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Abstract

Spraying pesticides is one of the most common procedures that is conducted to control
pests. However, excessive use of these chemicals inversely affects the surrounding environ-
ments including the soil, plants, animals, and the operator itself. Therefore, researchers
have been encouraged to develop robotic sprayers that can apply pesticides at variable rates
as needed in the field. In this study, a remotely controlled sprayer with two modes (variable
rate and constant rate applications) was developed and evaluated for some spray charac-
teristics and application accuracy metrics when controlling weeds at two travel speeds. The
variable rate mode resulted in a high precision, recall, and accuracy in detecting weed and
applying herbicide that was 90%, 100%, and 94%, respectively. Moreover, the spray cover-
age, droplet density, and the deposition on weed using the variable rate mode were 34.16%,
127.64 deposites - cm™, and 7.67 pl - cm™, respectively. The result also revealed that the
spray coverage, droplet density, and the deposition were less sensitive to the travel speed
when adopting the variable rate mode compared to the constant rate mode.
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Introduction

Weed is referred to as any undesired plant that usually
grows non uniformly in the field (Partel et al. 2019a;
Farooque et al. 2023) along with the main crop and
competes with the main crop for soil nutrients, irriga-
tion water, and even sunlight that leads to exorbitant
losses (Idziak et al. 2022; Shah et al. 2021) which may
exceed that induced by other pests (Sujaritha et al.
2017; Dian Bah et al. 2018). Weeds negatively influ-
ence the quality characteristics of the crops (Al-Cha-
labi and Hammood 2016a). In addition, weeds repre-
sent suitable environment to develop pests and diseases
(Al-khazali and Shati 2016; Kulkarni et al. 2019;
Subeesh et al. 2022).

Spraying herbicides pre-emergence or post-emer-
gence (Al-khazali and Shati 2016; Veisi et al. 2020;
Idziak et al. 2022) is the most common procedure fol-
lowed to control weeds. This procedure is usually per-
formed uniformly on the field regardless of the actual
distribution of weeds (Hussain et al. 2021a; Urmashev

et al. 2021). Although this procedure ensures a high ef-
ficacy of controlling weeds, its excessive use increases
costs, health issues for those who are exposed to the
chemicals (Shah et al. 2021), contamination of sur-
rounding environment including air, water, soil, ani-
mals, and vegetation (Zhu et al. 2017; Kulkarni et al.
2019), increasing the weed resistance to chemicals ap-
plied (Adamczewski et al. 2019), and destroying some
of the desired plant by the chemicals applied (Aravind
et al. 2016) or exposing the main crop to the toxic ef-
fect of the herbicide used (Pannacci and Bartolini
2018). These risks aggravate much more when apply-
ing chemicals inside greenhouses (Subeesh et al. 2022).

Uniform spraying may be preferred when there is
not a significant variation in weeds or diseases distri-
bution in the field, whereas variable rate spraying may
be desired when the distribution of weeds and diseases
is patchy in the field (Villette et al. 2021; Farooque
et al. 2023).
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Deep learning is a part of artificial intelligence
(Shah et al. 2021) and has appeared as a promising
technique to deal with enormous dataset for classifica-
tion and detection purposes (Chandel et al. 2021) by
recognizing similarities and differences within the data
using proper algorithms without required predefini-
tions (Shah et al. 2021).

Kulkarni et al. (2019) proposed a convolutional
neural network to distinguish weed from crop based
on Watershed Image segmentation Algorithm that
achieved an average accuracy of 85%. They recom-
mended that a drone or a robot sprayer can be accom-
panied by this algorithm to spray herbicides as needed
in the field.

Partel et al. (2019a) developed a smart sprayer for
weed control based on a deep neural network, namely
YOLOV3. They trained the tiny YOLOv3 and YOLOv3
using 1000 images of the studied artificial and real
plants and weeds and compared them to Faster
R-CNN (Resnet50), Faster R-CNN (Resnet101). It was
found that Faster R-CNN (Resnet50) achieved the best
precision and recall, whereas the YOLOV3 excelled at
the processing time.

