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Designing efficient Model Predictive Control
algorithm using easy–to–obtain fuzzy models

Piotr M. Marusak

Abstract—The paper describes the design process of an efficient
model predictive control (MPC) algorithm based on fuzzy models.
An interesting feature of the proposed approach is that it uses
easy–to–obtain fuzzy Takagi–Sugeno (TS) models composed of
a few step responses employed as local models; one of these
models is used to derive the dynamic matrix, and the second one,
being a skillful modification of the first one, to generate the free
response. The designed MPC algorithm uses formulation as an
efficient quadratic optimization task. Still, it offers control quality
compared with the MPC algorithm formulated as a nonlinear
optimization task, thanks to the skillful generation of the free
response. The efficiency of the proposed approach is tested and
demonstrated in the simulated control system of the nonlinear
and non–minimum phase process of the chemical reactor with
the van de Vusse reaction.

Keywords—prediction; process control; model predictive con-
trol; quadratic optimization; fuzzy systems; fuzzy control; non-
linear control, CSTR, van de Vusse reaction

I. INTRODUCTION

OPTIMIZATION is a handy tool for solving engineering
problems. One of the tasks that can be done using

optimization is the generation of control actions using ad-
vanced control algorithms. Applying a fuzzy model during this
process can increase the control quality of a control algorithm.
However, the resulting fuzzy optimization task can be hard
to solve if such a model is used directly. Fortunately, in the
MPC algorithms, the advantages of the fuzzy models can be
exploited so that the optimization task solved in each iteration
of the MPC algorithm can be formulated as the easy–to–solve
quadratic optimization problem; this will be detailed in the
latter part of the article.

In the MPC algorithms, control signal trajectories are ob-
tained by solving the following optimization problem [1]–[3]:

argmin
∆u

{
(y − y)T · κ · (y − y) + ∆uT ·Λ ·∆u

}
(1)

subject to:

∆umin ≤ ∆u ≤ ∆umax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where
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y =

 y1

...
yny

 , yj =


yjk+1|k

...
yjk+p|k

 , (5)

y =

 y1

...
yny

 , yj =


yjk+1|k

...
yjk+p|k

 , (6)

∆u =

 ∆u1

...
∆unu

 , ∆um =

 ∆um
k+1|k
...

∆um
k+s−1|k

 , (7)

u =

 u1

...
unu

 , um =

 um
k+1|k

...
um
k+s−1|k

 , (8)

κ =
[
κ1, . . . ,κny

]
· I, κj = [κj , . . . , κj ] , (9)

Λ = [Λ1, . . . ,Λnu
] · I, Λm = [λm, . . . , λm] , (10)

yjk+i|k denotes a value, predicted using a process model the
MPC algorithm is based on, of the jth output for the (k+ i)th

sampling instant from the prediction horizon, derived at the
kth sampling instant, yjk+i|k is an element of the reference
trajectory for the jth output and for the (k + i)th sampling
instant from the prediction horizon; if constant reference
trajectories on the prediction horizon are used, then

yjk+i|k = yjk (11)

where yjk denotes a setpoint value for the jth output; ∆um
k+i|k

are the decision variables of the optimization problem being
future changes in the mth manipulated variable; κj contains
p elements, and κj ≥ 0 denote weighting coefficients for
the predicted control errors of the jth output; Λm contains
s elements, and λm ≥ 0 denote weighting coefficients for
the changes of the mth manipulated variable; p is prediction
horizon, s is control horizon, ny is the number of output
variables, nu is the number of manipulated variables; ∆umin,
∆umax denote vectors defining lower and upper bounds of
changes of the control signals; umin, umax denote vectors
defining lower and upper bounds of values of the control
signals; ymin, ymax denote vectors defining lower and upper
bounds of the values of output variables.
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The optimization problem (1–4) is formulated and solved
in each sampling instant. As a result, the optimal vector of
future control action ∆u is obtained, from which the ∆um

k|k
elements are applied in the control system and then, in the next
time step, the optimization problem (1–4) is reformulated and
solved.

