH relies on iterative
bottleneck resolution using product agents, while RL-
MC employs learned action-value estimates to drive
policy updates and scheduling adjustments dynamically.

Figure 4 presents a comparative schematic that in-
tegrates the two rescheduling strategies explored in
this study: the heuristic-based approach (PDS-SBH)
and the learning-based approach (PDS-RL with MC).
Both strategies begin with the same initial condition,
scheduling a Job Shop instance using SBH to obtain
a baseline solution. The model introduces a distur-
bance by increasing the processing time of a selected
machine once the execution time reaches a predefined

threshold. From this point, the system branches into
two distinct rescheduling workflows. In the PDS-SBH
path, the model reapplies SBH to the remaining oper-
ations, with intelligent product agents interacting to
identify and resolve post-disruption bottlenecks. In con-
trast, the PDS-RL path activates a reinforcement learn-
ing agent trained via on-policy MC control, which eval-
uates the current state of the disrupted environment
and makes rescheduling decisions based on a learned
action-value function. The diagram highlights the pro-
cedural symmetry in the setup and disturbance phases,
while also emphasizing the methodological divergence
in the rescheduling logic, allowing for a systematic com-
parison of both strategies under identical conditions.

Volume 16 © Number 3 e September 2025

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

Management and Production Engineering Review

Disturbance

N

Product-Driven System
~ \
M M2 7 SBH/RL Application

“~d \u/ ©
M4 M3 —
\F‘

Scheduling-Rescheduling

(: ’,saHAppucanon __\\
Post-Perturbation \\\4; \\

Physical Plane Rescheduling

Virtual Plane

- Representation
cx -]
M2

N\) 0
f\\1/’)—> ‘Scheduling ‘\ 3 /1 Reaction to Perturbation
\\4> Rescheduling Algorithm

Machine ‘

@)

——————
New Scheduling

M2 \\ M3
; M4 L]
;

Production Planmng

(5) Generating a New Schedule
N

Fig. 4. Flowchart for the post-disturbance intelligent product decision-making process

The model was implemented on version 6.3 of the
Netlogo platform using an AMD Ryzen 5 3550H, a 2.1
GHz processor (8 cores), and 12 GB RAM

Results

This section presents the results obtained from sim-
ulations conducted across various scenarios, totaling
151 experimental runs, corresponding to one simula-
tion per machine involved in each problem instance.
We compare the performance of systems under stable
conditions with that of systems affected by individual
machine failures. We simulate these failures through
the Distqgg, Distagg, and Distsgg scenarios, using both
rescheduling strategies: PDS-SBH and PDS-RL.

The initial solution generated for the JSSP using the
SBH consistently yields results close to the optimum,
validating its use as a reliable baseline solution before
any disturbance occurs. Table 2 presents the results
of instances evaluated under undisturbed conditions,
including the lower bound reported in the literature,
the makespan obtained with SBH, and the percentage
gap between the two. These gaps vary significantly
across instances, ranging from 4.17% (La01) to 48.69%
(La38). In some cases, significant gaps suggest that
SBH struggles to approximate the optimal solution,
particularly in more complex problems or those with
a high number of operations; in others, small gaps
indicate stronger performance.

Overall, the results suggest that the effectiveness

Volume 16 ¢ Number 3 e September 2025

of SBH is highly dependent on the structure and size
of each instance, and that complementary strategies
or specific adjustments may be necessary to handle
the more complex cases. Despite these variations, the
gap values confirm that SBH is a viable and efficient
approach for generating initial rescheduling plans. We
can then apply reactive strategies to these plans in the
event of disruptions.