Urmashev et al. (2021) compared the performance
of three machine learning algorithms and a convolu-
tion neural network to distinguish four weed species.
The machine learning algorithm studied included
K-Nearest Neighbor, Random Forest, and Decision
Tree, whereas the convolution neural network was
YOLOV5. The performance of these algorithms was
evaluated based on several metrics such as false posi-
tive rate, false negative rate, precision, recall, and ac-
curacy. The detection accuracy of all the studied algo-
rithms ranged from 80% to 92%.

This research aimed to develop a smart sprayer us-
ing inexpensive commercially available materials that
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applies herbicide (tap water was used for safety con-
sideration) at variable rate as needed, evaluation of the
detection and identification system, and to compare
some spraying parameters with the constant variable
mode.

Materials and Methods

The platform

A four-wheel small platform (Fig. 1) was designed
with a length, width, and clearance above the ground
of 80, 45, 30 cm, respectively to be able to work in
between the crop rows. The two rear wheels (driving
wheels) were with a diameter of 28 cm, each had a DC
motor (DG-168A2, working current: 24 V, unload-
ing speed: 140 rpm). While the two front wheels were
caster wheels with a diameter of 20 cm. This platform
was designed to be controlled remotely by a wire-
less controller (MicroZone 2.4G 6CH MC6C Remote
Controller). The steering system of this platform was
a skidding type that depends on the differential mo-
tion between the two wheels. A 12-Volt battery was
used as a power supply for the DC motors and the so-
lenoids valves.

Spraying system

The spraying system consisted of a commercial
16-liter backpack sprayer (Al-Chalabi and Hammood
2016a, 2016b; Al-khazali and Shati 2016; Al-Khafaji
etal.2023) thatcontainedatank, battery, pump (Table 1),
and pressure regulator and operated electrically. In
addition, the spraying system contained a return line
with a nozzle, pressure gauge to monitor the pressure

Fig. 1. The scheme of the developed sprayer (drawn by AutoCAD 2017)
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Table 1. Sprayer pump specifications

313

Table 4. PWM driver board specifications

Specification Description Specification Description
Max pressure 4.8 Input voltage 6-27
Open flow 3.1 1-min Maximum current 43
Voltage 12 Input level 3.3-5
Max current 2

Table 5. Camera Specifications
Table 2. Nozzle specifications Specification Description
Specification Description Dimension

Model Teeet Frame rate 29.6
Type air Blast disc-core type full cone Horizontal field of view
Material stainless steel Vertical field of view
Working pressure 1.34-20
Flow rate @ 2 bar 064 @2
Spray angle 65°

within the system, filters to purify the spray solution,
three 12-Volt normally closed solenoid valves to con-
trol the nozzle action. Three disc-core nozzles (that
produce full cone pattern were used in the study. This
type of nozzles has a narrow spraying area (Marango-
ni Junior and da Costa Ferreira 2019) which make it
qualified for spot spraying purposes. Although, even
flat fan nozzles may reduce the potential of bad cover-
age on the boundaries of the spray, we recommended
using the full cone nozzle that may be better for spot

spraying.

Control unit

The control unit consisted of an Arduino mega mi-
crocontroller board and Microzone MC6C 6 Channel
Radio Set 2.4GHz transmitter and receiver as steer-
ing controller to control the speed and the steering of
the vehicle by controlling the DC motors (Table 3) via
PWM driver board (Table 4), a camera (Table 5), re-
lays. Additionally, A Raspberry Pi 4 model B-8 Gb was

Table 3. DC motor specifications

Specification Description
Model DG-168A2
Unloading voltage 24
Unloading current up to 4.5
Unloading maximum speed 135
Output power 150
Gear ratio 26.25
Gear motor rated torque 1.3
Weight 4.63

used as computer board with a set of general-purpose
input/output (GPIO) pins via which actuators can be
controlled (Raspberry Pi Foundation, Cambridge,
UK) (Coleman et al. 2022) associated with An Edge
TPU coprocessor (Coral USB accelerator) to accel-
erate the performance of the Raspberry Pi to obtain
a reasonable inference time

A python script was developed to utilize the
YOLOV5s model for weed detection. This script di-
vided the image obtained by the camera into three
vertical equivalent sections. Each vertical section con-
trolled one of three lines (Coleman et al. 2022) and
was related to a solenoid valve and a nozzle thus one
camera covered three lines. To best our knowledge this
method of dividing a single camera into several zones
and controlling each zone separately is a novel method
that can increase the precision of applying herbicides
as needed in the field.