To formulate the optimization task solved by the MPC
algorithm, the prediction y is needed. The prediction is based
on the process model. Assume first that a nonlinear process
model is employed:

ŷk = f(yk−1,yk−2, . . . ,yk−na
,uk−1,uk−2, . . . ,uk−nb

) ,
(12)

where yk−i =
[
y1k−i, . . . , y

ny

k−i

]T
is a vector which contains

output values measured at the (k − i)th sampling instant,
uk−i =

[
u1
k−i, . . . , u

nu

k−i

]T
is a vector which contains control

values applied at the (k− i)th sampling instant; denote output
values generated by the model in the (k + i)th sampling
instant as ŷk+i =

[
ŷ1k+i, . . . , ŷ

ny

k+i

]T
, na, nb determine how

many past output and control values the model needs. To
use the model (12) directly in the optimization problem (1–
4), the following formulas, describing the prediction, should
be passed to the optimization problem as a set of equality
constraints:

yk+i|k = f(ŷk+i−1, . . . , ŷk+1,yk, . . . ,yk−na+i−1, (13)
uk+i−1|k, . . . ,uk|k,uk−1, . . . ,uk−nb+i−1) + dk ,

where uk+i|k =
[
u1
k+i|k, . . . , u

nu

k+i|k

]T
is a vector containing

future control values, depending on decision variables from
the vector ∆u and

dk = yk − ŷk , (14)

where yk =
[
y1k, . . . , y

ny

k

]T
is a vector of recently measured

output values.
Unfortunately, the optimization problem (1–4) using the

prediction (13), based on a nonlinear model, is, in general,
non–convex nonlinear optimization problem; see, e.g., [4]–
[6]. The MPC algorithm based on such an approach (NMPC
algorithm) inherits all its drawbacks.

The nonlinear model (12) can also be a fuzzy model.
However, if such a model is used directly to obtain the
prediction (13), then the optimization problem (1–4) is still the
nonlinear optimization problem with all its drawbacks. On the
other hand, we can exploit the advantages of the fuzzy models
in a skillful way, which will be detailed in the latter part of
the article, but before that, let us recall the MPC algorithms
based on linear models; it will be helpful later.

Assume a linear process model is used to obtain the pre-
diction y. In that case, the superposition principle holds, and
the vector y can be decomposed into two parts: free response
and forced response [1], [3]:

y = ỹ +A ·∆u , (15)

ỹ =

 ỹ1

...
ỹny

 , ỹj =


ỹjk+1|k

...
ỹjk+p|k

 , (16)

where ỹ is the free response of the control plant which
describes the influence of the past values of control signals
on the process, A ·∆u is the forced response which depends
on future changes of the control signals ∆u; the matrix A is
called the dynamic matrix and has the following form:

A =


A11 A12 . . . A1nu

A21 A22 . . . A2nu

...
...

. . .
...

Any1 Any2 . . . Anynu

 , (17)

Ajm =


aj,m1 0 . . . 0 0

aj,m2 aj,m1 . . . 0 0
...

...
. . .

...
...

aj,mp aj,mp−1 . . . aj,mp−s+2 aj,mp−s+1

 , (18)

where aj,mi denote step response coefficients of the process,
describing the influence of the mth control on the jth output.
The prediction (15) is linear with respect to decision vari-
ables ∆u, therefore applying it to the performance function
(1) results in its transformation to a function quadratically
depending on decision variables ∆u:

(y− ỹ−A ·∆u)T ·κ ·(y− ỹ−A ·∆u)+∆uT ·Λ ·∆u. (19)

Furthermore, after using the prediction (15) in the constraints
on output values (4), the optimization problem (1–4) becomes
an easy to solve, standard quadratic optimization problem,
with linear constraints. The MPC algorithm based on such an
approach (LMPC algorithm) can quickly generate the control
action. However, the control performance offered by such an
LMPC algorithm, applied to a nonlinear process, may be poor.