Table 2
Lower bound, makespan, and gap concerning the optimal
result
Instance | LB | SBH | Gap [%]

Ft06 55 61 9.83
La0O1 666 695 4.17
La06 926 | 1060 12.64
Abz05 | 1234 | 1592 22.49
Abz06 943 | 1120 15.80
Lal6 717 | 1240 42.18
Lall 1222 | 1433 14.72
La21 935 | 1398 33.12
La29 1105 | 1635 32.42
La38 943 | 1838 48.69
Abz07 656 870 24.60
Abz08 648 960 32.50
Abz09 678 | 1005 32.54
Yno04 929 | 1323 29.78

www.czasopisma.pan.pl P
Y

N www.journals.pan.pl

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

Performance of PDS-SBH under Disturbances

Table 3 presents the results for the JSSP-D sce-
nario using the PDS-SBH strategy, where Mp_spn
denotes the makespan achieved after applying the SBH
as a rescheduling mechanism. The table presents the
average percentage reduction in makespan achieved
through the mitigation of disruptions. The results ex-
hibit a clear trend: the magnitude of improvement
increases with the severity of the disturbance, rising
from 4.26% under Dist;gg to 4.77% under Distggg, and
reaching 5.20% under Distggo.

In addition to mean values, Table 3 includes the stan-
dard deviation, along with the maximum and minimum
observed improvements (A value of 0.0 shows no im-
provement). These statistical measures provide a com-
prehensive overview of the PDS-SBH model’s effective-
ness and consistency across varying levels of disruption.

Performance of PDS-RL under Disturbances

Table 4 presents the performance of the PDS-RL
strategy under the three levels of disturbance: Distyqg,
Distagg, and Distsgg. The metric Mp_ry, [%] represents
the relative reduction in makespan achieved by the RL-
based rescheduling agent compared to the deteriorated
solution. The results show a clear upward trend in
performance as the level of disruption increases. On
average, PDS-RL achieved reductions of 22.12% for
Distygg, 37.13% for Distagg, and 53.87% for Distsqg.

This progressive improvement suggests that the re-
inforcement learning agent can effectively utilize the
additional flexibility introduced by longer processing
times to generate more efficient rescheduling policies.
However, the standard deviation also increases with
disturbance severity (from 0.110 to 0.274), indicating
a higher variability in performance outcomes across
instances. Notably, the maximum reduction reaches
133.46% under Dist300, highlighting the potential of
PDS-RL to outperform the initially deteriorated plan
significantly. At the same time, the presence of mini-
mum values of 0.0% in all scenarios reveals that in some
instances, the RL agent failed to improve the base-
line, highlighting how the RL Monte Carlo method’s
emphasis on system-wide policy updates can intro-
duce variability in learning depending on the instance,
despite evidence of substantial improvements.

Table 4 provides a comprehensive breakdown of the
rescheduling performance for each problem instance
under disturbances Distygg, Distsgg, and Distsgg, com-
paring the percentage reduction in makespan achieved
by the PDS-SBH and PDS-RL strategies (denoted
as dspu and Ogr,, respectively). For each disturbance
level, the table reports the improvement relative to the
deteriorated makespan following the disruption (Mp),
offering a direct view of each method’s effectiveness
across a range of scenarios.

The results reveal clear performance differences be-
tween the two approaches. Across most instances, PDS-
RL consistently outperforms PDS-SBH, particularly as

Table 3
Makespan reduction by introducing disturbances in PDS-SBH

Disti00 Distago Distso0

Performance Mp.su (%) Mp-sgu (%) Mp.ssu (%)
Average 4.260 4.77 5.200
Standard deviation 0.052 0.057 0.066
Maximum value 18.97 26.27 36.06
Minimum value 0.000 0.000 0.000

Table 4
Makespan reduction by introducing disturbances in PDS-RL

Dist100 Dist200 Dist3zo00

Performance Mp_rL (%) Mp_grL (%) Mp_rL (%)
Average 22.12 37.13 53.870
Standard Deviation 0.110 0.186 0.2740
Maximum Value 54.31 90.83 133.46
Minimum Value 0.000 0.000 0.000

10

Volume 16 @ Number 3 e September 2025

www.czasopisma.pan.pl P

N

N www journals.pan.pl

Management and Production Engineering Review

the severity of the disturbance increases. For example,
in instance Ft06, while PDS-SBH achieves no improve-
ment under Distygp (dspr = 0.00%), PDS-RL achieves
a significant 15.03% reduction. This trend continues
with higher disturbance levels, where PDS-RL reaches
31.69% improvement under Distogy and 46.99% under
Distggg, far exceeding the marginal gains achieved by
SBH (0.82% and 1.09%, respectively).

