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Direct Synthesis of Defective Tungsten Trioxide Microspheres using Ultrasonic Spray  
Pyrolysis Process for Enhanced Photothermal Conversion Performance

Defective tungsten trioxide (WO3-x) is promising as a photothermal conversion material. However, WO3-x prepared by conven-
tional reduction of WO3 suffers from limited photothermal efficiency due to oxygen vacancies forming mainly on the surface. In this 
study, we directly synthesized WO3-x microspheres with a high concentration of oxygen vacancies using a modified ultrasonic spray 
pyrolysis (USP) method. Unlike conventional processes, this process can increase the concentration of oxygen vacancies in WO3-x 
by adding an organic antioxidant to the precursor solution and applying an oxygen-free atmosphere. To systematically investigate 
the impact of these modifications, WO3 or WO3-x powders were synthesized using three USP conditions: a typical process, a pro-
cess in an anoxic atmosphere, and a process combining both an anoxic atmosphere and an antioxidant. The resulting powder, with 
a distinct dark navy color indicating a high oxygen vacancy concentration, showed the most excellent light absorption, the lowest 
reflectivity, and the smallest band gap energy. This powder achieved the highest temperature increase under various light sources, 
demonstrating its superior photothermal conversion efficiency.
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1. Introduction

The photothermal effect is a physical phenomenon where-
by a material absorbs light energy and converts it into thermal 
energy. Effective photothermal materials require a broad light ab-
sorption spectrum, high absorption rate, and superior photother-
mal conversion efficiency [1,2]. Depending on the application, 
factors such as toxicity, stability, and durability are also important 
considerations. The photothermal effect finds applications in 
diverse fields, including photothermal therapy, photothermal 
sterilization, and solar-driven water evaporation systems [3-7]. 
Photothermal materials are generally categorized into metal, 
carbon-based, polymeric, and semiconductor materials. 

Among them, transition metal oxide semiconductors, such 
as WO3, have attracted great attention as they offer a lower-
cost synthesis route with high physicochemical stability under 
intense light and heat, and their hydrophilic properties make 
them well-suited for various photothermal conversion applica-
tions [8-10]. However, conventional WO3 has a wide band gap of 
approximately 2.8 eV, primarily in the ultraviolet range, resulting 

in high absorption. In contrast, absorption efficiency remains 
low in the visible and near-infrared regions, restricting its use 
in sunlight-driven applications. Introducing oxygen vacancies 
is essential for the practical application of WO3 to create new 
energy levels that narrow the band gap energy [11,12]. These 
oxygen vacancies can also induce localized surface plasmon 
resonance (LSPR), enhancing its optical response [13]. There-
fore, incorporating oxygen vacancies in WO3 represents a highly 
effective strategy to increase absorption abilities in the visible 
and near-infrared regions.

WO3-x with oxygen vacancies is generally prepared by 
already synthesizing WO3. It then uses a reduction process that 
removes oxygen in its lattice using hydrogen under high pres-
sure or a strong reducing agent such as NaBH4 [13]. However, 
this method can only cause oxygen vacancies on the surface 
and nearby regions, limiting its ability to improve photothermal 
conversion efficiency.

This study demonstrates the novel direct synthesis of WO3-x 
microspheres with maximized oxygen vacancy concentration 
using ultrasonic spray pyrolysis (USP). A typical USP process 
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uses ultrasonic waves to spray a solution containing a metal salt, 
and the resulting droplets are thermally decomposed in an air 
or oxygen atmosphere to synthesize spherical oxide powders 
continuously for a short period [14,15]. We established a strat-
egy to maximize the oxygen vacancy concentration in WO3-x 
microspheres by introducing an antioxidant into the precursor 
solution and changing the process atmosphere to nitrogen. The 
modified USP can form the crystal structure of WO3 during the 
crystallization process in the pyrolysis step while minimizing the 
amount of oxygen that constitutes the lattice. To determine the 
effects of the antioxidant and nitrogen atmosphere on introducing 
oxygen vacancies in WO3-x, powders were synthesized using the 
presence or absence of an antioxidant in the precursor solution 
and the process atmosphere controlled by oxygen and nitrogen, 
respectively. The particle size, shape, and crystal structure of the 
synthesized products were systematically analyzed, along with 
the optical properties and photothermal conversion efficiency.