A few approaches were developed to overcome the draw-
backs of NMPC and LMPC algorithms. In the so–called fast
NMPC algorithms, see, e.g., [7], [8] suboptimal solution is
generated faster than in the standard approach. The explicit
approach in which most of the calculations are done off–
line; see, e.g., [9] is also suboptimal in the nonlinear case,
though it is optimal if the linear model is used [10]. However,
unfortunately, in the explicit approach, the complexity of the
controller grows significantly with the number of constraints
taken into consideration.

Linearization of the process model the MPC algorithm is
based on, obtained in each time step, results in the predic-
tion linear relative to control changes (decision variables of
the optimization problem); see, e.g., [3], [11]–[18]. Such an
approach is popular because the optimization problem solved
by the MPC algorithm in each time step is then formulated
as quadratic (like in LMPC algorithms). The elements of the
prediction in this approach (the free and the forced responses)
can be obtained in different ways. When the fuzzy TS model
is used, its properties can be exploited. In the algorithms
based on the fuzzy TS model, described in [11], [15], the free
response and the dynamic matrix are obtained using the model
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obtained after the linearization. In [12], [16], [17], algorithms
in which the free response is calculated using the nonlinear
model (not the linearized one) are described. The algorithms in
which the free response and the dynamic matrix are obtained
using the nonlinear models are detailed in [18].

The approach proposed in the article, allows relatively easy
design the MPC algorithm based on easy–to–obtain fuzzy
models composed of a few step responses. It is sufficient to
collect these responses and add the premises of the fuzzy rules,
using, e.g., expert knowledge supported by the analysis of the
steady–state characteristics; as a result, the fuzzy models are
obtained. Note that in such a way, the existing control system,
with the classical Dynamic Matrix Control (DMC) algorithm
based on a linear model in the form of the step response, can
be relatively easily updated to offer better control quality.

Then, the model with the normalized step responses is
used to generate the dynamic matrix, and the model with
the denormalized step responses is used to generate the free
response. Thanks to such an approach, the obtained results can
be much better than those generated by the algorithm proposed
in [15], close to the ones obtained with the NMPC algorithm,
like in the case of the algorithm from [16]. However, this time,
the model used by the algorithm to obtain the free response
can be obtained straightforwardly, and its usage is relatively
simple. To sum up, the models and the prediction are obtained
relatively easily and the prediction is still linear with respect
to control changes (decision variables of the optimization
problem). Therefore, the algorithm employing the proposed
approach merges the LMPC algorithms’ computational sim-
plicity with the NMPC algorithms’ control performance.

The next Section details the formulation of the fuzzy MPC
(FMPC) algorithms based on easy–to–obtain fuzzy models.
In Section 3, the operation of the FMPC algorithms is tested
in a simulation example of the control system of a nonlinear
chemical reactor with the van de Vusse reaction. Conclusions
are presented in the last Section.

II. EFFICIENT FUZZY MPC ALGORITHM

A. Dynamic Matrix Derivation

The dynamic matrix needed to obtain the forced response
can be calculated using an easy–to–obtain fuzzy TS model,
employed also in, e.g., [15], [17], [18], which has local models
in the form of normalized step responses:

Rulef : (20)

if yjyk−1 is B
f,jy
1 and . . . and y

jy
k−na

is Bf,jy
na

and

uju
k−1 is Cf,ju

1 and . . . and uju
k−nb

is Cf,ju
nb

then ̂̂yj,fk =

nu∑
m=1

[
pd−1∑
n=1

aj,m,f
n ·∆um

k−n + aj,m,f
pd

· um
k−pd

]
,

where y
jy
k is the value of jyth output variable (jy = 1, . . . , ny)

at the kth sampling instant, uju
k is the value of ju

th manip-
ulated variable (ju = 1, . . . , nu) at the kth sampling instant,
B

f,jy
1 , . . . , B

f,jy
na , Cf,ju

1 , . . . , Cf,ju
nb

are fuzzy sets, aj,m,f
n are

the coefficients of step responses in the f th local model,

f = 1, . . . , l, l is number of fuzzy rules. The output values of
the model (20) can be calculated using the following formula:

̂̂yjk =

nu∑
m=1

[
pd−1∑
n=1

ãj,mn ·∆um
k−n + ãj,mpd

· um
k−pd

]
, (21)

where ãj,mn =
∑l

f=1 w̃f · aj,m,f
n and w̃f are the normalized

activation levels of the fuzzy rules calculated using fuzzy
reasoning, see e.g., [19], [20]. Note that one can consider the
model (21) as the step response describing the behavior of the
control plant near the current operating point.