A horizontal threshold can be adjusted to focus on
the weeds that exist just under the camera to avoid pre
or post spraying. In our case, the solenoid was pro-
gramed to open when the weed is detected at the lower
third of the image to avoid the pre-spraying.

The location of the predicted plant including the
pepper and the weed center was calculated based on
the bounding box coordinates assuming that the plant
is symmetrical radially (Shah et al. 2021). Therefore,
the center coordinates of a detected plant were calcu-
lated by the following equations 1:

_ Xt X c Nty
27 Y 2’

Cx

where:

o, = the x, y coordinate of the predicted plant center;
x,, y, - the x, y coordinate of the upper left point of the
predicted bounding box;

x, - the x, y coordinate of the lower right point of the
predicted bounding box.
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Fig. 2. Shows an example of the arrangement of a treatment line

Field experiment

This experiment investigated the effect of two spray-
ing systems including a developed remotely controlled
variable-rate sprayer (VRS), and a remotely controlled
constant-rate sprayer (CRS), two forward speeds in-
cluding 2 km - h™, and 3 km - h™', and two types of veg-
etation including green pepper (Capsicum annuum)
seedlings and an artificial weed. The operation pres-
sure was fixed at 3 bars. Thus, this experiment was ar-
ranged as a completely randomized design (CRD) and
was analyzed as a factorial experiment with three fac-
tors under controlled environment.

The experiment was performed in a paved court-
yard in the college of Agricultural Engineering
Sciences - University of Baghdad (33°16°2.68”N,
44°22’46.66”E) in June 2023 from 7:00 am to 11:00 am.
The temperature ranged from 26 to 33, the relative
humidity was 20%, and the wind was north-western
with a speed ranged from 8 to 12 km - h™'. For each
treatment, a strip of nine 1-liter containers (Zhu et al.
2017) spaced at 50 cm and each of them contained
green pepper seedlings at establishment growth stage
about 4 weeks after planting along with nine artificial
weeds that were randomly distributed on the right, left,
inline of the pepper containers (Fig. 2) which led to
a weed density of 2 weeds per square meter.

Since there were two remotely controlled spray-
ers, it requires two different booms. The boom of the
CRS sprayer consisted of three full cone nozzles with
flow rate of 0.4 1 - min™ and fan angle of 45° with
25 cm between each two successive nozzles. The noz-
zles’ tips were 30 cm above the ground. All the nozzles
were mounted on wooden timber. On the other hand,
the boom of VRS sprayer was similar to that of the
CRS but it has a 12-Volt normally closed %" DC12V
solenoid valves before each nozzle that can activate or
deactivate the spray flow based on the presence or ab-
sence of the weeds whose locations are within the ef-
fect zone of that nozzle (Fig. 3).

Spraying
Robot

3 Activated
ry nozzles

Fhreshold

line

Fig. 3. Shows the threshold line and how the nozzles (illustrated
in red circles) is work when detecting artificial weeds

In relative the application rate, for CRS it was
600 and 400 1 - ha™! for the speed of 2 and 3 km - h™/,
respectively considering the following equation
the spray swath of 0.75 m, the travel speed of 2 and
3 km - h™!, and the nozzle flow rate of 0.51- min.
Equation 2:

_NXCxQ
47 IxL

where:

R, - application rate (I - ha™);

N - number of nozzless;

Q - flow rate per nozzle (1 - m™);

S - forward split (km - h™');

L - length of the boom (m);

C - conversion factor equals to 600.

However, the above equation did not work for the
VRS mode since the flow rate of the nozzles is not con-
tinuous and we suggest that the application rate for
VRS can be calculated based on the following equation
which requires a pre-knowledge about the flow rate of
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the nozzle used (Q) that can be calculated on the field,
the total time for opening the nozzles (¢) that can be
recorded by the software used, and the area sprayed
per unit time (A) that can be calculated multiplying
the spraying swath by the travel speed. Therefore, the
average application for the VRS would be 27.7 and
18.51- ha™! for the travel speed of 2 and 3 km - h™!, and
an average time for opening the nozzle of 500 ms.
Equation 3:

_Q xtx10*

R
A A

It should be mentioning that the amount of spray
on a single weed using VRS mode will not differ from
that of CRS since the flow rate of the nozzle and the
travel speed are fixed the only different between the
VRS and the CRS is that the nozzle is continuously
opened in CRS while it is opened only when a weed is
detected under its region of effectiveness.