2. Experimental 

The precursor solution for synthesizing WO3-x microspheres 
was prepared by dissolving 100 mM ammonium metatungstate 
hydrate (≥85% WO3 basis, Sigma-Aldrich) and 1 M acetylac-
etone (AA, ≥99.5%, Sigma-Aldrich) in distilled water, and 
the addition of AA was set as a variable. The prepared solu-
tion was supplied at a 1.2 ml/min flow rate and atomized into 
fine droplets using a 1.7 MHz ultrasonic vibrator. The sprayed 
droplets were transported to a high-temperature tube furnace by 
oxygen or nitrogen carrier gas (2 L/min), and the temperatures 
at the bottom and top of the tube furnace were set to 200°C and 
800°C, respectively, to induce solvent evaporation and thermal 
decomposition and crystallization of the precursor. The powder 
synthesized by the USP process was collected using filter paper. 
The powders synthesized under oxygen, nitrogen, and nitrogen 
atmospheres with antioxidants were named Y-WO3, C-WO3-x, 
and N-WO3-x, respectively.

The shape and size of the synthesized powder were observed 
using FE-SEM (JSM-6700F, JEOL, Japan), and the crystal 
structure was analyzed using XRD (X’Pert Powder, Malvern 
Panalytical, Netherlands). In addition, the interatomic bonding 
energy was confirmed using XPS (K-Alpha, Thermo Fisher, UK). 
A Raman spectrometer (DXR Raman Microscope, Thermo Sci-
entific, USA) measured the molecular vibrational structure. The 
reflectance and absorbance were measured using an ultraviolet-
visible spectrometer (UV-2600i, SHIMADZU, Japan), and the 
band gap was calculated using the Kubelka-Munk function. The 
photothermal conversion performances of the powders were ob-
served using an infrared lamp (PAR38E 230V 150W, PHILIPS, 
Netherlands), an 808 nm laser, and a solar simulator (DXP500, 
DY-Tech, Korea) as light sources to observe the temperature 
change of the powder.

3. Results and discussion

Fig. 1(a) shows FE-SEM images and colors (insets) of 
powders synthesized with the USP. The color of the powders 
showed a significant difference depending on the presence 
or absence of antioxidants in the precursor and the pyrolysis 
atmosphere. The Y-WO3 and C-WO3-x powders were yellow 
and cyan, respectively, and the N-WO3-x powder was dark navy. 
This difference is due to the oxygen vacancies generated during 
the crystallization process. As the oxygen vacancies increase, 
a wider wavelength in the visible light range is absorbed more, 
which can show a darker color. The shape and particle size of 
the powders did not show a significant difference depending on 
the process conditions, and they were confirmed to be spheri-
cal particles with a particle size distribution of approximately 
500 nm to 2 μm, which is the typical size and shape of pow-
ders synthesized with USP [16]. The surface roughness of the 
synthesized particles was observed, indicating that primary 
particles of several tens of nanometers in size were aggregated 
during pyrolysis to form relatively coarse spherical secondary 

Fig. 1. (a) FE-SEM images and (b) XRD patterns of Y-WO3, C-WO3-x, and N-WO3-x microspheres synthesized by USP at 800℃
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particles. The crystal structure of the synthesized powder was 
confirmed by XRD analysis, and the analysis results are shown 
in Fig. 1(b). The Y-WO3 and C-WO3-x powders were confirmed 
to have a monoclinic WO3 crystal structure. On the other hand, 
the N-WO3-x powder simultaneously observed the diffraction 
patterns of monoclinic WO3 and the non-stoichiometric phase of 
W24O68, confirming that a more considerable amount of oxygen 
vacancy was generated. 

XPS and Raman analyses were performed to confirm 
whether oxygen vacancies were formed in each powder. Fig. 2(a) 
shows the XPS results for the synthesized WO3 or WO3-x micro-
spheres. The binding energy of W 4f and O 1s of the Y-WO3 pow-
der showed the typical binding energy of WO3 [17,18]. On the 
other hand, the C-WO3-x and N-WO3-x powder indicated positive 
shifts in both W 4f and O 1s, and the latter showed the most 
significant positive shift. This shift was caused by an increase 
in oxygen vacancies, which was in good agreement with the 
results reported in previous literature [17,18]. Fig. 2(b) shows the 
Raman spectrum of the synthesized powders. In the case of the 
Y-WO3 powder, the peaks for the stretching vibration of the O-
W-O bond were observed at 806 cm–1 and the bending vibration 
at 275 cm–1, consistent with the typical Raman spectrum of WO3 
[19]. The Raman peaks of C-WO3-x became broader, weaker, 
and redshifted. Moreover, the N-WO3-x powders showed the 
most significant broad, weak, and redshifted. This difference is 
attributed to the disordered and non-stoichiometric bulk regions 
formed by introducing oxygen vacancies [19]. The Y-WO3 pow-
der can be considered pure WO3 based on the XRD, XPS, and 
Raman results. In contrast, the C-WO3-x and N-WO3-x powders 
were identified as WO3-x with oxygen vacancies. In addition, it 
can be seen that the case where an antioxidant was introduced 
contains a higher fraction of oxygen vacancies.

