
1. Introduction 

Heat transfer has always played a crucial role in industry and 

mechanical systems. It enables the transfer of thermal energy 

between substances without direct contact or mixing [1]. Appli-

cations of heat exchangers span various sectors, including the 

chemical industry, food processing, space heating, heat recovery 

systems, vegetable drying, paper treatment and air conditioning 

[2]. The design of heat exchangers can vary significantly de-

pending on their type and intended function. As a result, numer-

ous configurations have been developed by modifying shapes, 

sizes, materials, and incorporating various types of flow disrup-

tors or mixers into the heat exchange regions.  

Methods for enhancing the thermal performance of heat ex-

changers are generally classified into three categories: active, 

passive and combined enhancement techniques. Active methods  
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Abstract 

This study investigates the potential of machine learning models as efficient alternatives to traditional computational meth-

ods for evaluating the performance of earth-air heat exchanger systems. A validated numerical model was used to simulate 

system behaviour under varying parameters, including soil type, pipe material, number of internal twisted tabs and outlet 

temperature. Based on these simulations, a dataset comprising 216 entries was generated to train three machine learning 

models: support vector regression, gradient boosting and decision trees. The gradient boosting model achieved the highest 

predictive accuracy, with a root mean square error of 0.0188 and a mean absolute error of 0.0138. Support vector regression 

and decision trees also demonstrated strong performance, with prediction accuracies of 97% and 96%, respectively. Addi-

tionally, the proposed earth-air heat exchanger design with twisted tabs showed superior thermal performance compared 

to the conventional configuration. Over extended operation, the temperature difference between inlet and outlet exceeded 

7°C, with the new configuration system incorporating 10 tabs yielding optimal performance. This configuration led to more 

than a 10% improvement in thermal efficiency and an increase of approximately 25% in the heat transfer coefficient. These 

results confirm that integrating machine learning with advanced earth-air heat exchanger designs offers a reliable and 

computationally efficient approach for enhancing system performance. 
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Nomenclature 

Cp ‒  pipe thermal specific heat, kJ/(kg K) 

Cε1, Cε2,Cμ ‒ constants of the k–ε model 

D ‒ pipe diameter, m 

h ‒   heat transfer coefficient, W/(m²·K) 

k – turbulent kinetic energy, (J/kg)  

L – length of the pipe, m 

Pr ‒ Prandtl number 

Qc ‒cooling capacity, W 

T  – temperature, K 

𝑢𝑖 – velocity component in the i-th direction, m/s  

V ‒ flow velocity of the fluid, m/s 

Z ‒ pipe buried depth, m 

 

Greek symbols 

ρ – density of the fluid, kg/m3 

λ – thermal conductivity, W/(m K) 

ε  –  dissipation rate of k,  W/kg  

μ  – viscosity, kg/(m s) 

𝜎𝑘, 𝜎𝜀 – turbulent Prandtl numbers for k–ε 

 

 

Subscripts and Superscripts 

in – inlet 

out – outlet 

s – soil 

p – pipe  

t – turbulent 

 

Abbreviations and Acronyms 

AL – aluminium 

ANN– artificial neural networks 

CFD – computational fluid dynamics 

EAHE– earth-to-air heat exchanger 

EAHET– earth air heat exchanger with twisted tab 

HDPE– high-density polyethylene 

MAE – mean absolute error 

NN – neural network 

NSE – Nash-Sutcliffe efficiency 

PVC – polyvinyl chloride 

RANS – Reynolds–averaged Navier–Stokes equations 

RMSE – root mean square error 

RSM – response surface methodology 

SD – standardised value  

SVR – support vector regression  

rely on external power sources and employ techniques such as 

magnetic fields, auxiliary mechanical systems, fluid injection or 

surface vibrations. In contrast, passive methods are more com-

monly studied and applied, as they require no additional energy 

input and are relatively easy to implement [3,4]. Aziz and 

Rehman [5] numerically simulated a small heat exchanger 

equipped with six baffles. By sequentially removing each baffle 

plate, they found that removing the inlet and outlet baffles had 

minimal impact on pressure drop, while removing the central 

baffles caused significant pressure fluctuations. Muszyński and 

Dorao [6] conducted an experimental study to evaluate the per-

formance of a heat exchanger module with an enhanced surface. 