The model (20) is then used at each sampling instant of the
FMPC algorithm to obtain a new, updated dynamic matrix as
described, e.g., in [17]:

Ak =


A11

k A12
k . . . A1nu

k

A21
k A22

k . . . A2nu

k
...

...
. . .

...
A

ny1
k A

ny2
k . . . A

nynu

k

 , (22)

Ajm
k =


ãj,m1 0 . . . 0 0

ãj,m2 ãj,m1 . . . 0 0
...

...
. . .

...
...

ãj,mp ãj,mp−1 . . . ãj,mp−s+2 ãj,mp−s+1

 . (23)

B. Obtaining Free Response

In the proposed approach, the free response can be generated
using the appropriately modified model (20). The local models
in the model (20) were normalized; now, this normalization
process should be reversed. Therefore, the model will now
have the following form:

Rule f : (24)

if yjyk−1 is B
f,jy
1 and . . . and y

jy
k−na

is Bf,jy
na

and

uju
k−1 is Cf,ju

1 and . . . and uju
k−nb

is Cf,ju
nb

then ŷj,fk = yj,f0 +

nu∑
m=1

[
pd−1∑
n=1

aj,m,f
n ·∆um

k−n

+aj,m,f
pd

·
(
um
k−pd

− um,f
0

)]
,

where yj,f0 is the value of jth output, in the f th local model
from which the step response generation started and um,f

0 is
the value of mth input, in the f th local model from which the
increase of the input was done to generate the step response.
The outputs of the model (24) are thus as follows:

ŷjk = ỹj0+

nu∑
m=1

[
pd−1∑
n=1

ãj,mn ·∆um
k−n + ãj,mpd

·
(
um
k−pd

− ũm
0

)]
,

(25)
where ỹj0 =

∑l
f=1 w̃f · yj,f0 and ũm

0 =
∑l

f=1 w̃f · um,f
0 . The

output values calculated using (25), are then used to obtain
values of the djk errors, including information about model
uncertainty:

djk = yk − ŷjk. (26)

Once djk errors are calculated, the free response can be
derived iteratively. Namely, in the first step from the prediction
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horizon, the following model (the model (24) with discrete
time moved one step further) is used:

Rule f : (27)

if yjyk is B
f,jy
1 and . . . and y

jy
k−na+1 is Bf,jy

na
and

uju
k is Cf,ju

1 and . . . and uju
k−nb+1 is Cf,ju

nb

then ŷj,fk+1 = yj,f0 +

nu∑
m=1

[
pd−1∑
n=1

aj,m,f
n ·∆um

k−n+1

+aj,m,f
pd

·
(
um
k−pd+1 − um,f

0

)]
.

However, uju
k are not known yet, but as the free response is

generated here, these values are replaced by uju
k−1. Therefore,

the premises used to obtain the activation levels of the fuzzy
rules will be as follows:

Rule f : (28)

if yjyk is B
f,jy
1 and . . . and y

jy
k−na+1 is Bf,jy

na
and

uju
k−1 is Cf,ju

1 and . . . and uju
k−nb+1 is Cf,ju

nb
.