Fig. 3(a) shows the UV-Vis reflectance of the synthesized 
WO3 and WO3-x microspheres. Y-WO3 (max. reflectance: about 
60%) exhibited a typical reflectance spectrum of WO3, which 
shows high reflectance in the visible and IR regions due to the 
unique band gap of WO3. However, C-WO3-x (max. reflectance: 
about 60%) and N-WO3-x showed low reflectance in the visible 
and IR regions, indicating high absorption, and in particular, 

N-WO3-x showed a low reflectance of less than 5%. This dra-
matic change in reflectance is attributed to the introduction of 
oxygen vacancies. As previously reported, the increase in oxy-
gen vacancy concentration can improve the optical absorption 
properties of WO3 by creating an intermediate energy band 
in the forbidden region, enabling electron excitation at low 
photon energies [11,12]. In addition, localized surface plasmon 
resonance (LSPR) can be generated by the collective vibration 
of carriers through the large number of free carriers formed by 
oxygen vacancies, which can improve light absorption near the 
NIR region [13,20]. Figure 3(b-d) shows the Kubelka-Munk plot 
obtained using the reflectance spectra of each powder, and the 
calculated band gap energies were drawn from the plot. Y-WO3 
was confirmed to have a band gap energy of 2.91 eV. On the 
other hand, C-WO3-x and N-WO3-x showed band gap energies 
of 2.84 eV and 2.43 eV, respectively, which were narrowed 
by oxygen vacancies. The band gap narrowing observed in 
this study (from 2.91 eV in Y-WO3 to 2.84 eV and 2.43 eV in  
C-WO3-x and N-WO3-x, respectively) aligns well with previously 
reported results from various synthesis methods. Specifically, 
WO3-x nanosheets synthesized via hydrothermal processes 
showed band gaps in the range of 2.25-2.60 eV, and those 
produced through chemical reduction exhibited approximately 
2.49 eV [21,22]. In particular, in the case of N-WO3-x, strong 
light absorption at about 2.0 eV (620 nm) can be observed, which 
can be explained by the LSPR effect due to the large number 
of oxygen vacancies. 

Fig. 4 shows IR camera images showing the photothermal 
effect of the powders under various light sources. The N-WO3-x 
microsphere showed the highest temperature under all light 
sources, while the Y-WO3 showed the lowest temperature. One 
reason for the high photothermal conversion temperature of the 
N-WO3-x was the increased recombination of electron-hole pairs 
formed by absorbed photons based on the improved visible light 
absorption by the abundant oxygen vacancies in the N-WO3-x. 
Another reason was that the oxygen vacancies formed in the 
N-WO3-x can introduce many free carriers and increase light 
absorption near the NIR region due to the LSPR generated when 
the density of free carriers exceeds a certain threshold.

Fig. 2. (a) XPS and (b) Raman spectra of Y-WO3, C-WO3-x, and N-WO3-x microspheres synthesized by USP at 800℃
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Fig. 3. (a) UV-Vis reflectance spectra and (b-d) Kubelka-Munk plots of (b) Y-WO3, (c) C-WO3-x, and (d) N-WO3-x microspheres synthesized 
by USP at 800℃

Fig. 4. IR camera images of Y-WO3, C-WO3-x, and N-WO3-x microspheres synthesized by USP at 800℃ under various light sources
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4. Conclusion

In conclusion, this study demonstrated the successful 
synthesis of WO3-x microspheres with a high concentration of 
oxygen vacancies using USP under an N2 atmosphere with an 
antioxidant additive. Oxygen vacancies in WO3-x were confirmed 
through changes in color, crystal structure, binding energy shifts 
in XPS, and Raman spectra modifications. The enhanced oxygen 
vacancy concentration achieved by this direct synthesis approach 
resulted in reduced reflectance in the visible and IR regions, 
indicating increased light absorption and a narrowed band gap 
for N-WO3-x (2.43 eV) and showing strong absorption near 
620 nm due to the LSPR effect. Among the synthesized pow-
ders, N-WO3-x exhibited the highest photothermal conversion 
efficiency, attributed to improved visible light absorption and 
increased carrier density facilitating LSPR. Thus, the modified 
USP method presents a promising and efficient approach for 
producing photothermal materials with enhanced light absorp-
tion and conversion capabilities suitable for diverse applications.
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