Estimating spray parameters

Spray parameters including the spray coverage (Spray
coverage is a spray attribute that reflects the percentage
of target area covered with stains relative to the total
area (Cunha et al. 2012; Ferguson et al. 2016; Zhang
et al. 2016; Subr et al. 2020; Marwan and Subr 2022)
and droplet density (Droplet density is another spray
parameter that refers to the number of droplets per unit
area (Zhang et al. 2016; Marwan and Subr 2022) were
estimated using water sensitive papers (WSPs) that
were placed at each plant and artificial weed and were
collected after about 1 minute after each treatment to
let them dry adequately before they were collected us-
ing a plastic tweezer and placed in a transparent self-
adhesive nylon bag. Then, the WSPs were scanned by
a scanner (MFC-J480DW, Brother Corporation) at
a resolution of 600 dpi (Subr et al. 2020; Marwan and
Subr 2022).

DepositScan software (USDA, Wooster, OH, USA)
was used to analyze the scanned images to estimate the
parameters (Zhu et al. 2011; Cunha et al. 2012). Tap
water was used as a spray solution. However, it should
be mentioned that the spray parameters measurement
may differ with the quality of water or when using
a surfactant (Parafiniuk et al. 2015, 2017; Subr et al.
2020a ; Milanowski et al. 2022).

Dataset preparation for training
the convolution neural network

A dataset comprised of 849 images was used for train-
ing the model. This dataset consists of 435 images for
green pepper (Capsicum annuum) that were grown
in the Horticultural Station, the Ministry of Agricul-
ture, Baghdad, Iraq (33°19'21.77”N, 44°14’12.69”E),
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and 414 images for artificial weed. These images were
captured under different positions and angles at height
ranged from 60 to 80 cm above the ground for each
plant from 10:00 am to 1:00 pm on April 5, 2023,
when the pepper plants were at early growth stage
(eight weeks) via the main camera of a Huawei P30
Lite smartphone using an aspect ratio of 1:1 to obtain
square RGB images with 2992 x 2992 x 3 dimension.
The images were taken at early growth stage to avoid
the dense vegetation and overlap of contiguous plants
that are considered a challenge for plant and weed dis-
crimination (Bakhshipour and Jafari 2018).

YOLOVS5 as convolution neural network

YOLOVS5 is a version of deep learning algorithms name-
ly “You Only Lock Once” that is used for classification,
segmentation, or object detection. It is preferable for its
high accuracy small inference time that made it eligi-
ble for real time detection tasks. YOLOV5 differs from
the previous versions of YOLO in that it utilizes the
PyTorch framework - that is more popular for machine
learning applications — rather than Darknet, it is less
complex, and requires less inference time comparing to
the previous versions (Hussain et al. 2021b).

This network as explained by (Urmashev et al. 2021)
is composed of three main parts: Backbone, Neck, and
Head. As illustrated in (Anon n.d.), the Backbone part
is composed of a number of convolution, normaliza-
tion, and activation layers that are responsible for fea-
ture extraction and image downsampling. The Neck
part processes the feature outputs obtained from the
Backbone part and producing feature maps at differ-
ent scale to enhance the model generalization, then
transmitting them to the Head part which creates the
final detection information including the coordinates,
height and width of the predicted bounding boxes, the
confidence score, and the predicted class for each pre-
dicted bounding box (Anon n.d.).

Python is considered a promising programming
language for robotic task due to its simplicity and the
availability of its resources and libraries (Shah et al.
2021), therefore it was used for processing the images,
training the convolution neural network algorithm
(YOLOV5s), and to create a scratch for detecting weeds
and applying pesticides. The images were resized us-
ing resize method of the OpenCV library in a python
script to get 416 x 416 images. This step was required
to reduce the resolution of the images to decrease the
time cost for training the model and then detecting ob-
jects within an image.