As a result, the normalized activation levels of the fuzzy rules
w̃f

k+1|k are obtained for the (k + 1)st time step from the
prediction horizon, at the kth sampling instant and the outputs
of the model are now calculated using the formula:

ŷjk+1|k = ỹj0,k+1 +

nu∑
m=1

[
pd−1∑
n=1

ãj,mn,k+1 ·∆um
k−n (29)

+ãj,mpd,k+1 ·
(
um
k−pd

− ũm
0,k+1

)]
,

where ãj,mn,k+1 =
∑l

f=1 w̃
f
k+1|k · aj,m,f

n ,
ỹj0,k+1 =

∑l
f=1 w̃

f
k+1|k · yj,f0 , ũm

0,k+1 =
∑l

f=1 w̃
f
k+1|k · um,f

0 .
In the second time step from the prediction horizon, the

fuzzy model has the following form:

Rule f : (30)

if yjyk+1 is B
f,jy
1 and . . . and y

jy
k−na+2 is Bf,jy

na
and

uju
k+1 is Cf,ju

1 and . . . and uju
k−nb+2 is Cf,ju

nb

then ŷj,fk+2 = yj,f0 +

nu∑
m=1

[
pd−1∑
n=1

aj,m,f
n ·∆um

k−n+2

+aj,m,f
pd

·
(
um
k−pd+2 − um,f

0

)]
.

This time, uju
k , uju

k+1 and y
jy
k+1 are not known yet. Therefore,

in order to obtain the free response, uju
k and uju

k+1 are replaced
with uju

k−1. Whereas the y
jy
k+1 values are replaced with already

calculated outputs of the model, namely ŷ
jy
k+1|k. Therefore, the

premises used to obtain the activation levels in the (k + 2)nd

time step from the prediction horizon have the following form:

Rule f : (31)

if ŷjyk+1|k is B
f,jy
2 and . . . and y

jy
k−na+2 is Bf,jy

na
and

uju
k−1 is Cf,ju

1 and . . . and uju
k−nb+2 is Cf,ju

nb
.

The normalized activation levels w̃f
k+2|k are obtained for the

(k+2)nd time step from the prediction horizon and the outputs
of the model are now calculated using the formula:

ŷjk+2|k = ỹj0,k+2 +

nu∑
m=1

[
pd−1∑
n=1

ãj,mn,k+2 ·∆um
k−n (32)

+ãj,mpd,k+2 ·
(
um
k−pd

− ũm
0,k+2

)]
,

where ãj,mn,k+2 =
∑l

f=1 w̃
f
k+2|k · aj,m,f

n ,
ỹj0,k+2 =

∑l
f=1 w̃

f
k+2|k · yj,f0 , ũm

0,k+2 =
∑l

f=1 w̃
f
k+2|k · um,f

0 .
The presented procedure is repeated iteratively in the next

time steps from the prediction horizon (the model (24) is
transformed appropriately for subsequent time steps in the
prediction horizon), resulting in obtaining the normalized
activation levels of the fuzzy rules w̃f

k+i|k in each, (k + i)th

time step from the prediction horizon and calculating model
outputs in the next time steps:

ŷjk+i|k = ỹj0,k+i +

nu∑
m=1

[
pd−1∑
n=1

ãj,mn,k+i ·∆um
k−n (33)

+ãj,mpd,k+i ·
(
um
k−pd

− ũm
0,k+i

)]
,

where ãj,mn,k+i =
∑l

f=1 w̃
f
k+i|k · aj,m,f

n ,
ỹj0,k+i =

∑l
f=1 w̃

f
k+i|k · yj,f0 , ũm

0,k+i =
∑l

f=1 w̃
f
k+i|k · um,f

0 .
Then, the free response elements are calculated using the

formula:
ỹjk+i|k = ŷjk+i|k + djk. (34)

C. Optimization Problem in the Numerical and Analytical
Versions of the Algorithm

After using the free response obtained above and the dy-
namic matrix (22), one obtains the following prediction:

y = ỹ +Ak ·∆u . (35)

This prediction is then used in the optimization task (1–4),
solved by the control algorithm in each time step:

argmin
∆u

{
(y − ỹ −Ak ·∆u)T · κ · (y − ỹ −Ak ·∆u)

+∆uT ·Λ ·∆u
}

(36)

subject to:

∆umin ≤ ∆u ≤ ∆umax , (37)

umin ≤ u ≤ umax , (38)

ymin ≤ ỹ +Ak ·∆u ≤ ymax . (39)

The performance function in (36) depends quadratically on
decision variables ∆u, and all constraints depend linearly
on decision variables. Thus, a standard, easy–to–solve linear–
quadratic optimization problem is obtained.