Their results indicated a 60% improvement in heat flux. The en-

hancement of heat transfer in various innovative heat exchanger 

designs using computational fluid dynamics (CFD) has also 

been widely documented in the literature. A comparative study 

conducted by Serrao et al. [7] using ANSYS Fluent evaluated 

the performance of smooth and corrugated tubes. Their CFD 

analysis showed that the corrugated tube exhibited a 54.7% in-

crease in the overall heat transfer coefficient compared to the 

smooth tube. Vignesh et al. [8] and Wang et al. [9] used compu-

tational methods to investigate the impact of dimples on the ther-

mal performance of heat exchangers. They found that dimpled 

tubes led to a higher temperature rise and pressure drop com-

pared to smooth tubes. Kumar et al. [10] analysed the heat trans-

fer and flow characteristics of double helically coiled tube heat 

exchangers. Extensive research has also been conducted on the 

performance and efficiency of tubes operating in turbulent flow 

regimes [11]. Kishan et al. [12] performed a numerical study on 

different flow patterns inside the tubes of shell-and-tube heat ex-

changers. Sharma et al. [13] examined flow patterns, pressure 

drops, and heat transfer coefficients in both staggered and inline 

configurations of shell-and-tube heat exchangers. Larwa and 

Kupiec [14] proposed analytical relationships based on Green's 

function theory to model heat transfer in spiral ground heat ex-

changers. Rahimi et al. [15] carried out both numerical and ex-

perimental investigations on four types of inserts: classic, perfo-

rated, notched and jagged twisted tapes, and found that the jag-

ged insert yielded the best heat transfer performance. Molcrette 

and Autier [16] introduced a new formula to estimate earth en-

ergy for earth–air pipe heat exchangers during winter heating. 

Their study emphasised how various parameters affect the 

proper sizing of the system. In an experimental study, Nawaz 

and Prakach [17] tested three horizontal PVC pipes of different 

diameters to evaluate the thermal performance of an earth-to-air 

heat exchanger, concluding that the smallest pipe diameter pro-

vided the highest efficiency. 

In recent years, artificial intelligence (AI) has attracted con-

siderable attention due to its exceptional ability to deliver posi-

tive outcomes across various fields. Among AI techniques, ma-

chine learning (ML) has been widely adopted by researchers for 

identifying optimal process parameters [18]. This approach of-

fers significant advantages, including reduced computational 

time, enhanced productivity and minimal human intervention. 

Of the many ML techniques available, supervised and unsuper-

vised learning models are the most commonly employed in ther-

mal system research [19,20]. In the context of heat exchangers, 

the heating or cooling capacity, typically quantified by the heat 

transfer rate, is a critical performance parameter. 

Numerous studies have applied machine learning methods to 

predict heat exchanger performance. For instance, Karami et al. 

[21] assessed the effectiveness of an artificial neural network 

(ANN) in predicting heat transfer. Their experimental and nu-

merical investigations on tubes with butterfly inserts considered 

the influence of insert inclination angle and Reynolds number 

variation. The ANN, developed in MATLAB, achieved a train-

ing error of 0.109% and a testing error of 0.509%, indicating 

high agreement between predicted and experimental results. 
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Li et al. [22] and Shojaeefard et al. [23] focused on predicting 

cooling capacity. Li et al. implemented a neural network based 

on response surface methodology (RSM), while Shojaeefard  

et al. explored different ANN architectures. 

Deb et al. [24] employed a regression-based classification 

ML model to predict output parameters from a given set of in-

puts. The model's accuracy was evaluated using the residual sum 

of squares method, with results showing strong agreement be-

tween predicted and simulated values for fluid outlet tempera-

ture and pressure drop. Liao et al. [25] combined multilayer per-

ceptron (MLP) networks with Bayesian optimisation to design 

an optimal near-field thermal radiative modulator, considering 

variables such as rotation angle, layer thickness, and gap dis-

tance between layers. 

Ren et al. [26] explored advanced techniques by integrating 

reinforcement learning with proximal policy optimisation (PPO) 

and the non-Oberbeck–Boussinesq (NOB) approximation. They 

achieved a 76% improvement in heat transfer by developing 

a smart active flow control system for laminar flow enhance-

ment. Wang and Vafai [27] applied support vector regression 

(SVR) algorithms in conjunction with thermal simulations to ac-

curately predict temperature variations in hotspots within multi-

layer 3D electronic chips. 