Then, the images were labelled for pepper and
weeds using Labelimg tool V 1.8.6 (Shah et al. 2021;
Wang et al. 2022) using YOLO format that compat-
ible with YOLOvV5 model that was used as a pretrained
model later. Therefore, for each image an associated txt
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file was generated as an annotation file which contains
information about the class id, the x and y coordinates
of the bounding box center, and the width and height
of the bounding box for each object in the image.

After labeling, the dataset (including the images
and their associated annotation files) was augmented
using the roboflow platform (https://roboflow.com/)
using horizontal flip, vertical flip, clockwise 90° rota-
tion, counter-clockwise 90° rotation, rotation between
-15 and +15, £15 horizontal shear, £15 vertical shear,
saturation between -15 and +15, brightness between
-20 and +20, exposure between -10 and +10, blur up
to 1.25 px, and noise up to 4% of pixels. This augmen-
tation results in a dataset of 2112 images. This dataset
was split into 90% for training (1900 images), 8% for
validation (170 images), and 2% for testing (42 im-
ages). The training is performed using a laptop (Le-
novo, ideapadGAMING, 11th Gen Intel(R) Core™
i7-11370H @ 3.30GHz, 16 GB RAM).

The hyperparameter adopted for this training are
shown in (Table 6). The weight file with an extension
of (.pt) was converted into a file of (.tflite) extension
using an image size of to be utilized on the Raspberry
pi 4 model B - 8 GB associated with a Google Edge
TPU ML accelerator to enhance the Raspberry pi per-
formance especially the speed of processing data.

Table 6. Hyperparameters for training the model

Hyperparameter Value
Image size 416
Epochs 100
Batch size 16
Learning rate 0.01
Momentum 0.937
Optimizer stochastic gradient descent (SGD)

Statistical analysis

Spray parameters
Data obtained from the DepositScan software were
analyzed via three-way analysis of variance (ANOVA)

using Origin software (Origin, Version 2018. Origin
-Lab Corporation, Northampton, MA, USA) to exam-
ine the null hypothesis that the means of all groups in
each type of sprayer, the speed, and their interactions
are equal. The Fisher’s least significant difference (LSD)
test was used as a multiple comparison test when the
null hypothesis was rejected. All analyses were per-
formed at the 0.05 level of significance.

Prediction and herbicide application parameters
The model was evaluated based on the values obtained
after training the model including the precision, re-
call, mAP@50, and F1-score. Moreover, the precision
(Equation 4), recall (Equation 5) (Partel et al. 2019b;
Konar et al. 2020; Urmashev et al. 2021; Al-Mahmood
et al. 2022; Ghadi and Salman 2022; Subeesh et al.
2022; Wang et al. 2022; Farooque et al. 2023), accuracy
(Equation 6) (Urmashev et al. 2021; Ghadi and Salman
2022; Nyarko et al. 2023), and error rate (Equation 7)
(Hussain et al. 2021a) were calculated on the field
based on the true positives (the number of weeds that
were correctly classified as weeds), true negatives (the
number of pepper plants that were correctly classified
as non-weeds, false positives (the number of pepper
plants that were incorrectly classified as weeds), false
negatives (the number of weeds that were incorrectly
classified as non-weeds). Please, see the table below for
the parameters’ references.

Equation 4:
. TP
Precision =
TP+FP
Equation 5:
TP
Recall =
TP+FN
Equation 6:
TP+TN
Accuracy = ————
TP+TN+FP+FN
Equation 7:
FP+FN
Error rate = —————
FP+FN+TP+TN

where: TP - true positives; TN - true negatives; FP —
false positives; FN - false negatives.