A similar pattern can be observed in instance Abz06,
where PDS-SBH produces negligible improvements
(6su = 0.00%, 1.29%, and 2.16% across increasing
disturbance levels), while PDS-RL delivers robust per-
formance (drr, = 23.12%, 39.79%, and 58.77%, re-
spectively). In total, PDS-RL achieves higher improve-
ments in all 14 instances across all three disturbance
levels, often by a wide margin.

It is notable that for Distsgg, PDS-RL achieves a 70%
improvement in instance La21, whereas PDS-SBH
reaches only 6.74% for the same case. These substantial
differences suggest that the RL agent leverages the in-
creased flexibility provided by longer processing times
to explore and exploit superior rescheduling strategies.
Conversely, the rule-based nature of SBH appears to be
limited in adapting to the more complex solution space
introduced by higher levels of disruption. In contrast,
PDS-SBH achieves its best result in instance La38
under Distyqg, where we observe an 11.47% reduction.

Table 5 highlights the superior adaptability and
learning capabilities of the PDS-RL strategy, partic-
ularly under medium and high disturbance scenar-
ios. While PDS-SBH provides modest and consistent
improvements, its performance remains limited in
highly constrained instances or under severe disrup-
tions. These findings highlight the significance of rein-
forcement learning agents in dynamic manufacturing
environments, where responsiveness and generalization
are essential for operational resilience.

To assess whether the observed differences in per-
formance between the PDS-SBH and the PDS-RL
rescheduling strategies are statistically significant, we
performed a paired t-test for each disturbance level
(Distygo, Distago, and Distsgg) across the 14 benchmark
instances. The results confirm that the improvements
achieved by PDS-RL are statistically superior in all
cases. Specifically, the mean difference in makespan re-
duction was 18.07% for Distigp (¢ = 13.18, p < 0.001),
33.37% for Distgg (t = 17.92, p < 0.001), and 49.85%
for Distggo (¢t = 20.97, p < 0.001). These results in-
dicate that the learning-based strategy provides sig-
nificantly greater reductions in makespan compared
to the heuristic approach, and the significance of this
difference increases as the severity of the disturbance
increases. This result reinforces the conclusion that
PDS-RL not only outperforms PDS-SBH consistently

Table 5
Instance-Level Breakdown of Deterioration Reduction Results
Instance Dist1o0 Distzo0 Distso0

dsuB(%)(SD) | 6rL(%)(SD) | 6sus(%)(SD) | 6rL(%)(SD) | dsus(%)(SD) | drwL(%)(SD)
Ft06 0.00 (0.00) 15.03 (0.15) 0.82 (0.02) 31.69 (0.31) 1,09 (0.03) 46.99 (0.46)
La01 2.65 (0.04) 14.24 (0.12) 3.22 (0.05) 36.20 (0.25) 3,22 (0.05) 55.02 (0.39)
La06 6.89 (0.07) 24.68 (0.14) 4.23 (0.05) 39.68 (0.19) 4,36 (0.06) 55.74 (0.30)
Abz05 10.27 (0.05) 28.58 (0.11) 9.21 (0.06) 37.47 (0.23) 11,01 (0.11) 50.06 (0.33)
Abz06 0.00 (0.00) 23.12 (0.09) 1.29 (0.03) 39.79 (0.19) 2,16 (0.06) 58.77 (0.27)
Lal6 4.39 (0.04) 22.91 (0.08) 6.55 (0.06) 34.60 (0.17) ,21 (0.05) 47.77 (0.26)
Lall 6.57 (0.06) 23.67 (0.15) 5.04 (0.06) 41.69 (0.22) 5,44 (0.06) 60.73 (0.26)
La21 2.52 (0.03) 30.36 (0.07) 5.55 (0.06) 49.62 (0.14) 6,74 (0.09) 70.41 (0.22)
La29 3.94 (0.03) 26.94 (0.11) 3.52 (0.04) 44.14 (0.21) 3,61 (0.05) 62.98 (0.33)
La38 11.47 (0.04) 31.52 (0.07) 8.93 (0.06) 40.84 (0.15) 7,56 (0.07) 52.50 (0.23)
Abz07 2.16 (0.03) 16.97 (0.07) 2.53 (0.04) 38.08 (0.15) 3,98 (0.06) 61.67 (0.21)
Abz08 1.16 (0.03) 24.88 (0.10) 2.81 (0.04) 44.34 (0.18) 4,26 (0.06) 60.88 (0.29)
Abz09 7.27 (0.05) 18.22 (0.07) 9.31 (0.08) 31.14 (0.14) 7,93 (0.08) 47.81 (0.21)