Çolak et al. [28] employed the Levenberg–Marquardt train-

ing algorithm to develop two predictive models aimed at esti-

mating key performance parameters, including the overall heat 

transfer coefficient, pressure drops on both the tube and annulus 

sides, and the total cost. Each model was trained using a dataset 

comprising 438 samples and incorporated a hidden layer with 

15 neurons. Model 1 achieved estimation deviations of 0.16% 

for the overall heat transfer coefficient, −0.23% for the tube-side 

pressure drop, −0.02% for the annulus-side pressure drop, and 

−0.003% for the overall cost. Model 2 yielded deviations of 

0.02%, −0.18%, −0.16%, and −0.15%, respectively, for the 

same parameters. Due to the limited availability of experiment-

tal and parametric studies in nanofluid applications, Çolak 

et al. [29] evaluated the use of an AI-based approach to estimate 

key performance parameters. Utilising six input variables, the 

model achieved deviation rates of −0.66%, 0.001%, and 0.12% 

for the respective outputs, demonstrating the method's effective-

ness in compensating for the lack of empirical data. 

Shell and helically coiled tube heat exchangers are increas-

ingly utilised in industrial applications due to their compact de-

sign and enhanced heat transfer surface area compared to con-

ventional models. In the study conducted by Çolak et al. [30], 

two distinct ANN architectures were developed using a dataset 

of 105 samples. These models were designed to predict key out-

put parameters, including the heat transfer coefficient, pressure 

drop, Nusselt number, and performance evaluation criteria. In 

recent study by Çolak et al. [31], an ANN was employed to pre-

dict the Nusselt number, friction factor and performance evalu-

ation criteria for heat transfer in straight corrugated tubes, based 

on flow rate and corrugation parameters. The model was specif-

ically developed to estimate the flow and thermal behaviour of 

corrugated tubes operating at low flow rates. This proposed ap-

proach offers a valuable tool for thermal system applications, 

providing accurate predictions that can assist designers in im-

proving system efficiency. 

The purpose of this study is to enhance the energy efficiency 

of climate control systems through the optimisation of earth-to-

air heat exchanger (EAHE) design and operation using twisted 

tabs. While EAHEs are well-established for utilising stable sub-

soil temperatures to moderate indoor climates, their thermal per-

formance can still be significantly improved. However, several 

critical research challenges persist in the literature. First, the in-

tegration of passive flow control devices, such as twisted tabs, 

into EAHE systems remains underexplored, with limited numer-

ical or experimental investigations of their effect on flow struc-

ture and heat transfer. Second, traditional CFD-only approaches, 

while accurate, are often computationally expensive and imprac-

tical for real-time design or operational optimisation. Third, 

there is a lack of scalable, predictive frameworks that combine 

physical modelling with data-driven techniques to address per-

formance variability across diverse environmental and geomet-

ric conditions. 

To address these gaps, this study introduces a dual-strategy 

approach that combines passive geometric enhancement with 

advanced data-driven modelling. Specifically, twisted tabs are 

employed within the EAHE ducts to enhance airflow turbulence 

and improve thermal exchange between ambient air and sur-

rounding soil. In parallel, a hybrid framework combining (CFD) 

simulations with (ML) algorithms is developed to predict and 

optimise thermodynamic performance. This integrated method-

ology offers a scalable and practical solution for real-time per-

formance assessment and efficient HVAC system design in 

modern sustainable buildings. 

2. Materials and methods  

2.1. Geometry and input description 

2.1.1. Computational setup 

To analyse the complex airflow and heat transfer phenomena 

within an earth–air heat exchanger (EAHE) system, this study 

adopts the geometric configuration proposed by Bansal 

et al. [32] as a baseline reference. A schematic of the investi-

gated EAHE setup is provided in Fig. 1. The system comprises 

a polyvinyl chloride (PVC) pipe horizontally buried at a depth 

of 2.7 meters below the ground surface, with an inner diameter 

of 0.15 meters and a total length of 23.42 meters. 

At the inlet, ambient air is introduced into the pipe with 

a uniform velocity of 5 m/s, a temperature of 42°C, and a turbu-

lence intensity of 5%, consistent with typical hot and arid cli-

matic conditions. The outlet boundary is treated as a pressure 

outlet with zero gauge pressure, allowing for fully developed 

flow. The pipe wall is assumed to be thermally conductive, al-

lowing heat exchange between the airflow and the surrounding 

soil. The outer soil boundary is modelled as a fixed temperature 

boundary, based on the annual average subsoil temperature at 

the burial depth. No-slip conditions are applied to all solid sur-

faces. 
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The simulation employs the standard k–ε turbulence model, 

selected for its enhanced performance in capturing swirling and 

recirculating flows, as commonly observed in EAHE applica-

tions. The residual convergence criteria for all transport equa-

tions are set to 10⁻⁶ to ensure numerical stability and accuracy. 