Remark
If the optimization problem with performance function from

(36), is solved without constraints, then it has the following
solution given by the analytical formula:

∆u =
(
AT

k · κ ·Ak +Λ
)−1

·
(
AT

k · κ · (y − ỹ)
)
. (40)
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D. Including Disturbance Measurement in the Prediction

It is assumed that the fuzzy TS model (24) is expanded
with the step response model of disturbance influence on the
process, i.e.:

Rule f : (41)

if yjyk−1 is B
f,jy
1 and . . . and y

jy
k−na

is Bf,jy
na

and

uju
k−1 is Cf,ju

1 and . . . and uju
k−nb

is Cf,ju
nb

then ŷj,fk = yj,f0 +

nu∑
m=1

[
pd−1∑
n=1

aj,m,f
n ·∆um

k−n

+aj,m,f
pd

·
(
um
k−pd

− um,f
0

)]
+

pd−1∑
n=1

aj,d,fn ·∆ud
k−n + aj,d,fpd

·
(
ud
k−pd

− ud,f
0

)
,

where ∆ud
k−n is the increment of the disturbance variable at

the (k−n)th time step, ud
k−pd

is the value of the disturbance
variable at the (k− pd)

th time step, aj,d,fn are the coefficients
of disturbance step response in the f th local model, ud,f

0 is the
value of disturbance input, in the f th local model from which
the increase of the disturbance input was done to generate the
step response. The model (41) is then used to generate the free
response, as described in Section II-B. Then the formula (33)
becomes:

ŷjk+i|k = ỹj0,k+i +

nu∑
m=1

[
pd−1∑
n=1

ãj,mn,k+i ·∆um
k−n (42)

+ãj,mpd,k+i ·
(
um
k−pd

− ũm
0,k+i

)]
+

pd−1∑
n=1

ãj,dn,k+i ·∆ud
k−n + ãj,dpd,k+i ·

(
ud
k−pd

− ũd
0,k+i

)
,

where ãj,dn,k+i =
∑l

f=1 w̃
f
k+i|k · aj,d,fn and

ũd
0,k+i =

∑l
f=1 w̃

f
k+i|k · ud,f

0 .

III. SIMULATION EXPERIMENTS

A. Control Plant

The simulation experiments were done in the control system
of a nonlinear, isothermal CSTR in which the van de Vusse
reaction takes place; it is a popular benchmark, with consid-
erable nonlinearity and difficult dynamics, willingly used to
test the control algorithms; see e.g. [17], [18], [21]–[23]. The
process model of the reactor is as follows [21]:

dCA

dt = −k1 · CA − k3 · C2
A + F

V (CAf − CA) ,
dCB

dt = k1 · CA − k2 · CB − F
V CB ,

(43)

where CA, CB are the concentrations of components A and
B, respectively, F is the flow rate through the reactor, V = 1 l
is the constant volume in which the reaction takes place, CAf

is the main disturbance – the concentration of component A
in the inlet flow stream (CAf = 10 mol/l if not declared oth-
erwise). The values of reaction parameters are: k1 = 50 1/h,
k2 = 100 1/h, k3 = 10 l/(h ·mol). The output variable is the
concentration CB of substance B, and the manipulated variable
is the inlet flow rate F . The control plant is nonlinear and it

has the inverse response. Therefore, it is natural to use an MPC
algorithm to control it.

The fuzzy models used in the researched algorithm are
composed of three step responses obtained near the following
operating points [17], [18]:
R1: y1,10 = CB0,1 = 0.91 mol/l, u1,1

0 = F0,1 = 20 l/h,
ud,1
0 = CAf0,1 = 10 mol/l;

R2: y1,20 = CB0,2 = 1.12 mol/l, u1,2
0 = F0,2 = 34.3 l/h,

ud,2
0 = CAf0,2 = 10 mol/l;

R3: y1,30 = CB0,3 = 1.22 mol/l, u1,3
0 = F0,3 = 50 l/h,

ud,3
0 = CAf0,3 = 10 mol/l.

