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INFLUENCE OF SINTERING TEMPERATURE ON THERMOELECTRIC PROPERTIES
OF N-TYPE Bi,_Sb,Te; COMPOUNDS

n-type (Bi,Sb),Te; emerges as a viable alternative to conventional n-type Biy(Te,Se);, demonstrating superior power genera-
tion capabilities when coupled with p-type (Bi,Sb),Te; in commercial thermoelectric devices. Despite the importance of controlling
the donor-like effect in n-type (Bi,Sb),Te; for optimization of thermoelectric performance, there have been no relevant studies so
far. This study focuses on investigating the effect of sintering temperature on the thermoelectric properties of n-type (Bi,Sb),Tes.
Increasing the sintering temperature promotes the recovery effect and leads to a reduction in carrier concentration and thereby
optimized power factor (2.66 mW m™' K2 at 298 K). Furthermore, the z7 value at room temperature increased by 63%, and the
highest z7 value achieved is 0.52 at 423 K for the sample sintered at 793 K.
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1. Introduction

Thermoelectric (TE) materials are functional semiconduc-
tors that offer a promising solution to energy and environmental
challenges through their ability to convert temperature gradients
into electrical energy and vice versa [1-3]. The conversion effi-
ciency of TE materials is characterized by a dimensionless figure
of merit, zT = S%¢T/k [4-6], where S, o, T, and x represent the
Seebeck coefficient, electrical conductivity, absolute tempera-
ture, and thermal conductivity, respectively. The x comprises
electronic thermal conductivity (), lattice thermal conductivity
(%141), and bipolar thermal conductivity (x;;) [7]. To improve the
zT value, various TE materials have been developed, including
Bi,Te;-based materials [4,8], half-Heusler alloys [9], skutteru-
dites [10], chalcogenides [11], and oxide materials [12].

Among these materials, Bi,Tes;-based compounds, specifi-
cally n-type Bi,Te;_,Se, and p-type Bi,_.Sb,Tes, have achieved
commercial success due to their superior conversion efficiency
near room temperature [1]. However, the disparities in perfor-
mance and optimal operating temperature ranges between n- and
p-type materials [8,13,14] have limited their broader application
possibilities. To address this limitation, recent studies have re-
examined Bi,_,Sb,Te; compounds for their potential as n-type

thermoelectric materials. The alternative n-type compounds
exhibit more favorable electronic transport properties compared
to conventional Bi,Te;_, Se, compounds [15]. The promotion of
the donor-like effect due to the facilitated formation of antisite
defects enables more effective control over the carrier concentra-
tion, resulting in a higher Seebeck coefficient, along with lower x
by larger mass and radius atomic differences [1].

For the fabrication of high-performance TE materials,
mechanical alloying (MA) combined with spark plasma sinter-
ing (SPS) has been widely adopted due to its ability to control
microstructure and composition precisely. The TE properties of
Bi,Tes-based materials fabricated by MA and SPS are signifi-
cantly influenced by the sintering conditions through the donor-
like effect, which directly determines the carrier concentration
— a key parameter governing TE performance optimization.
Despite its importance, systematic studies on the effects of sin-
tering conditions, particularly temperature, on the TE properties
of n-type Bi,_,Sb,Te; remain limited. In this study, we inves-
tigate the effects of sintering temperature on the TE properties
of n-type Bi,_,.Sb, Te; compounds. We selected Bi; oSby ;Te; as
a model system based on its good performance among n-type
Bi,_.Sb,Te; compounds prepared by powder metallurgical
processes.
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2. Experimental