Furthermore, the working fluid (air) is treated as an incompress-

ible ideal gas, and the surrounding soil is assumed homogeneous 

with constant thermal properties. This study investigates a novel 

configuration of an (EAHET), wherein twisted tabs are inserted 

within the inner tube to enhance thermal performance. As de-

picted in Fig. 1, the twisted tabs are strategically placed along 

the inner wall of the tube to promote turbulence and improve 

heat transfer between the air and the surrounding soil. The anal-

ysis explores the impact of the number of twisted tabs, specifi-

cally 2, 5, 10, 15 and 20 tabs, on the system’s thermal behaviour. 

Each configuration is labelled accordingly as EAHET-02, 

EAHET-05, EAHET-10, EAHET-15 and EAHET-20. In addi-

tion to tab quantity, the study examines the influence of different 

inner tube materials, including polyvinyl chloride (PVC), alu-

minium (AL) and high-density polyethylene (HDPE), as well as 

the effect of soil thermal conductivity. These parameters are 

evaluated through detailed CFD simulations to assess their roles 

in enhancing the heat transfer efficiency of the EAHET system. 

The details of thermo-physical properties of air, soil and inner 

tube materials are presented in Table 1. The temperature se-

lected at the pipe's entrance in these suggested designs is based 

on the location of our nation; on average, it is around 42°C. 

2.1.2.Turbulence model validation 

To perform this study, multiple simulations were conducted us-

ing ANSYS CFX software [33]. In this solver package, the 

Reynolds-averaged Navier–Stokes (RANS) equations are 

solved using the finite volume method to discretise the continu-

ity, momentum, and energy equations. A second-order upwind 

scheme is applied to solve the momentum, energy, and turbu-

lence model equations. For pressure–velocity coupling, the 

 

(a) 

 

 

 
 

 

 
 

(b) 

Fig 1. Schematic of the integrated EAHE system (a) and computational domain of EAHE system with twisted tabs (b). 
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SIMPLEC algorithm [34] is employed. The governing equa-

tions, which represent the conservation of mass, momentum, 

and energy, are expressed as follows [35]: 

 
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0, (1) 

 𝜌𝑢̅𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
= −

𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅], (2) 

  
𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑇) =

𝜕

𝜕𝑥𝑗
[(

𝜆

𝐶𝑝
+

𝜇𝑡

𝑃𝑟𝑡
)

𝜕𝑇

𝜕𝑥𝑗
], (3) 

where p is the pressure, T is the temperature and ui represents the 

velocity component in the i-th direction. Parameter cp represents 

the specific heat capacity,  is the density, λ is the thermal con-

ductivity, t and Prt are the turbulent viscosity and turbulent 

Prandtl number, respectively. 

Modelling of the Reynolds stresses (−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) in Eq. (2) is 

done using the Boussinesq hypothesis [36], which relates the 

Reynolds stresses to the mean velocity gradients via the follow-

ing equation: 

 −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
) 𝛿𝑖𝑗. (4) 

Turbulent quantities in the Navier–Stokes equations are 

treated using the turbulent viscosity t, which is given by: 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
,       𝐶𝜇 = 0.085. 

According to the literature, this choice aligns with several 

recent CFD-based EAHE studies. For instance, Rahimi et al. 

[14] and Bansal et al. [32] utilised k–ε-based turbulence models 

and obtained reliable predictions of temperature distribution and 

energy efficiency. In the present study, the standard k–ε model 

effectively captured the axial temperature decay and overall heat 

exchange behaviour, while maintaining reasonable computa-

tional costs for long-duration simulations. Additionally, the k–ε 

model exhibited good agreement with experimental data by ac-

curately representing turbulent flow characteristics and predict-

ing heat transfer rates, making it well-suited for assessing the 

thermal performance of EAHE systems under complex flow 

conditions. 

The governing transport equations for the turbulent kinetic 

energy (k) and its dissipation rate (ε) are solved using the RNG 

k–ε turbulence model, which provides enhanced accuracy for 

flows with strong streamline curvature and high strain rates, 

such as in film-cooling jets. The general form of these equations 

can be expressed as follows: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 + 𝑃𝑘𝑏 − 𝜌𝜀, (5) 
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)

𝜕𝜀
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] + 

                                              +
𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝜌𝐶𝜀2𝜀 + 𝐶𝜀1𝑃𝜀𝑏), (6) 

 𝑃𝑘 = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖
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−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
(3𝜇𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜌𝑘), (7) 

where 𝑃𝑘𝑏  and 𝑃𝜀𝑏  stand for the buoyancy forces' influence. The 

turbulence caused by viscous forces, or 𝑃𝑘, is represented by the 

following model: 

 𝑃𝑘 = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
(3𝜇𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜌𝑘). (8) 

The empirical constants used in the RNG k–ε model are sum-

marised in Table 2. These constants are derived from the model 

calibration and govern the production, dissipation and diffusion 

of turbulence quantities within the computational domain. 