The assumed membership functions are as follows
(C̃ = CB,k−1):

µR1(C̃) =


1 if C̃ ≤ 0.91,

1.12−C̃
0.21 if C̃ ∈ (0.91, 1.12),

0 if C̃ ≥ 1.12.

(44)

µR2(C̃) =


0 if C̃ ≤ 0.91 or C̃ ≥ 1.22,

C̃−0.91
0.21 if C̃ ∈ (0.91, 1.12),

1.22−C̃
0.1 if C̃ ∈ (1.12, 1.22).

(45)

µR3(C̃) =


0 if C̃ ≤ 1.12,

C̃−1.12
0.1 if C̃ ∈ (1.12, 1.22),

1 if C̃ ≥ 1.22.

(46)

B. Responses to Setpoint Changes

For the considered control plant, three MPC algorithms were
designed:
— NMPC one based on the nonlinear model and nonlinear
optimization,
— LMPC one based on a linear model in the form of the step
response (of DMC type) obtained near the R2 point and the
— FMPC algorithm using two fuzzy models. The first one –
with local models in the form of normalized step responses;
the dynamic matrix is generated using this model. The second
one is the fuzzy model with denormalized step responses; it
is used to generate the free response.

During the experiments, the operation of the FMPC algo-
rithm was compared with the operation of the NMPC and
LMPC algorithms. The simulation experiments were done
in Matlab. The sampling time equal to Ts = 3.6 s was
assumed; the initial values of tuning parameters were as
follows: prediction horizon p = 70, control horizon s = 35,
and weighting coefficient λ = 0.001.

Responses of the control system to changes in the setpoint
to CB1 = 1 mol/l and to CB2 = 1.25 mol/l are shown in
Figure 1. In the case when the setpoint has been changed to
CB1 = 1 mol/l, responses obtained in the control system with
the FMPC algorithm (blue lines in Figure 1) are very close to
those obtained with NMPC algorithm (red lines in Figure 1).
Both algorithms generate almost no overshoot, which occurs
in the control system with the LMPC algorithm (green lines
in Figure 1); as a result, the settling time is much shorter in
the control systems with the NMPC and FMPC algorithms,
both algorithms based on nonlinear models work almost the
same. If the setpoint has been changed to CB2 = 1.25 mol/l,
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the response obtained with the FMPC algorithm is faster
than the one generated with the NMPC algorithm; the LMPC
algorithm is much slower than its nonlinear counterparts. All
the algorithms generate no overshoot.

Fig. 1. Responses of the control system to changes in the setpoint to
CB1 = 1 mol/l and CB2 = 1.25 mol/l; λ = 0.001; NMPC—red lines,
LMPC—green lines, FMPC—blue lines

To check if the tested algorithms can work faster, ex-
periments with λ = 0.0001 were also done; see Figure 2.
The algorithms work faster, with more aggressive control
action. However, the relations between the operation of the
FMPC, NMPC, and LMPC algorithms remain the same as
in the previous case (λ = 0.001; Figure 1). In the case of
setpoint change to CB2 = 1 mol/l, the FMPC algorithm
offers practically the same control performance as the NMPC
algorithm; for setpoint change to CB2 = 1.25 mol/l, the FMPC
algorithm works faster.

The control horizon decides on the number of decision
variables in the optimization problem solved by the MPC
algorithm to generate the control action; thus, shortening the
control horizon causes the optimization problem to be solved
faster. Therefore, in the next experiments, the influence of
shortening of the control horizon on the control performance
offered by the FMPC algorithm has been checked (Figure 3).