The n-type Bi; ¢Sby ; Te; powder was synthesized by ball-
milling method with high impurity (99.999%) bismuth (Bi), an-
timony (Sb), and tellurium (Te) shots as primary materials. After
being weighted according to the stoichiometric ratio, the mixture
of materials was ball-milled by a planetary mill (Pulversette 5,
Fritsch, Germany). The ball-milling procedure was divided into
two stages: the first was carried out at 360 rpm for 48 cycles,
followed by the second at the same speed for 24 cycles. The
obtained powder was reduced in an H, environment at 573 K
for 90 minutes. The cylinder bulk samples were fabricated using
spark plasma sintering furnace (SPS-210SX, Vacuum Science
Laboratory, Korea) at 693 K, 723 K, 753 K, 773 K, and 793 K
under 50 Mpa. The crystalline phase of ball-milled powders
crystalline phases were detected using X-ray diffraction (XRD)
with a Cu K,,; X-ray source (Malvern Panalytical, UK) and the
lattice parameters were calculated by Rietveld refinement (Full-
prof Suite). SBA458 Nemesis (Netzsch, Germany) measured the
temperature-dependent electrical conductivity and Seebeck coef-
ficient from 298 K to 473 K in an argon environment. The Hall
carrier concentration (ny) and Hall carrier mobility (u;) were
determined using the Van der Pauw configuration utilized by an
HMS3500 (Ecopia, South Korea) at room temperature. The for-
mula x = DpC,, where D, p, and C, stand for thermal diffusivity,
density, and specific heat, was used to calculate the temperature-
dependent thermal conductivity. The Archimedes method was
used to quantify density, and the laser flash method (NETZSCH,
Germany) was used to measure thermal diffusivity. The modified
Dulong-Petit law was used to estimate the specific heat [16].

3. Results and discussion

The XRD patterns of the samples prepared at different sin-
tering temperatures are shown in Fig. 1(a). All diffraction peaks

planetary milling appear to be the main factors contributing
to the isotropic crystal structure [17]. Fig. 1(b) displays the
calculated lattice parameters a and ¢ of the hexagonal Bi,Te;
structure, where a represents the distance between atoms in the
basal plane and ¢ corresponds to the height of the unit cell along
the stacking direction, revealing that the crystallite size remains
nearly constant as the sintering temperature increases, indicating
that the sintering temperature has minimal impact on the crystal
structure of Bij ¢Sby ; Tes.

The electronic transport properties of the samples sintered
at 693 K, 723 K, 753 K, 773 K, and 793 K were measured in
the direction perpendicular to the sintering pressure and are
presented in Fig. 2. The electrical conductivity (o) increased
with increasing sintering temperature up to 753 K, above which
it begins to decrease. This decrease can be attributed to the sharp
reduction in Hall carrier concentration (7;) observed at sinter-
ing temperatures above 753 K (TABLE 1). The decrease in ny
with increasing sintering temperature could be attributed to the
removal of negatively charged carriers through the recovery ef-
fect [18]. Similar to other V,VI; compounds, the intrinsic defects
in n-type Bi,_.Sb,Te; are influenced by the “donor-like effect”,
which can be expressed as [18]:

2Vgi + 3Vqo+ Bige — Vi + Big; + 4V, + 6¢'

The number of antisite defects and vacancies is constrained
by the chemical composition and mechanical energies. Conse-
quently, thermal energy input beyond a critical threshold during
powder fabrication no longer promotes the “donor-like effect”
[19]. Instead, this excess thermal energy enables Te atoms to re-
turn to their initial positions, reducing the concentration of nega-
tively charged carriers through the “recovery effect” — resulting

TABLE 1

Hall carrier concentration (ny) and Hall carrier mobility (u) of
Bi, 9Sby ; Te; measured at room temperature

arfa well mdexe('l to Bi,Te; reference pattern (JC'PDS#.I ?-0863) Sintering 603k | 73k | 138k | 73k | 793K
without any evidence of secondary phases or impurities. Ad- tempe”‘ltg“res (g()
ditionally, no preferred orientation was observed in the (001) il XI02 (Cfn 1) 1099 | 1059 | 7.74 6.65 5.76
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Fig. 1. (a) X-ray diffraction pattern and (b) lattice parameters (a and c) of Bi; ¢Sb, ; Te; sintered sample
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Fig. 2. Temperature dependence of (a) Electrical conductivity (b) Seebeck coefficient (c) Power factor of spark plasma sintered Bi; ¢Sb ; Tes

in a significant decrease in carrier concentration. On the other
hand, the enhancement of the recovery effect is also considered
a significant contributing factor to the observed increase in car-
rier mobility in this study. This is primarily due to the reduction
in crystalline disorder [20], along with accompanying changes
in microstructure, density, and grain size induced by higher
sintering temperatures.

The Seebeck coefficient () is highly dependent on the car-
rier concentration, and exhibits significant sensitivity to sintering
temperature (Fig. 2(b)). The negative S values indicate that all
samples are n-type characteristics. The absolute value of S shows
a modest increase as the sintering temperature rises from 693 K
to 723 K, followed by a substantial increase with each subsequent
temperature increment. This trend shows a strong correlation
with the observed decrease in ny, indicating a pronounced re-
covery effect. Fig. 2(c) shows the temperature-dependent power
factor (PF). The sample sintered at 793 K exhibits a maximum
PF value of 2.66 mW m™' K2 at 298 K, representing a 41%
enhancement compared to the sample sintered at 693 K. This
significant enhancement in PF can be attributed to the optimized
carrier concentration, which establishes an effective balance
between ¢ and S.