The heat transfer coefficient (h) is expressed as: 

 ℎ =
𝑄𝐶

𝜋𝑑𝐿(𝑇𝑖𝑛−𝑇𝑜𝑢𝑡)
, (9) 

where 𝑄𝐶  is the total thermal energy extracted from the air, 

𝑑 and 𝐿 is the inner diameter and length of EAHE, respectively; 

the fluid temperatures at the inlet and outlet are Tin and Tout, re-

spectively. 

2.1.3. Grid independence study 

The transient temperature field surrounding the horizontally 

buried pipe of the EAHE system was analysed using an unstruc-

tured grid and CFD-based modelling. As seen in Fig. 2, temper-

ature gradients are more noticeable close to the pipe wall, thus 

a denser mesh was used there and a coarser one further away. 

To predict the system's thermal performance and evaluate the 

cooling capacity of the earth-air heat exchanger, a transient and 

implicit numerical model was used. This model is based on the 

coupled simulation of heat transfer and turbulent airflow. 

To accurately replicate real conditions and ensure high pre-

cision, element type and mesh density were varied according to 

the temperature sensitivity of each region. As illustrated in 

Fig. 2a, the number of mesh elements significantly affects the 

outcome of the CFD analysis. Increasing the element count im-

proves solution quality up to a certain threshold. A mesh with 

Table 1. Properties of materials. 

Material  
Density 
[kg/m3] 

Specific heat 
capacity 
[J/(kg K)] 

Thermal 
conductivity 
[W/(m K)] 

Air 0.0242 1.225 1006 

PVC 1380 900 0.16 

HDPE 940 2000 0.4 

AL 2702 903 237 

Soil 1 2050 1840 0.52 

Soil 2 2215 1260 1.26 

Soil 3 1700 906 2.1 

 

Table 2. The RNG k–ε turbulence model constants. 

Symbol 𝑪𝜺𝟏 𝑪𝜺𝟐 𝑪𝝁 𝝈𝒌 𝝈𝜺 

Value 1.44 1.92 0.09 1.0 1.3 
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1.4 million elements was selected for the 54 simulation cases 

examined in this study. Figure 2b presents the simulated tem-

perature distribution along the length of the PVC pipe. With the 

exception of the inlet region, the CFD predictions exhibit con-

sistently lower temperature values compared to the correspond-

ing experimental measurements throughout the pipe. 

3. Artificial neural network modelling  

and validation 

The goal of this stage is to collect sufficient data to build a com-

prehensive dataset for training and testing artificial intelligence 

models. The selected input parameters include the number of 

twisted tabs, the thermal conductivity (λ) of the soil, and the ma-

terial of the tube. The outlet air temperature is designated as the 

output variable. Current machine learning models rely on small 

datasets for training, enabling more effective extraction of pat-

terns and relationships within the data. This approach enhances 

the model's generalization ability, simplifies data collection and 

reduces the time required for numerical simulations. 

3.1. Methodology 

Boundary conditions obtained from numerical simulations are 

commonly used as input parameters for machine learning 

prediction models (Vu et al. [37], Chen et al. [38]). Traditional 

models typically require large datasets generated through 

extensive simulations to effectively capture the underlying 

patterns and relationships in the system. In contrast, the current 

study demonstrates that high predictive performance can be 

achieved using only 216 data points. Despite the limited dataset, 

the machine learning models showed excellent accuracy when 

tested against the observed data.  
The goal of this stage is to collect sufficient data to build 

a comprehensive dataset for training and testing artificial intel-

ligence models. The selected input parameters include the num-

ber of twisted tabs, the thermal conductivity (λ) of the soil and 

the material of the tube, while the outlet air temperature is des-

ignated as the output variable. As illustrated in Fig. 3, the ma-

chine learning workflow involves data pre-processing, model 

training using algorithms, such as decision tree (DT), SVR and 

 

 
 

Fig. 3. Flowchart explaining the methodology. 

(a) 

 

(b) 

Fig. 2. Grid independence (a) and model validation (b). 
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gradient boosting (GB), and subsequent model evaluation and 

selection. Current machine learning models rely on small da-

tasets for training, enabling more effective extraction of patterns 

and relationships within the data. This approach enhances the 

model's generalisation ability, simplifies data collection, and re-

duces the time required for numerical simulations. 