Fig. 2. Responses of the control system to changes in the setpoint to
CB1 = 1 mol/l and CB2 = 1.25 mol/l; λ = 0.0001; NMPC—red lines,
LMPC—green lines, FMPC—blue lines

For many values of the control horizon (between s = 35
(black lines in Figure 3) and for s = 10 (dashed green lines in
Figure 3)), the obtained responses remain unchanged, and the
control horizon can be shorted significantly. The changes in
the responses start to occur for smaller values of the control
horizon. For s = 5 (magenta lines in Figure 3), the response to
the setpoint change to CB1 = 1.25 mol/l remains unchanged.
Unfortunately, the response to the setpoint change to CB1 = 1
mol/l becomes slower. The observed tendencies remain the
same when the control horizon is further decreased to s = 3
(orange lines in Figure 3), s = 2 (cyan lines in Figure 3) and
s = 1 (blue lines in Figure 3). For the control horizon s = 1,
the response to the setpoint change to CB1 = 1.25 mol/l is
the fastest one. Unfortunately, it is achieved at the cost of the
slowest responses to the setpoint change to CB1 = 1 mol/l.

To sum up, decreasing the control horizon can be useful. It
may simplify the computations done by the algorithm at each
sampling instant. However, decreasing the control horizon
should be done carefully to achieve a demanded balance
between numerical complexity and control performance.
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Fig. 3. Responses of the control system with FMPC algorithm and λ = 0.001
to changes in the setpoint to CB1 = 1 mol/l and CB2 = 1.25 mol/l;
s = 35—black lines, s = 10—green dashed lines, s = 5—magenta lines,
s = 3—cyan lines, s = 2—orange lines, s = 1—blue lines

C. Disturbance Compensation

Next, responses of the control system to the change of
the disturbance by 10% in the 6th minute of the experiment
has been obtained (Figure 4). The FMPC algorithm is slower
than the NMPC one; both algorithms compensate the dis-
turbance without overshoot. The LMPC algorithm generates
the overshoot. The NMPC algorithm compensates the distur-
bance best. Fortunately, the proposed FMPC algorithm can be
supplemented with the mechanism of including disturbance
measurement in the prediction, as described in Section II-D;
the appropriate experiment has been done and the responses
depicted in Figure 5 has been obtained. The FMPC algo-
rithm better compensates the disturbance after including the
mechanism (red lines in Figure 5) than in the case when
disturbance measurement is not exploited (blue lines in Figure
5). The maximal control error is significantly reduced (by
around 70%).

IV. CONCLUSIONS

The proposed method of designing MPC controllers is based
on the easy–to–obtain fuzzy models. The model with denor-

Fig. 4. Responses of the control system to the change of the disturbance by
10% in the 6th minute of the experiment (λ = 0.001); NMPC—red lines,
LMPC—green lines, FMPC—blue lines

malized step responses allows us to obtain the free response,
which well resembles the behavior of the nonlinear control
plant. Thanks to such an approach, a very good prediction is
obtained; however, it is linear with respect to control changes
(decision variables in the optimization problem). Therefore,
the optimization problem solved in each iteration by the FMPC
algorithm is efficient, easy to solve linear–quadratic problem.
Despite that, the FMPC algorithm offers a control performance
that is very close to that of the NMPC algorithms.

The FMPC algorithm and the method of its design can be
useful in the following cases:

1) It can be used to relatively easy update the existing
control system with the classical DMC algorithm based
on a linear model to offer better control quality. Namely,
it is just sufficient to obtain a few step responses near a
few operating points, extending the process model with
them, formulating a fuzzy model, which then is used
to design the FMPC algorithm offering better control
performance than the classical MPC algorithm.

2) It can be used to design a controller for a highly
nonlinear process with difficult dynamics.
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Fig. 5. Responses of the control system with FMPC algorithm and λ = 0.001
to the change of the disturbance by 10% in the 6th minute of the experiment;
mechanism of disturbance measurement utilization: not employed—blue lines,
employed—red lines

3) It can also be used as a support for the NMPC algorithm.
It can generate the (suboptimal) solution relatively fast,
which can be a good starting point for the NMPC
algorithm. Now, the NMPC algorithm can improve the
solution during the current time step, but if it does not
succeed, one has a pretty good solution found by the
FMPC algorithm.
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