Table 7. References for some prediction and herbicide application parameters

Parameter References
Al-Mahmood et al.(2022); Ghadi and Salman (2022); Konar et al. (2020); Nyarko et al. (2023); Partel et al. (2019a);
Precision Partel et al. (2019b); Subeesh et al. (2022); Urmashev et al. (2021);
Wang et al. (2022)
Recall Al-Mahmood et al. (2022); Farooque et al. (2023); Ghadi and Salman (2022); Konar et al. (2020); Partel et al. (2019a);
Partel et al. (2019b); Subeesh et al. (2022); Urmashev et al. (2021); Wang et al. (2022)
Accuracy Ghadi and Salman (2022); Nyarko et al. (2023); Urmashev et al. (2021)
Error rate Hussain et al. (2021b)
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The model performance is usually evaluated based
on the results obtained due to training the model in-
cluding the box loss (box_loss), objectness loss (obj_
loss), and class loss (cls_loss). The box_loss refers to
the error of predicting the center coordinates, width,
and height of bounding boxes. The obj_loss refers to
the error that occurred due to the ambiguity of finding
an object within the investigated image. The cls_loss
refers to an error that occurred when predicting an
object into an incorrect class (Hussain et al. 2021a). It
is worth mentioning that the Binary Cross Entropy is
used to estimate the class and objectness losses, where-
as the intersection over union loss is used to estimate
the box loss (Anon n.d.). Generally, the lower the loss,
the highest the model’s performance.

The mean average precision (mAP) is calculated by
dividing the summation of the average precisions of all
the class by the number of the classes at a specific inter-
section over union (IOU) value such as 0.5 and from
0.5 to 0.95 for mAP . and mAP _ ., respectively. The
highest the mAP the better the model’s performance.

Results

Spray coverage

The results revealed that there was a highly signifi-
cant difference in the spray coverage (F , = 14044,
p =0) between the VRS and the CRS. The average
spray coverage on the pepper and the weed for VRS
was 17.3% compared to that for CRS that was 67.6%.

The effect of the travel speed on the spray coverage
was highly significant (F , = 223.7, p =0). The speed
of 2 km - h™" achieved higher coverage of 52.5% com-
pared to the speed of 3 km - h™! that achieved 32.4%.

The comparison between pepper and weed showed
a highly significant difference (F = 169.2, p=0). The
pepper got the lower coverage of 33.7% compared to
the weed that got a coverage of 51.2%. The decrease in
the coverage on pepper resulted from well distinguish-
ing the pepper plants and not spraying them using the
VRS.

The interaction between sprayer type and the travel
speed showed a significant effect (F, = 19.6, p =0).
Figure 4 shows that the effect of the speed was obvious
using the CRS, and the higher coverage occurred at the
speed of 2 km - h™'. Whereas the effect of the speed was
not noticeable when using VRS. In other words, the
spray coverage was less sensitive to the travel speed us-
ing the VRS compared to the case of using CRS.

The interaction between sprayer type and the target
type showed a significant effect (F ,, = 146.4, p =0).
Figure 5 shows that the target type affected the spray
coverage using VRS that the pepper got nearly zero
coverage compared to the weed which got a coverage
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of 34.16%. Whereas using the CRS the coverage was
67 and 68.2% at 2 and 3 km - h™'. This result confirms
that both the target and non-target plants were sprayed
uniformly using the CRS and variably based on the ditf-
ferentiation between the target and non-target plant
using the VRS.

=he=\/RS =@=(RS
100

80
60
40

20 I

Spray coverage [%]

2km/h 3 km/h

Travel speed

Fig. 4. The effect of the interaction between the sprayer type and
travel speed on the coverage
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Fig. 5. The effect of the interaction between the sprayer type and
target type on the coverage

Droplet density

The analysis showed a highly significant effect of the
sprayer type on the droplet density (F , = 3147,
p < 1072). The VRS achieved the higher droplet density
of whereas the CRS achieved 44.7 deposit - cm™.

Similarly, the travel speed significantly affected the
droplet density (F, ., = 12.1, p < 107%). The droplet den-
sity increased with the travel speed which was 40.8 and
70.7 deposit - cm™ at 2 and 3 km - h™, respectively.

The target type showed a significant effect on the
droplet density (F, . = 10.5, p < 107°) where the higher
value of 84.7 occurred in weed comparing to the pep-
per that obtained 26.8 deposit - cm™ It is worth men-
tioning that the spray density occurred on the pepper
was mostly due to using the CRS.

