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Abstract

This study investigates the potential of machine learning models as efficient alternatives to traditional computational meth-
ods for evaluating the performance of earth-air heat exchanger systems. A validated numerical model was used to simulate
system behaviour under varying parameters, including soil type, pipe material, number of internal twisted tabs and outlet
temperature. Based on these simulations, a dataset comprising 216 entries was generated to train three machine learning
models: support vector regression, gradient boosting and decision trees. The gradient boosting model achieved the highest
predictive accuracy, with a root mean square error of 0.0188 and a mean absolute error of 0.0138. Support vector regression
and decision trees also demonstrated strong performance, with prediction accuracies of 97% and 96%, respectively. Addi-
tionally, the proposed earth-air heat exchanger design with twisted tabs showed superior thermal performance compared
to the conventional configuration. Over extended operation, the temperature difference between inlet and outlet exceeded
7°C, with the new configuration system incorporating 10 tabs yielding optimal performance. This configuration led to more
than a 10% improvement in thermal efficiency and an increase of approximately 25% in the heat transfer coefficient. These
results confirm that integrating machine learning with advanced earth-air heat exchanger designs offers a reliable and
computationally efficient approach for enhancing system performance.
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1. Introduction

Heat transfer has always played a crucial role in industry and
mechanical systems. It enables the transfer of thermal energy
between substances without direct contact or mixing [1]. Appli-
cations of heat exchangers span various sectors, including the
chemical industry, food processing, space heating, heat recovery
systems, vegetable drying, paper treatment and air conditioning

[2]. The design of heat exchangers can vary significantly de-
pending on their type and intended function. As a result, numer-
ous configurations have been developed by modifying shapes,
sizes, materials, and incorporating various types of flow disrup-
tors or mixers into the heat exchange regions.

Methods for enhancing the thermal performance of heat ex-
changers are generally classified into three categories: active,
passive and combined enhancement techniques. Active methods


http://www.imp.gda.pl/archives-of-thermodynamics/

Benali Kouchih F., Boualem K., Seddik Bouchouicha M., Bentouba Y., Soussa A., Azzi A.

Nomenclature

cp — pipe thermal specific heat, kJ/(kg K)
Ce1, C:2,C,— constants of the k— model

D - pipe diameter, m

h — heat transfer coefficient, W/(m?*K)
k —turbulent kinetic energy, (J/kg)

L - length of the pipe, m

Pr — Prandtl number

Qc —cooling capacity, W

T —temperature, K

u; - velocity component in the i-th direction, m/s
V  —flow velocity of the fluid, m/s

Z —pipe buried depth, m

Greek symbols

p —density of the fluid, kg/m?

A —thermal conductivity, W/(m K)

& — dissipation rate of k, W/kg

u —viscosity, kg/(m's)

oy, 0 —turbulent Prandtl numbers for k—¢

rely on external power sources and employ techniques such as
magnetic fields, auxiliary mechanical systems, fluid injection or
surface vibrations. In contrast, passive methods are more com-
monly studied and applied, as they require no additional energy
input and are relatively easy to implement [3,4]. Aziz and
Rehman [5] numerically simulated a small heat exchanger
equipped with six baffles. By sequentially removing each baffle
plate, they found that removing the inlet and outlet baffles had
minimal impact on pressure drop, while removing the central
baffles caused significant pressure fluctuations. Muszynski and
Dorao [6] conducted an experimental study to evaluate the per-
formance of a heat exchanger module with an enhanced surface.
Their results indicated a 60% improvement in heat flux. The en-
hancement of heat transfer in various innovative heat exchanger
designs using computational fluid dynamics (CFD) has also
been widely documented in the literature. A comparative study
conducted by Serrao et al. [7] using ANSYS Fluent evaluated
the performance of smooth and corrugated tubes. Their CFD
analysis showed that the corrugated tube exhibited a 54.7% in-
crease in the overall heat transfer coefficient compared to the
smooth tube. Vignesh et al. [8] and Wang et al. [9] used compu-
tational methods to investigate the impact of dimples on the ther-
mal performance of heat exchangers. They found that dimpled
tubes led to a higher temperature rise and pressure drop com-
pared to smooth tubes. Kumar et al. [10] analysed the heat trans-
fer and flow characteristics of double helically coiled tube heat
exchangers. Extensive research has also been conducted on the
performance and efficiency of tubes operating in turbulent flow
regimes [11]. Kishan et al. [12] performed a numerical study on
different flow patterns inside the tubes of shell-and-tube heat ex-
changers. Sharma et al. [13] examined flow patterns, pressure
drops, and heat transfer coefficients in both staggered and inline
configurations of shell-and-tube heat exchangers. Larwa and
Kupiec [14] proposed analytical relationships based on Green's