3.2. Data preparation for training 

Before training a machine learning model, it is essential to pre-

process the dataset to ensure optimal performance. In this study, 

standardisation was applied, which is a common feature scaling 

method. Standardisation transforms the data so that it has 

a mean of 0 and a standard deviation of 1, ensuring that all fea-

tures contribute equally to the model, regardless of their original 

scales [39,40]. The data were transformed using the following 

standardisation equation: 

 Standardised value =  
original value−mean value

standard deviation
. (10) 

For this research, multiple predictive models were evaluated, 

and only three models, namely DT, SVR and GB, were chosen 

based on their accuracy. The model that is selected for this study 

is the gradient boosting model. Prior studies have suggested that 

gradient boosting is effective in working with smaller datasets 

(Jiang et al. [41], Lubke et al. [42], Cha et al. [43]).  

Gradient boosting is a unique example of ensemble learning 

in machine learning that is well known for its accuracy in per-

forming regression tasks is gradient boosting. It uses the predic-

tions of several weak learners, typically decision trees, to create 

a strong predictive model. The strategy is to build models itera-

tively, where every new model attempts to minimise the error 

left by its previous counterpart by fitting it to the residuals (er-

rors) of a pre-existing ensemble, thereby minimising a chosen 

metric, for instance, mean squared error. Gradient boosting is 

popular because of its effectiveness with many types of data and 

also because it reveals the most important features to be consid-

ered, making the task of finding key factors in the data quite easy 

and straightforward. 

Figure 4 presents a comparison between actual and predicted 

values across six machine learning models. Ensemble methods 

such as GB, CatBoost, and XGBoost exhibit strong agreement 

 

 

 

 

 

 

 

  
 

 

Fig. 4. Comparison of observed and predicted values from the trained models. 
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with the ideal prediction line, validating their credibility in cap-

turing the data trends accurately. In contrast, although SVR and 

DT exhibit some deviation from the reference line, they still 

demonstrate satisfactory performance in this study, proving to 

be effective modelling tools. Despite their limitations, they con-

tribute valuable insights and remain relevant within the scope of 

the analysis.  

The training set comprises 80% of the total data, while the 

remaining 20% is allocated for testing the model's performance. 

This split is done prior to any pre-processing, such as standard-

isation, to prevent data leakage and ensure that the model's eval-

uation is unbiased and reflects its true generalisation capability 

[44]. The model's performance is checked using a line graph of 

the data fit and three key evaluation measures. These measures 

are root mean squared error (RMSE) [45], mean absolute error 

(MAE) [46], and the Nash-Sutcliffe efficiency (NSE) [47]. 

These methods are well-known and often used to assess how 

well machine learning models make predictions. This quantita-

tive comparison shows that the GB model developed in this 

work not only outperforms other models used in this study (e.g. 

SVR, DT), but also clearly exceeds the performance of existing 

traditional or physics-based models reported in the literature. 

This affirms the robustness and accuracy of the GB model for 

modelling the thermal behaviour of earth-air heat exchangers 

(EAHEs), especially when enhanced with integrated twisted 

tabs. 

In terms of goodness of fit, the GB model achieved an 

NSE/R² value of 0.9930 on the test set, which is higher than the 

0.9648 reported for light gradient boosting machine (LGBM) in 

and 0.9572 for random forest (RF) in [48], and 0.9611 for SVR, 

highlighting its superior ability to capture the variance in the 

data. 

The results presented in Table 3 clearly demonstrate the su-

perior predictive performance of the GB model compared to 

both the other machine learning models evaluated in this study 

and the traditional/physics-based models reported in the litera-

ture [48]. During the testing phase, the GB model achieved the 

lowest RMSE of 0.1032 and MAE of 0.0612, outperforming 

Gong et al.’s LGBM model, which yielded an RMSE of 0.2856 

and an MAE of 0.2242. Similarly, in the training phase, the GB 

model achieved an RMSE of 0.0188 and an MAE of 0.0138, 

which are significantly better than those reported for the LGBM 

(0.1929 and 0.134, respectively), and much lower than the SVR 

(0.3647, 0.2169) and RF (0.2868, 0.178) models in [48]. 