The interaction between the sprayer type and the
travel speed significantly affected the droplet density
(F .. =19.6, p < 10°°). Figure 6 illustrates that the ef-

1,56
fect of the travel speed was more noticeable with CRS
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Fig. 6. The effect of the interaction between the sprayer type
and travel speed on the droplet density

than VRS. The highest droplet density occurred with
CRS at the speed of 3 km - h™'. However, the VRS did
not show a significant difference between the two stud-
ied speeds which both was higher than that of CRS at
2km-h™.

The interaction between the sprayer type and the
target type showed a highly significant effect on the
droplet density (F, ., = 25.5, p < 107). Figure 7 dem-
onstrates that the effect of the travel speed was more
noticeable with CRS than VRS. The highest droplet
density occurred with CRS at the speed of 3 km - h™".
However, the VRS did not show a significant difference
between the two studied speed which both was higher
than that of CRSat 2 km - h™".

In relation to the sufficiency of the coverage of 40%
to kill weed, this value was obtained under the spraying
pressure of 3 bar. The required coverage is determined
based on the type of herbicide used. Higher coverage

Fig. 7. The effect of the interaction between the sprayer type and
target type on the droplet density

is required to increase the efficacy of contact herbi-
cides while it is not necessary with systemic herbicides
(Marwan and Subr 2022; Shah et al. 2021). Therefore,
if this percentage is not sufficient that may be fixed by
increasing the spraying pressure.

Weed detection and control evaluation

The results (Fig. 8) showed that all the losses started
at low values and was decreasing till the end of the
training. This indicates perfect performance of the
model in differentiating between the weeds and the
green peeper seedlings. Similarly, the results showed
an increment of the mAP, precision, and recall values
during the training. Moreover, the confusion matrix
(Fig. 9) showed that all the weeds and the pepper seed-
lings were classified correctly.
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Fig. 8.

Results of training the model (the x-axis refers to the epochs)
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Table 8. Performance metrics of YOLOvV5s for the studied classes
Class Images Instances Precision Recall mAP50 Map50-95
All 170 261 0.982 0.994 0.994 0.887
Pepper 170 90 0.998 1 0.995 0.894
Weed 170 171 0.966 0.988 0.994 0.879

Herbicide application evaluation

The precision, recall, accuracy, and error rate were
measured based on the weed sprayed (true positive),
the pepper not sprayed (true negative), the weed not
sprayed (false negative), and the pepper sprayed (false
positive). WSP (25 mm) were used to determine the
sprayed and not sprayed objects. A coverage of 10%
was considered as a threshold to determine the true
positives and negatives and the false positives and
negatives. Any plant that got a coverage less than 10%
was considered a negative otherwise it was considered
a positive.

The precision value which is one of the criteria
that is usually used to measure the performance of
the trained convolutional neural network such as
YOLOVS. It specifically measures the proportion of the
accurately predicted objects such as weed relative to all
the predicted weeds including the accurately predicted

weed and the pepper plants that were misclassified as
weed, as we mentioned in equation 2 was calculated
on the field (Fig. 10) and obviously indicated the su-
periority of the smart sprayer (AI) which achieved
a precision of 90% at both travel speeds, whereas the

BCRS BVRS

100%
80%
60%
40%
20%

0%

Precision [%]

2 km/h
Travel speed

3 km/h

Fig. 10. The precision of applying herbicides for each of the two
sprayers at the two selected travel speeds
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remotely controlled sprayer (without smart prediction)
and the conventional backpack sprayer achieved 50%
as expected since all the pepper plants were sprayed as
false positives.

The results of recall which is one of the criteria
that is usually used to measure the performance of
the trained convolutional neural network such as
YOLOVS. It specifically measures the proportion of the
accurately predicted objects such as weed relative to
all the available actual weed including the accurately
predicted weeds and the weeds that were missed to be
classified as weed. As we mentioned in equation 3 that
recall did not differ among the studied sprayers and
achieved 100% for all sprayers (Fig. 11).

The results for accuracy shown in (Fig. 12) revealed
a high accuracy of 94% for both studied speeds for
the smart sprayer compared to 50% for the other two
sprayers. This confirmed that smart sprayer success-
fully sprayed weeds and avoided spraying pepper to a
high extent.