Subscripts and Superscripts

in —inlet
out — outlet
s —soil

p —pipe

t —turbulent

Abbreviations and Acronyms

AL —aluminium

ANN- artificial neural networks

CFD - computational fluid dynamics

EAHE- earth-to-air heat exchanger

EAHET- earth air heat exchanger with twisted tab
HDPE- high-density polyethylene

MAE — mean absolute error

NN  — neural network

NSE - Nash-Sutcliffe efficiency

PVC - polyvinyl chloride

RANS — Reynolds—averaged Navier—Stokes equations
RMSE - root mean square error

RSM — response surface methodology

SD - standardised value

SVR - support vector regression

function theory to model heat transfer in spiral ground heat ex-
changers. Rahimi et al. [15] carried out both numerical and ex-
perimental investigations on four types of inserts: classic, perfo-
rated, notched and jagged twisted tapes, and found that the jag-
ged insert yielded the best heat transfer performance. Molcrette
and Autier [16] introduced a new formula to estimate earth en-
ergy for earth-air pipe heat exchangers during winter heating.
Their study emphasised how various parameters affect the
proper sizing of the system. In an experimental study, Nawaz
and Prakach [17] tested three horizontal PVC pipes of different
diameters to evaluate the thermal performance of an earth-to-air
heat exchanger, concluding that the smallest pipe diameter pro-
vided the highest efficiency.

In recent years, artificial intelligence (Al) has attracted con-
siderable attention due to its exceptional ability to deliver posi-
tive outcomes across various fields. Among Al techniques, ma-
chine learning (ML) has been widely adopted by researchers for
identifying optimal process parameters [18]. This approach of-
fers significant advantages, including reduced computational
time, enhanced productivity and minimal human intervention.
Of the many ML techniques available, supervised and unsuper-
vised learning models are the most commonly employed in ther-
mal system research [19,20]. In the context of heat exchangers,
the heating or cooling capacity, typically quantified by the heat
transfer rate, is a critical performance parameter.

Numerous studies have applied machine learning methods to
predict heat exchanger performance. For instance, Karami et al.
[21] assessed the effectiveness of an artificial neural network
(ANN) in predicting heat transfer. Their experimental and nu-
merical investigations on tubes with butterfly inserts considered
the influence of insert inclination angle and Reynolds number
variation. The ANN, developed in MATLAB, achieved a train-
ing error of 0.109% and a testing error of 0.509%, indicating
high agreement between predicted and experimental results.
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Li et al. [22] and Shojaeefard et al. [23] focused on predicting
cooling capacity. Li et al. implemented a neural network based
on response surface methodology (RSM), while Shojaeefard
et al. explored different ANN architectures.

Deb et al. [24] employed a regression-based classification
ML model to predict output parameters from a given set of in-
puts. The model's accuracy was evaluated using the residual sum
of squares method, with results showing strong agreement be-
tween predicted and simulated values for fluid outlet tempera-
ture and pressure drop. Liao et al. [25] combined multilayer per-
ceptron (MLP) networks with Bayesian optimisation to design
an optimal near-field thermal radiative modulator, considering
variables such as rotation angle, layer thickness, and gap dis-
tance between layers.

Ren et al. [26] explored advanced techniques by integrating
reinforcement learning with proximal policy optimisation (PPO)
and the non-Oberbeck—Boussinesq (NOB) approximation. They
achieved a 76% improvement in heat transfer by developing
a smart active flow control system for laminar flow enhance-
ment. Wang and Vafai [27] applied support vector regression
(SVR) algorithms in conjunction with thermal simulations to ac-
curately predict temperature variations in hotspots within multi-
layer 3D electronic chips.