Volume 16 ¢ Number 3 e September 2025 11

www.czasopisma.pan.pl ?ﬂ www journals.pan.pl

N

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

but also does so in a statistically robust manner, par-
ticularly under highly dynamic production scenarios.

These results underscore the importance of con-
ducting comparative evaluations between established
heuristics and machine learning-based rescheduling
strategies. By systematically analyzing the perfor-
mance of PDS-SBH and PDS-RL under identical con-
ditions and varying disturbance levels, this study not
only reveals their respective strengths and limitations
but also clarifies the context in which each method is
most effective. The superior adaptability of PDS-RL
in highly dynamic scenarios suggests that reinforce-
ment learning agents can play a pivotal role in the
next generation of intelligent manufacturing systems.
Conversely, the consistent, rule-based performance of
PDS-SBH continues to offer value in settings where
transparency and reliability are prioritized. These find-
ings provide a solid empirical foundation for developing
hybrid or complementary approaches, advancing the
broader research agenda of intelligent, resilient, and
autonomous production scheduling aligned with the
principles of Industry 5.0. The following section dis-
cusses the broader implications of these findings and
outlines avenues for future research.

Discussion

This study introduced and evaluated two alternative
rescheduling strategies within product-driven architec-
ture: one based on PDS-SBH, and the PDS-RL. The
goal was to assess their effectiveness in mitigating the
impacts of machine-level disturbances within JSSP-D.

The results across 151 simulations on 14 bench-
mark instances reveal a clear contrast between the two
strategies. While the PDS-SBH model achieved mod-
est makespan reductions, averaging 4.26%, 4.77%, and
5.20% under Dist1qg, Distogg, and Distggg, respectively,
it demonstrated limited adaptability, particularly in
instances with constrained critical paths. In contrast,
PDS-RL exhibited a significantly higher capacity to
reduce deterioration, achieving average improvements
of 22.12%, 37.13%, and 53.87% for the same distur-
bance levels. These results validate the RL agent’s
ability to exploit the increased flexibility introduced
by longer processing times, enabling the exploration
of more effective scheduling trajectories.

Instance-level analysis confirms this trend: PDS-
RL consistently outperformed PDS-SBH across all
14 instances and all levels of disturbance. For exam-
ple, in instance La21 under Distgzgg, PDS-RL achieved
a 70.41% improvement, while PDS-SBH only reached
6.74%. Moreover, the best performance for PDS-SBH,
11.47% in instance La38 under Distygg, was an excep-

12

tion, suggesting that the SBH heuristic may occasion-
ally exceed its baseline but lacks the generalization
ability of the RL-based approach.

The increasing standard deviation observed in both
strategies as the disturbance level rises further illus-
trates the challenges of adapting to greater complex-
ity. However, while PDS-SBH’s improvements plateau,
PDS-RL continues to scale in performance, confirming
its robustness in highly dynamic environments.