4. Results and discussion 

Twisted tabs are incorporated into (EAHEs) to improve their 

thermal performance. As depicted in Fig. 5, these internal ele-

ments alter the heat transfer characteristics by increasing the ef-

fective surface area for thermal exchange and enhancing con-

vective flow. The inclusion of twisted tabs leads to a noticeable 

improvement in the heat transfer coefficient when compared to 

the baseline configuration without inserts. However, this en-

hancement does not scale linearly with the number of tabs. Be-

yond a certain threshold, the increasing number of twisted tabs 

induces excessive turbulence within the airflow, which, while 

initially beneficial, ultimately results in reduced residence time 

of the air in contact with the heat transfer surface. Consequently, 

the thermal exchange efficiency begins to deteriorate despite 

higher turbulence levels. Furthermore, the system may reach 

a state of excessive mixing, wherein the intensification of turbu-

lence ceases to contribute positively to thermal performance and 

may even become counterproductive. 

The graphs in Fig. 6 illustrate the temperature variation 

along the normalised length of the tube for various tube 

materials (PVC, HDPE and AL) and six different design 

configurations, all evaluated under the same soil condition 

(soil 3). The temperature profiles consistently show a decline 

with increasing x/L, indicating progressive cooling of the 

airflow along the tube. Notably, all five modified configurations 

Table 3. Statistical evaluation of the performance of the three models. 

 
MODEL 
 

 
RMSE 

 
MAE 

 
NSE / R2 

 Train Dataset Test Dataset Train Dataset Test Dataset Train Dataset Test Dataset 

SVR 0.2629 0.3175 0.1790 0.2768 0.9776 0.9333 

SVR, Gong et al. [48] 0.3647 0.30 0.2169 0.2331 0.9579 0.9611 

Decision tree 0.0126 0.3531 0.102 0.2011 0.9661 0.9175 

RF, Gong et al. [48] 0.2868 0.3151 0.178 0.2335 0.9740 0.9572 

Gradient boosting 0.0188 0.01032 0.0138 0.0612 0.9999 0.9930 

LGBM, Gong et al. [48] 0.1929 0.2856 0.134 0.2242 0.9882 0.9648 

 

 

Fig.5. Heat transfer coefficient for various configurations of EAHE. 
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yield lower outlet temperatures compared to the basic case, 

which can be attributed to the enhanced turbulence and 

improved convective heat transfer resulting from the 

incorporation of twisted tabs. As only soil 3, characterised by 

a relatively high thermal conductivity (see Table 1), was 

considered in this analysis, its pronounced effect on the thermal 

performance  of  the  EAHE  system  is  evident.  Higher  conduc- 

tivity facilitates more efficient heat exchange between the 

subsurface soil and the air flowing through the tube, thereby 

improving the overall cooling effectiveness of the system. 

Figure 7 illustrates the temperature contours at the outlet of 

a heat exchanger, emphasising the impact of incorporating 

a twisted tab within the inner tube. The presence of twisted tabs 

generates vortices along their surfaces, which enhances 

turbulence in the airflow, disrupts the thermal boundary layer, 

 

 

 

Fig.6. Temperature in the pipe centerline for various tube materials. 
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Fig.7. Temperature contours at the outlet of a heat exchanger. 
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and promotes better mixing between hotter and cooler regions. 

As depicted in the figure, the flow contours in the basic case 

without twisted tabs are more irregular and display cooler 

regions at the outlet. This indicates less effective heat transfer, 

primarily due to the presence of laminar flow near the tube 

walls. This behaviour is consistently observed across the three 

tube materials studied: PVC, HDPE and AL. 

The effectiveness of incorporating twisted tabs into the 

EAHE system (referred to as EAHETs) is evident in the temper-

ature contours, where the temperature difference between the in-

let and outlet can reach up to 7°C. This cooling effect can be 

further enhanced with extended system operation. Additionally, 

Fig. 7 highlights the influence of tube materials on the perfor-

mance of both EAHE and EAHET systems. Among the tested 

materials, the aluminium tube yielded the lowest outlet temper-

ature. This indicates that the combination of high thermal con-

ductivity and the presence of twisted tabs significantly improves 

heat transfer. The twisting of the wall promotes enhanced fluid 

mixing, maintaining a strong temperature gradient near the tube 

surface and thereby increasing the overall heat exchange effi-

ciency. 

Figure 8 illustrates the findings of the sensitivity analysis, 

which quantifies the relative impact of various input parameters 

on the outlet air temperature of the (EAHE) system. Among the 

examined factors, the thermal conductivity (λ) of the surround-

ing soil emerges as the most influential, contributing approxi-

mately 45.5% to the variation in outlet temperature. This sub-

stantial influence underscores the critical role of soil thermal 

properties in governing heat exchange between the buried pipe 

and its environment. In contrast, the effects of the pipe material 

and the number of internal twisted tabs are markedly less signif- 

icant, accounting for only 3.09% and 1.05%, respectively. The 

comparable and minimal contributions of these two variables 

highlight their secondary roles relative to soil conductivity. 