Colak et al. [28] employed the Levenberg—Marquardt train-
ing algorithm to develop two predictive models aimed at esti-
mating key performance parameters, including the overall heat
transfer coefficient, pressure drops on both the tube and annulus
sides, and the total cost. Each model was trained using a dataset
comprising 438 samples and incorporated a hidden layer with
15 neurons. Model 1 achieved estimation deviations of 0.16%
for the overall heat transfer coefficient, —0.23% for the tube-side
pressure drop, —0.02% for the annulus-side pressure drop, and
—0.003% for the overall cost. Model 2 yielded deviations of
0.02%, —0.18%, —0.16%, and —0.15%, respectively, for the
same parameters. Due to the limited availability of experiment-
tal and parametric studies in nanofluid applications, Colak
et al. [29] evaluated the use of an Al-based approach to estimate
key performance parameters. Utilising six input variables, the
model achieved deviation rates of —0.66%, 0.001%, and 0.12%
for the respective outputs, demonstrating the method's effective-
ness in compensating for the lack of empirical data.

Shell and helically coiled tube heat exchangers are increas-
ingly utilised in industrial applications due to their compact de-
sign and enhanced heat transfer surface area compared to con-
ventional models. In the study conducted by Colak et al. [30],
two distinct ANN architectures were developed using a dataset
of 105 samples. These models were designed to predict key out-
put parameters, including the heat transfer coefficient, pressure
drop, Nusselt number, and performance evaluation criteria. In
recent study by Colak et al. [31], an ANN was employed to pre-
dict the Nusselt number, friction factor and performance evalu-
ation criteria for heat transfer in straight corrugated tubes, based
on flow rate and corrugation parameters. The model was specif-
ically developed to estimate the flow and thermal behaviour of
corrugated tubes operating at low flow rates. This proposed ap-
proach offers a valuable tool for thermal system applications,

providing accurate predictions that can assist designers in im-
proving system efficiency.

The purpose of this study is to enhance the energy efficiency
of climate control systems through the optimisation of earth-to-
air heat exchanger (EAHE) design and operation using twisted
tabs. While EAHES are well-established for utilising stable sub-
soil temperatures to moderate indoor climates, their thermal per-
formance can still be significantly improved. However, several
critical research challenges persist in the literature. First, the in-
tegration of passive flow control devices, such as twisted tabs,
into EAHE systems remains underexplored, with limited numer-
ical or experimental investigations of their effect on flow struc-
ture and heat transfer. Second, traditional CFD-only approaches,
while accurate, are often computationally expensive and imprac-
tical for real-time design or operational optimisation. Third,
there is a lack of scalable, predictive frameworks that combine
physical modelling with data-driven techniques to address per-
formance variability across diverse environmental and geomet-
ric conditions.

To address these gaps, this study introduces a dual-strategy
approach that combines passive geometric enhancement with
advanced data-driven modelling. Specifically, twisted tabs are
employed within the EAHE ducts to enhance airflow turbulence
and improve thermal exchange between ambient air and sur-
rounding soil. In parallel, a hybrid framework combining (CFD)
simulations with (ML) algorithms is developed to predict and
optimise thermodynamic performance. This integrated method-
ology offers a scalable and practical solution for real-time per-
formance assessment and efficient HVAC system design in
modern sustainable buildings.

2. Materials and methods

2.1. Geometry and input description

2.1.1. Computational setup

To analyse the complex airflow and heat transfer phenomena
within an earth-air heat exchanger (EAHE) system, this study
adopts the geometric configuration proposed by Bansal
et al. [32] as a baseline reference. A schematic of the investi-
gated EAHE setup is provided in Fig. 1. The system comprises
a polyvinyl chloride (PVC) pipe horizontally buried at a depth
of 2.7 meters below the ground surface, with an inner diameter
of 0.15 meters and a total length of 23.42 meters.

At the inlet, ambient air is introduced into the pipe with
a uniform velocity of 5 m/s, a temperature of 42°C, and a turbu-
lence intensity of 5%, consistent with typical hot and arid cli-
matic conditions. The outlet boundary is treated as a pressure
outlet with zero gauge pressure, allowing for fully developed
flow. The pipe wall is assumed to be thermally conductive, al-
lowing heat exchange between the airflow and the surrounding
soil. The outer soil boundary is modelled as a fixed temperature
boundary, based on the annual average subsoil temperature at
the burial depth. No-slip conditions are applied to all solid sur-
faces.
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Fig 1. Schematic of the integrated EAHE system (a) and computational domain of EAHE system with twisted tabs (b).