These findings are particularly relevant considering
that lower bounds (LB) commonly used in job shop
scheduling originate from computationally expensive
optimization methods, which are often impractical for
real-time rescheduling. In real-world contexts, where
initial static plans rapidly become obsolete due to
unexpected disruptions, heuristic or learning-based
approaches offer practical and scalable alternatives.
PDS-SBH addresses this need by combining agent-
based autonomy with rule-based bottleneck resolution.
However, the superior performance of PDS-RL
underlines the potential of reinforcement learning to
serve as a more adaptive and generalizable solution
for dynamic scheduling.

Beyond operational results, this study contributes
to the literature by, to the best of our knowledge,
being the first to apply Monte Carlo Reinforcement
Learning in the context of job shop rescheduling.
The PDS-RL agent learned effective rescheduling
policies via simulation-based feedback, requiring
no prior expert rules. This characteristic makes it
especially promising for Industry 5.0 environments,
where autonomous systems must continually learn
and adapt to changing conditions.

Conclusions

This study proposes and evaluates two alternative
rescheduling strategies within a product-driven manu-
facturing architecture to address the Job Shop Schedul-
ing Problem under disturbances (JSSP-D): one based
on the PDS-SBH and the other employing a PDS-RL.
We conducted a comprehensive experimental analysis
using 151 simulations across 14 benchmark instances,
considering disturbances of varying severity (Distjqg,
DiStQ()o, DiStgoo).

The results demonstrate that both strategies can
mitigate the negative impacts of machine-level disrup-
tions, with notable differences in performance. The
PDS-SBH model, which combines intelligent product
agents with rule-based bottleneck resolution, achieved
moderate improvements in makespan reduction (up to
8.62% on average under severe disturbances). While
effective as a reactive and interpretable heuristic, its

Volume 16 @ Number 3 e September 2025

www.czasopisma.pan.pl P

N

N www.journals.pan.pl

Management and Production Engineering Review

performance remained constrained in highly complex
instances with critical path limitations.

In contrast, the PDS-RL approach delivered signif-
icantly superior results, achieving average makespan
reductions of 22.12%, 37.13%, and 53.87% for Distyqg,
Distogg, and Distzgg, respectively. These findings un-
derscore the RL agent’s ability to leverage flexibility
and adapt dynamically to the severity of disruptions.
In several instances, the PDS-RL model achieved over
70% improvement compared to the degraded schedule,
far exceeding the best performance of PDS-SBH. More-
over, it did so without relying on domain-specific rules;
instead, it learned effective policies from experiential
feedback through simulation.

This work is the first to implement Monte Carlo Re-
inforcement Learning for job shop rescheduling. The in-
tegration of simulation-based learning within a product-
driven system represents a novel contribution to the
field of dynamic scheduling, opening new possibilities
for fully autonomous and adaptive production systems.

This study opens several avenues for future research
aimed at enhancing the robustness and applicabil-
ity of intelligent rescheduling systems. Expanding the
experimental design to include diverse types of dis-
turbances, such as machine unavailability, urgent job
insertions, or supply delays, will help evaluate sys-
tem adaptability under a broader range of operational
disruptions. Additionally, future work should incor-
porate multi-objective performance criteria, including
total tardiness, work-in-progress (WIP), energy con-
sumption, and system nervousness, to enable a more
comprehensive and realistic assessment of scheduling
strategies. Exploring hybrid approaches that combine
reinforcement learning with traditional heuristics, as
well as investigating decentralized architectures for
distributed learning and decision-making, may yield
scalable, interpretable, and more resilient solutions.
These directions will help align rescheduling strate-
gies with the complex demands of Industry 5.0, where
agility, autonomy, and sustainability are key priorities.

While PDS-SBH delivers a reliable and interpretable
approach for reactive rescheduling under uncertainty,
PDS-RL drives unprecedented adaptability, scalability,
and performance — especially in complex and dynamic
contexts — underscoring the pivotal role of RL in intel-
ligent manufacturing and its alignment with Industry
5.0’s demands for flexibility, autonomy, and resilience.