CRS mVRS

120%

— 100%
80%
60%
40%
20%
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Fig. 11. The recall of applying herbicides for each of the two
sprayers at the two selected travel speeds
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Fig. 12. The accuracy of applying herbicides for each of the two
sprayers at the two selected travel speeds

The following two figures are supplementary
figures that show the spray coverage and the droplet
density at each treatment.
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Fig. 13. The average of spray coverage at each treatment

Table 9. The true positives and negatives (greens), and the false positives and negatives (reds) for each treatment

Sprayer type Speed Pr:gtiszd Pepper Weed Total
CRS 2km-h™? pepper 0 9 9
CRS 2km-h™ weed 0 9
total 0 18
CRS 3km-h’' pepper 0 9
CRS 3km-h™ weed 0 9
total 0 18
VRS 2km-h™! pepper 8 1
VRS 2km-h weed 0
total 8 10
VRS 3km-h' pepper 8 1
VRS 3km-h' weed 0
total 8 10
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Fig. 14. The average of droplet density at each treatment

Discussion

The difference in spray coverage between the VRS and
the CRS was expected because for CRS, all the pep-
pers and weeds were sprayed uniformly. In contrast,
for VRS most of the peppers (non-target plants) were
accurately recognized and were not sprayed and their
coverage was near to zero, whereas almost all the weeds
(target plants) were successfully sprayed that decreased
the average of the spray coverage at the VRS. Although
such an average may seem pointless at first glance, in
our case it gives an indicator for how ignoring pepper
by the VRS affects the average of the spray coverage
because the coverage on the pepper was near to zero.

The results of the effect of travel speed on droplet
density confirmed the findings of (Subr et al. 2020b)
that increasing the travel speed increases the droplet
density. However, the results obtained contradicted
that of (Muhammad et al. 2019) which found that
decreasing the flight speed of an airborne sprayer in-
creased the droplet density. This may be attributed to
the fact that the study of (Muhammad et al. 2019) used
a UAV with the minimum speed of 7 at a height of
2 m which in turn may make the spray more suscepti-
ble to drift (Zhang et al. 2016) and evaporation at high-
er speed leading to lower droplet density. Whereas in
our experiment the maximum speed and height were
3 and 50 cm, respectively, which makes the droplets
less susceptible to the drift effect.

The results of the effect of the travel speed on the
spray coverage confirmed that the spray coverage de-
creases with increasing the travel speed which agreed
with the findings of (Qin et al. 2016; Hunter et al.
2020; Subr et al. 2020; Marwan and Subr 2022). It is
known that the application rate decreases with the
travel speed at a specific operating pressure which
may in turn causes a decrease in the spray coverage.
It is worth mentioning that the higher spray coverage
does not necessarily leads to higher droplet density be-
cause the droplet density is the number of stains per

unit area, therefore the lower the droplet size leads to
higher droplet density and vice versa. However, the
higher spray coverage may lead to droplets merging
and then reduces the number of the droplets per unity
area (droplet density).

The results of weed detection agreed with that of
(Hussain et al. 2021a) who used YOLOVv5s to differen-
tiate between oak, grass, and wood which confirms the
capability of YOLOV5s to predict objects at high level
of accuracy, precision, and recall. The results of preci-
sion of herbicide application confirmed that the smart
sprayer can be used successfully to avoid spraying the
main plant especially when using non-selective herbi-
cides that terminates the weeds as well as the plants.
The results of recall of herbicide application confirmed
that the smart sprayer did not miss any weed and can
be used effectively as the other two sprayers which are
not expected to miss any weed as well as pepper.

Conclusions

This research confirms the potential of efficiently us-
ing the developed smart variable-rate sprayer for
more sustainability to reduce costs and pollution.
These results showed that the spray parameters such
as the spray coverage, droplet density, and the deposi-
tion were less sensitive to travel speed when using the
variable-rate sprayer. Moreover, the smart sprayer suc-
ceeded in reducing the amount of herbicide sprayed
compared to the constant rate sprayer. The detection
accuracy parameters were obviously higher in the var-
iable-rate sprayer.

These results confirm the capability of the convo-
lution neural network especially the custom trained
YOLOV5s associated with a raspberry pi 4 computer
connected with a co-processor (Coral USB accelera-
tor) to be successfully used for real time applications
such as weed detection and differentiating from the
main crop since it provides reasonable and sufficient
accuracy and inference time.
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