These findings suggest that while geometric and material modi-

fications within the EAHE system can offer marginal perfor-

mance improvements, optimising the thermal characteristics of 

the soil environment should be prioritised for maximising sys-

tem efficiency. 

Figure 9 presents a comparative analysis between the actual 

outlet temperatures (Tout) obtained through numerical simula-

tions of the EAHE system and those predicted by the GB ma-

chine learning model. Each subfigure corresponds to distinct 

combinations of system parameters, including the type of pipe 

material, the thermal conductivity (λ) of the surrounding soil, 

 
 

 

 

 
 

Fig. 9. Comparison between the numerical results and predicted outlet temperature for all tested parameters. 

 

 

Fig. 8. Relative importance of input variables 

on the outcome temperature. 
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and the number of twisted tab inserts within the pipe. The pre-

dicted temperature values exhibit a strong correlation with the 

simulated results across all parameter configurations. This high 

level of agreement underscores the GB model's robustness, ac-

curacy, and reliability in capturing complex nonlinear interac-

tions within the system, thereby validating its potential as a pow-

erful predictive tool for evaluating EAHE performance. 

4.1. Industrial applicability and scalability 

The present study proposes a hybrid approach combining com-

putational fluid dynamics (CFD) and machine learning (ML) to 

evaluate and optimise twisted tab-based earth-air heat exchang-

ers (EAHEs). 

The configuration is particularly important in industrial and 

commercial buildings needing sustainable and passive cooling 

strategies. The design results have direct implications for actual 

HVAC and green building systems, where sub-surface temper-

ature can be used to pre-condition ventilation air. The twisted 

tabs added improve air-side turbulence and augment heat ex-

change with the adjacent soil, rendering the system viable in 

high-density city centres with limited areas of land for installa-

tion of conventional cooling devices. At a scalability level, the 

datasets generated by CFD that are employed to train the ML 

models can be scaled across a broader span of operating condi-

tions, geometries and soil properties. The trained models, espe-

cially ensemble learners XGBoost and CatBoost, produced ex-

cellent prediction precision with minimal computational over-

head and can therefore be employed for integration into indus-

trial control systems, real-time monitoring platforms or digital 

twins. Furthermore, these ML models are platform-agnostic and 

lightweight, making them deployable on embedded systems or 

cloud platforms for large-scale monitoring and optimisation. 

Subsequent research can examine integrating these models with 

SCADA systems or building energy management systems 

(BEMS) to support automated, real-time decision-making for 

energy-efficient operation. 

5. Conclusions 

This study presented a numerical and data-driven hybrid ap-

proach to examine and optimise the thermal performance of an 

earth-air heat exchanger (EAHE) system equipped with twisted 

tab inserts. A dataset of 216 entries from CFD simulations was 

used to train and test various machine learning (ML) models. 

The originality of this study lies in the integration of turbulence-

inducing geometrical modifications with predictive ML models 

for the enablement of rapid performance analysis of EAHE con-

figurations. 

The key findings are summarised as follows: 

 CFD analysis, including temperature contour plots and 

profiles, centreline revealed that twisted tabs signifi-

cantly enhance convective heat transfer. This is attributed 

to the generation of localised turbulence and thermal 

boundary layer disruption, thereby leading to better 

thremal mixing and increased energy exchange. These 

enhancements are beneficial to the performance of the 

EAHE in both heating and cooling modes; 

 Among the ML algorithms tried (DT, SVR and GB), GB 

worked better than the others in predictive accuracy. It 

learned nonlinear interactions between input parameters 

nicely and offered a good surrogate model for the rapid 

and accurate prediction of EAHE performance parame-

ters. 

 Sensitivity analysis revealed soil thermal conductivity (λ) 

as the most influential parameter on system efficiency. 

Though the tube material and the number of twisted tabs 

both played a secondary individual effect (4.14%), they 

remain important design parameters for optimising sys-

tem performance by internal geometry and material se-

lection.  

Overall, this study demonstrates that the combination of 

CFD simulations and machine learning provides an effective 

framework for EAHE system analysis and optimisation. While 

the results are promising, limitations include the use of steady-

state simulations and a static geometric range. Transient flow 

regimes, longer datasets with a wider variety of geometries, and 

experimental validation should be the focus of future work to 

enhance model generalizability even further. In addition, the de-

ployment of trained ML models within real-time building con-

trol systems can open doors towards adaptive and energy-saving 

climate control. 
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