Acknowledgments

V. Parada gratefully acknowledge financial support
from ANID PIA/PUENTE AFB220003 and DICYT-
USACH 061919PD.

Volume 16 ¢ Number 3 e September 2025

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting
bottleneck procedure for job shop scheduling. The In-
titute of Management Sciences, 34(2), 391-400. DOL:
0025-1909,/88,/3403/0391

Bhongade, A.S., Khodke, P.M., Rehman, A.U.,
Nikam, M.D., Patil, P.D., & Suryavanshi, P. (2023).
Managing Disruptions in a Flow-Shop Manufac-
turing System. Mathematics, 11(7). DOI: 10.3390/
math11071731

Bi, M., Kovalenko, L., Tilbury, D.M., & Barton, K. (2023).
Dynamic distributed decision-making for resilient re-
source reallocation in disrupted manufacturing sys-
tems. International Journal of Production Research.
DOI: 10.1080,/00207543.2023.2200567

Bouazza, W., Sallez, Y., & Trentesaux, D. (2021).
Dynamic scheduling of manufacturing systems:
a product-driven approach using hyper-heuristics. In-
ternational Journal of Computer Integrated Manu-
facturing, 34(6), 641-665. DOI: 10.1080/0951192X.
2021.1925969

Bozek, A., & Werner, F. (2018). Flexible job shop schedul-
ing with lot streaming and sublot size optimisation.
International Journal of Production Research, 56(19),
6391-6411. DOI: 10.1080,/00207543.2017.1346322

Campos, J.T. de G.A.A., Blumelova, J., Lepikson, H.A., &
Freires, F.G.M. (2020). Agent-based dynamic schedul-
ing model for product-driven production. Brazilian
Journal of Operations & Production Management,
17(4), 1-10. DOIL: 10.14488 /bjopm.2020.044

Chang, X., Jia, X., & Ren, J. (2024). A reinforce-
ment learning enhanced memetic algorithm for multi-
objective flexible job shop scheduling toward Industry
5.0. International Journal of Production Research,
63(1), 119-147. DOI: 10.1080/00207543.2024.2357740

Cui, W.W., & Lu, Z. (2017). Minimizing the makespan on
a single machine with flexible maintenances and jobs’
release dates. Computers and Operations Research,
80, 11-22. DOI: 10.1016/j.cor.2016.11.008

Gao, K., Yang, F., Li, J., Sang, H., & Luo, J. (2020).
Improved Jaya Algorithm for Flexible Job Shop
Rescheduling Problem. IEEE Access, 8, 86915-86922.
DOI: 10.1109/ACCESS.2020.2992478

Gao, K., Yang, F., Zhou, M., Pan, Q., & Suganthan, P.N.
(2019). Flexible job-shop rescheduling for new job
insertion by using discrete Jaya algorithm. IFEE
Transactions on Cybernetics, 49(5), 1944-1955. DOL:
10.1109/TCYB.2018.2817240

13

https://doi.org/0025-1909/88/3403/0391
https://doi.org/10.3390/math11071731
https://doi.org/10.3390/math11071731
https://doi.org/10.1080/00207543.2023.2200567
https://doi.org/10.1080/0951192X.2021.1925969
https://doi.org/10.1080/0951192X.2021.1925969
https://doi.org/10.1080/00207543.2017.1346322
https://doi.org/10.14488/bjopm.2020.044
https://doi.org/10.1080/00207543.2024.2357740
https://doi.org/10.1016/j.cor.2016.11.008
https://doi.org/10.1109/ACCESS.2020.2992478
https://doi.org/10.1109/TCYB.2018.2817240

=

www.czasopisma.pan.pl ?ﬂ www journals.pan.pl

P. Sdez et al.: Rescheduling Under Disruption: A Product-Driven Framework with Heuristic. . .

Hwangbo, S., Liu, J.J., Ryu, J.H., Lee, H.J., & Na, J.
(2024). Production rescheduling via explorative re-
inforcement learning while considering nervousness.
Computers and Chemical Engineering, 186 (March),
108700. DOI: 10.1016/j.compchemeng.2024.108700