The electronic band parameters obtained through the single
parabolic band (SPB) model are presented in Fig. 3. The values
of the density of state effective mass (m,) and nondegenerate
mobility (uy) were calculated by comparing the theoretical
SPB curves with the measured S, ny and uy values. Based on
the SPB model, the TE properties are defined as follows [21]:

s =k—3(77— =i (”)J M)

e F, (77)

2

:w_ﬂ[zm;kgr]” (£ (7))

2
ny 3 h2 F_1/2 (77) ( )
_ Foy (77)
;UH - :u0 2F0 (77) (3)
T glde
F. = 4
() £1+exp[s—77] @

where kg, e, F}, and 7 present Boltzmann constant, elemental
electric charge, Fermi integral of order j, and reduced Fermi
energy, respectively. The calculations of m,; reveal no notable
variation with sintering temperature, maintaining a consistent
value of ~1.1 my. For u, the calculated results indicate that the
sample sintered at 793 K exhibits the highest value. u, reaches
292 cm? V~!'s7! and gradually decreases to 180 cm?V ~!s7! for
the sample sintered at 693 K. The prediction of n; dependent PF
and the weighted mobility, were performed using the theoreti-
cally determined u, and m, and presented in Fig. 3(c,d). The
weighted mobility is calculated using the following formula [22]:

fhy = o X mg 3 (6)

the u,, increases with the sintering temperature, reaching a maxi-
mum value of 343 cm?V ~!'s7! for the sample sintered at 793 K.
Since u,, is proportional to the theoretical maximum PF' [29],
the predicted maximum value of PF' exhibits a corresponding
increase with sintering temperature. This maximum value can
be achieved through carrier concentration optimization. Based
on the SPB model predictions, the maximum attainable PF at
room temperature is 2.85 mW m 'K 2 at a n; 0f2.69x10" cm™>.
Although the experimentally measured PF is 2.66 mWm ™' K2,
there remains potential for a 7% enhancement.

The temperature-dependent total thermal conductivity (x) is
presented in Fig. 4(a). The x shows a trend similar to that of the
electrical conductivity, indicating a significant contribution from
the electronic thermal conductivity (x,). The x, was calculated
based on the Wiedemann-Franz law (x, = LyoT), where Ly is
Lorenz number (in 1078 W Q K2) and determined by the equa-
tion proposed by Kim et al [23]. Fig. 4(b) shows temperature
dependent « — k. While the x — x,, values show minimal variation
at room temperature, samples sintered at higher temperatures ex-
hibit elevated x — x, values at higher temperatures. This suggests
an enhanced bipolar contribution to x due to the reduction in 7.

The temperature-dependent figure of merit (z7) values
are presented in Fig. 4(c). The zT values increase with sintering
temperature, achieving a maximum value of 0.52 at 423 K for
the sample sintered at 793 K, representing a 12% enhancement
compared to the sample sintered at 693 K. Notably, peak zT
shifts toward room temperature with increasing sintering tem-
perature. The ny-dependent z7 curves indicate that higher sin-
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tering temperatures facilitate the optimization of ny;, leading to
enhanced zT values. According to the SPB model predictions,
the maximum theoretical z7 attainable at room temperature
could be 42% higher than the experimentally achieved value in
this study (Fig. 4(d)).

4. Conclusion

In this study, the influence of sintering temperature on
the thermoelectric properties of Bi; ¢Sby ; Te; was investigated.
Experimental results indicate that as the sintering temperature
increases, the recovery effect is promoted, leading to a decrease
in carrier concentration and an increase in carrier mobility. Con-
sequently, the Seebeck coefficient and power factor improved
at room temperature. Additionally, the thermal conductivity
showed minimal variation and tends to follow a trend similar to
that of electrical conductivity. The results reveal that the sample
sintered at the highest temperature of 793 K exhibits the best
electronic transport properties with a weighted mobility u,, of
343 cm? V™' s7! and the highest thermoelectric performance
with a zT of 0.52 at 423 K, which is 12% higher compared to
the sample sintered at 693 K.
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