The simulation employs the standard k—e turbulence model,
selected for its enhanced performance in capturing swirling and
recirculating flows, as commonly observed in EAHE applica-
tions. The residual convergence criteria for all transport equa-
tions are set to 107 to ensure numerical stability and accuracy.
Furthermore, the working fluid (air) is treated as an incompress-
ible ideal gas, and the surrounding soil is assumed homogeneous
with constant thermal properties. This study investigates a novel
configuration of an (EAHET), wherein twisted tabs are inserted
within the inner tube to enhance thermal performance. As de-
picted in Fig. 1, the twisted tabs are strategically placed along
the inner wall of the tube to promote turbulence and improve
heat transfer between the air and the surrounding soil. The anal-
ysis explores the impact of the number of twisted tabs, specifi-
cally 2, 5, 10, 15 and 20 tabs, on the system’s thermal behaviour.
Each configuration is labelled accordingly as EAHET-02,
EAHET-05, EAHET-10, EAHET-15 and EAHET-20. In addi-
tion to tab quantity, the study examines the influence of different

inner tube materials, including polyvinyl chloride (PVC), alu-
minium (AL) and high-density polyethylene (HDPE), as well as
the effect of soil thermal conductivity. These parameters are
evaluated through detailed CFD simulations to assess their roles
in enhancing the heat transfer efficiency of the EAHET system.
The details of thermo-physical properties of air, soil and inner
tube materials are presented in Table 1. The temperature se-
lected at the pipe's entrance in these suggested designs is based
on the location of our nation; on average, it is around 42°C.

2.1.2.Turbulence model validation

To perform this study, multiple simulations were conducted us-
ing ANSYS CFX software [33]. In this solver package, the
Reynolds-averaged Navier—Stokes (RANS) equations are
solved using the finite volume method to discretise the continu-
ity, momentum, and energy equations. A second-order upwind
scheme is applied to solve the momentum, energy, and turbu-
lence model equations. For pressure—velocity coupling, the
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Table 1. Properties of materials.

. Specific heat Thermal
. Density 5 ..

Material ke/m?] capacity conductivity

[/(kg K)] [W/(mK)]
Air 0.0242 1.225 1006
PVC 1380 900 0.16
HDPE 940 2000 0.4
AL 2702 903 237
Soil 1 2050 1840 0.52
Soil 2 2215 1260 1.26
Soil 3 1700 906 2.1

SIMPLEC algorithm [34] is employed. The governing equa-
tions, which represent the conservation of mass, momentum,
and energy, are expressed as follows [35]:

A(puy) _
ox; - 0’ (1)
g 0% _ov o[ (0% ﬁ)_ﬁ
pY; oxj - 0x; + oxj (6Xj + ax; py |, (2)
;)
2 (puT) = | (2 4+ 2) 2| ©)

where p is the pressure, T is the temperature and u; represents the
velocity component in the i-th direction. Parameter c, represents
the specific heat capacity, p is the density, 4 is the thermal con-
ductivity, g4 and Pry are the turbulent viscosity and turbulent
Prandtl number, respectively.

Modelling of the Reynolds stresses (—pujw)) in Eq. (2) is
done using the Boussinesq hypothesis [36], which relates the
Reynolds stresses to the mean velocity gradients via the follow-
ing equation:

ou;

— ou; 2 ou;
—puju] = ut( - +a—xi) —g(pkwta—zz) 8. (4

Turbulent quantities in the Navier—Stokes equations are
treated using the turbulent viscosity g4, which is given by:

kZ
U = pC, - C, = 0.085.

According to the literature, this choice aligns with several
recent CFD-based EAHE studies. For instance, Rahimi et al.
[14] and Bansal et al. [32] utilised k—¢-based turbulence models
and obtained reliable predictions of temperature distribution and
energy efficiency. In the present study, the standard k— model
effectively captured the axial temperature decay and overall heat
exchange behaviour, while maintaining reasonable computa-
tional costs for long-duration simulations. Additionally, the k—
model exhibited good agreement with experimental data by ac-
curately representing turbulent flow characteristics and predict-
ing heat transfer rates, making it well-suited for assessing the
thermal performance of EAHE systems under complex flow
conditions.