Kardos, C., Laflamme, C., Gallina, V., & Sihn, W.
(2020). Dynamic scheduling in a job-shop produc-
tion system with reinforcement learning. Procedia
CIRP, 97(March), 104-109. DOI: 10.1016/j.procir.
2020.05.210

Kim, Y.I., & Kim, H.J. (2021). Rescheduling of unrelated
parallel machines with job-dependent setup times
under forecasted machine breakdown. International
Journal of Production Research, 59(17), 5236-5258.
DOI: 10.1080/00207543.2020.1775910

Ku, W.Y., & Beck, J.C. (2016). Mixed Integer Program-
ming models for job shop scheduling: A computational
analysis. Computers and Operations Research, 73, 165—
173. DOL: 10.1016/j.cor.2016.04.006

Li, H., Gajpal, Y., & R. Bector, C. (2017). A survey of due-
date related single-machine with two-agent scheduling
problem. Journal of Industrial & Management Opti-
mization, 13(5), 1-19. DOI: 10.3934/jimo.2019005

Liang, Z., Zhong, P., Zhang, C., Yang, W., Xiong, W.,
Yang, S., & Meng, J. (2023). A genetic algorithm-
based approach for flexible job shop rescheduling prob-
lem with machine failure interference. Eksploatacja i
Niezawodnosc, 25(4), 0-3. DOIL: 10.17531/ein/171784

Mahmoodjanloo, M., Tavakkoli-Moghaddama, R.,
Baboli, A., & Bozorgi-Amiri, A. (2022). Distributed job-
shop rescheduling problem considering reconfigurability
of machines: a self-adaptive hybrid equilibrium optimiser.
International Journal of Production Research, 60(16),
4973-4994. DOTI: 10.1080,/00207543.2021.1946193

Meyer, G.G., Hans Wortmann, J.C., & Szirbik, N.B.
(2011). Production monitoring and control with in-
telligent products. International Journal of Pro-
duction Research, 49(5), 1303-1317. DOI: 10.1080/
00207543.2010.518742

Muhuri, P.K., & Biswas, S.K. (2020). Bayesian optimiza-
tion algorithm for multi-objective scheduling of time
and precedence constrained tasks in heterogeneous
multiprocessor systems. Applied Soft Computing Jour-
nal, 92, 106274. DOIL: 10.1016/j.as0c.2020.106274

Pannequin, R., & Thomas, A. (2012). Another interpre-
tation of stigmergy for product-driven systems archi-
tecture. Journal of Intelligent Manufacturing, 23(6),
2587-2599. DOI: 10.1007/s10845-011-0588-3

14

Pérez-Salazar, M. del R., Aguilar-Lasserre, A.A., Cedillo-
Campo, M.G., Posada-Gémez, R., del Moral-
Argumedo, M.J., & Hernandez-Gonzalez, J.C. (2019).
An agent-based model driven decision support system
for reactive aggregate production scheduling in the
Green Coffee Supply Chain. Applied Sciences (Switzer-
land), 9(22). DOI: 10.3390/app9224903

Rasheed, M.B., Javaid, N., Arshad Malik, M.S., Asif, M.,
Hanif, M.K., & Chaudary, M.H. (2019). Intelligent
Multi-Agent Based Multilayered Control System for
Opportunistic Load Scheduling in Smart Buildings.
IEEE Access, 7, 23990-24006. DOI: 10.1109/AC-
CESS.2019.2900049

Roesch, M., Linder, C., Bruckdorfer, C., Hohmann, A.,
& Reinhart, G. (2019). Industrial load management
using multi-agent reinforcement learning for reschedul-
ing. Proceedings - 2019 2nd International Conference
on Artificial Intelligence for Industries, AI4I 2019,
99-102. DOI: 10.1109/A14146381.2019.00033

Séez, P., Herrera, C., Booth, C., Belmokhtar-Berraf, S.,
& Parada, V. (2023). A product-driven system with
an evolutionary algorithm to increase flexibility in
planning a job shop. PLoS ONE, 18(2 February),
1-12. DOI: 10.1371/journal.pone.0281807

Salido, M.A., Escamilla, J., Barber, F., & Giret, A.
(2017). Rescheduling in job-shop problems for sus-
tainable manufacturing systems. Journal of Cleaner
Production, 162, S121-S132. DOI: 10.1016/j.jclepro.
2016.11.002

Sutton, R., & Barto, A. (1998). Reinforcement learning:
An Introduction. In Cambridge: MIT press.

Upasani, A., & Uzsoy, R. (2008). Integrating a decompo-
sition procedure with problem reduction for factory
scheduling with disruptions: A simulation study. In-
ternational Journal of Production Research, 46(21),
5883-5905. DOI: 10.1080/00207540601156215

Wu, C.-C., Chen, J.-Y., Lin, W.-C., Lai, K., Bai, D., &
Lai, S.-Y. (2019). A two-stage three-machine assembly
scheduling flowshop problem with both two-agent and
learning phenomenon. Computers and Industrial Engi-
neering, 180, 485-499. DOI: 10.1016/j.cie.2019.02.047

Wu, X., & Yan, X. (2023). A spatial pyramid pooling-
based deep reinforcement learning model for dynamic
job-shop scheduling problem. Computers and Opera-
tions Research, 160(September 2022), 106401. DOI:
10.1016/j.cor.2023.106401

Yamamoto, M., & Nof, S.Y. (1985). Scheduling reschedul-
ing in the manufacturing operating system environ-
ment. International Journal of Production Research,
23(4), 705-722. DOI: 10.1080,/00207548508904739

Volume 16 @ Number 3 e September 2025

https://doi.org/10.1016/j.compchemeng.2024.108700
https://doi.org/10.1016/j.procir.2020.05.210
https://doi.org/10.1016/j.procir.2020.05.210
https://doi.org/10.1080/00207543.2020.1775910
https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.3934/jimo.2019005
https://doi.org/10.17531/ein/171784
https://doi.org/10.1080/00207543.2021.1946193
https://doi.org/10.1080/00207543.2010.518742
https://doi.org/10.1080/00207543.2010.518742
https://doi.org/10.1016/j.asoc.2020.106274
https://doi.org/10.1007/s10845-011-0588-3
https://doi.org/10.3390/app9224903
https://doi.org/10.1109/ACCESS.2019.2900049
https://doi.org/10.1109/ACCESS.2019.2900049
https://doi.org/10.1109/AI4I46381.2019.00033
https://doi.org/10.1371/journal.pone.0281807
https://doi.org/10.1016/j.jclepro.2016.11.002
https://doi.org/10.1016/j.jclepro.2016.11.002
https://doi.org/10.1080/00207540601156215
https://doi.org/10.1016/j.cie.2019.02.047
https://doi.org/10.1016/j.cor.2023.106401
https://doi.org/10.1080/00207548508904739

IS

www.czasopisma.pan.pl w www journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

Yang, S., & Xu, Z. (2022). Intelligent scheduling and
reconfiguration via deep reinforcement learning in
smart manufacturing. International Journal of Pro-
duction Research, 60(16), 4936-4953. DOI: 10.1080/
00207543.2021.1943037

Zhang, S., Xiang, L., Bowen, Z., & Shouyang, W. (2020).
Multi-objective optimisation in flexible assembly job
shop scheduling using a distributed ant colony system.
European Journal of Operational Research, 283(2),
441-460. DOI: 10.1016/j.ejor.2019.11.016

Volume 16 ¢ Number 3 e September 2025

Zhou, T., Tang, D., Zhu, H., & Zhang, Z. (2021). Multi-
agent reinforcement learning for online scheduling in
smart factories. Robotics and Computer-Integrated
Manufacturing, 72(June), 102202. DOI: 10.1016/
j-rcim.2021.102202

15

https://doi.org/10.1080/00207543.2021.1943037
https://doi.org/10.1080/00207543.2021.1943037
https://doi.org/10.1016/j.ejor.2019.11.016
https://doi.org/10.1016/j.rcim.2021.102202
https://doi.org/10.1016/j.rcim.2021.102202