The governing transport equations for the turbulent kinetic
energy (k) and its dissipation rate (&) are solved using the RNG

k—e turbulence model, which provides enhanced accuracy for
flows with strong streamline curvature and high strain rates,
such as in film-cooling jets. The general form of these equations
can be expressed as follows:

ak
E(Pk)‘i‘ (Pkuj) —_[(#:_;)gj]‘FPk“‘Pkb—P&@)
U\ o€
5(,0 &) +-— (Pfuj) = 5 (Ma'_g)a_x]] +
+= (CexPi = pCea + CerPep),  (6)

ui | Ouj)du; _ 20ui uk

Pk il <6xj + 6xi> oxj 3 0xg (3Mt dxy + pk) (7)
where P,;, and P, stand for the buoyancy forces' influence. The
turbulence caused by viscous forces, or Py, is represented by the
following model:

du; | Ouj\odu;  20u ouy

Pk = He < + i)xl> E 3 dxg (3'ut Oxp + pk) (8)

The empirical constants used in the RNG k—e model are sum-

marised in Table 2. These constants are derived from the model

calibration and govern the production, dissipation and diffusion
of turbulence quantities within the computational domain.

Table 2. The RNG k—¢ turbulence model constants.

Symbol C.q Ce, C,
Value 1.44 1.92 0.09 1.0 13

Oy O

The heat transfer coefficient (h) is expressed as:

_ Qc
h= 7TdL(Tin_Tout)’ (9)
where Q. is the total thermal energy extracted from the air,
d and L is the inner diameter and length of EAHE, respectively;
the fluid temperatures at the inlet and outlet are Ti, and Tou, re-
spectively.

2.1.3. Grid independence study

The transient temperature field surrounding the horizontally
buried pipe of the EAHE system was analysed using an unstruc-
tured grid and CFD-based modelling. As seen in Fig. 2, temper-
ature gradients are more noticeable close to the pipe wall, thus
a denser mesh was used there and a coarser one further away.
To predict the system's thermal performance and evaluate the
cooling capacity of the earth-air heat exchanger, a transient and
implicit numerical model was used. This model is based on the
coupled simulation of heat transfer and turbulent airflow.

To accurately replicate real conditions and ensure high pre-
cision, element type and mesh density were varied according to
the temperature sensitivity of each region. As illustrated in
Fig. 2a, the number of mesh elements significantly affects the
outcome of the CFD analysis. Increasing the element count im-
proves solution quality up to a certain threshold. A mesh with
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1.4 million elements was selected for the 54 simulation cases
examined in this study. Figure 2b presents the simulated tem-
perature distribution along the length of the PVC pipe. With the
exception of the inlet region, the CFD predictions exhibit con-
sistently lower temperature values compared to the correspond-
ing experimental measurements throughout the pipe.

3. Artificial neural network modelling
and validation

The goal of this stage is to collect sufficient data to build a com-
prehensive dataset for training and testing artificial intelligence
models. The selected input parameters include the number of
twisted tabs, the thermal conductivity (1) of the soil, and the ma-
terial of the tube. The outlet air temperature is designated as the
output variable. Current machine learning models rely on small
datasets for training, enabling more effective extraction of pat-
terns and relationships within the data. This approach enhances
the model's generalization ability, simplifies data collection and
reduces the time required for numerical simulations.

3.1. Methodology

Boundary conditions obtained from numerical simulations are
commonly used as input parameters for machine learning
prediction models (Vu et al. [37], Chen et al. [38]). Traditional
models typically require large datasets generated through
extensive simulations to effectively capture the underlying
patterns and relationships in the system. In contrast, the current
study demonstrates that high predictive performance can be
achieved using only 216 data points. Despite the limited dataset,
the machine learning models showed excellent accuracy when
tested against the observed data.

The goal of this stage is to collect sufficient data to build
a comprehensive dataset for training and testing artificial intel-
ligence models. The selected input parameters include the num-
ber of twisted tabs, the thermal conductivity (1) of the soil and
the material of the tube, while the outlet air temperature is des-
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Fig. 2. Grid independence (a) and model validation (b).

ignated as the output variable. As illustrated in Fig. 3, the ma-
chine learning workflow involves data pre-processing, model
training using algorithms, such as decision tree (DT), SVR and

| |

Step 1 : Training of machine learning models

Step 2 : Model comparision and selection

Fig. 3. Flowchart explaining the methodology.
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gradient boosting (GB), and subsequent model evaluation and
selection. Current machine learning models rely on small da-
tasets for training, enabling more effective extraction of patterns
and relationships within the data. This approach enhances the
model's generalisation ability, simplifies data collection, and re-
duces the time required for numerical simulations.

3.2. Data preparation for training

Before training a machine learning model, it is essential to pre-
process the dataset to ensure optimal performance. In this study,
standardisation was applied, which is a common feature scaling
method. Standardisation transforms the data so that it has
a mean of 0 and a standard deviation of 1, ensuring that all fea-
tures contribute equally to the model, regardless of their original
scales [39,40]. The data were transformed using the following
standardisation equation:

original value—mean value

Standardised value = (20)

standard deviation

For this research, multiple predictive models were evaluated,
and only three models, namely DT, SVR and GB, were chosen

Decision Tree

306 306
305 305
=
% 304 2
2 304 304
3 2
= 2
303 Q303
302 302
302 303 304 305 302
Actual
CatBoost
306 306
305 305
- -
D 20, L 304
2 304 3 304
1 el
3 L
— [
< 303 303
302 302
302 303 304 305 302
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based on their accuracy. The model that is selected for this study
is the gradient boosting model. Prior studies have suggested that
gradient boosting is effective in working with smaller datasets
(Jiang et al. [41], Lubke et al. [42], Cha et al. [43]).

Gradient boosting is a unique example of ensemble learning
in machine learning that is well known for its accuracy in per-
forming regression tasks is gradient boosting. It uses the predic-
tions of several weak learners, typically decision trees, to create
a strong predictive model. The strategy is to build models itera-
tively, where every new model attempts to minimise the error
left by its previous counterpart by fitting it to the residuals (er-
rors) of a pre-existing ensemble, thereby minimising a chosen
metric, for instance, mean squared error. Gradient boosting is
popular because of its effectiveness with many types of data and
also because it reveals the most important features to be consid-
ered, making the task of finding key factors in the data quite easy
and straightforward.

Figure 4 presents a comparison between actual and predicted
values across six machine learning models. Ensemble methods
such as GB, CatBoost, and XGBoost exhibit strong agreement

SVR Gradient Boosting
306
305
B 304
=2
-
bt
S 303
302
303 304 305 302 303 304 305
Actual Actual
CatBoost CatBoost
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o
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o
L
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Fig. 4. Comparison of observed and predicted values from the trained models.
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Table 3. Statistical evaluation of the performance of the three models.

MODEL RMSE MAE NSE / R?
Train Dataset Test Dataset Train Dataset Test Dataset Train Dataset Test Dataset

SVR 0.2629 0.3175 0.1790 0.2768 0.9776 0.9333
SVR, Gong et al. [48] 0.3647 0.30 0.2169 0.2331 0.9579 0.9611
Decision tree 0.0126 0.3531 0.102 0.2011 0.9661 0.9175
RF, Gong et al. [48] 0.2868 0.3151 0.178 0.2335 0.9740 0.9572
Gradient boosting 0.0188 0.01032 0.0138 0.0612 0.9999 0.9930
LGBM, Gong et al. [48] 0.1929 0.2856 0.134 0.2242 0.9882 0.9648

with the ideal prediction line, validating their credibility in cap- 4. Results and discussion
turing the data trends accurately. In contrast, although SVR and
DT exhibit some deviation from the reference line, they still  Twisted tabs are incorporated into (EAHEs) to improve their
demonstrate satisfactory performance in this study, proving to  thermal performance. As depicted in Fig. 5, these internal ele-
be effective modelling tools. Despite their limitations, they con-  ments alter the heat transfer characteristics by increasing the ef-
tribute valuable insights and remain relevant within the scope of ~ fective surface area for thermal exchange and enhancing con-
the analysis. vective flow. The inclusion of twisted tabs leads to a noticeable
The training set comprises 80% of the total data, while the  improvement in the heat transfer coefficient when compared to
remaining 20% is allocated for testing the model's performance.  the baseline configuration without inserts. However, this en-
This split is done prior to any pre-processing, such as standard-  hancement does not scale linearly with the number of tabs. Be-
isation, to prevent data leakage and ensure that the model's eval- ~ yond a certain threshold, the increasing number of twisted tabs
uation is unbiased and reflects its true generalisation capability — induces excessive turbulence within the airflow, which, while
[44]. The model's performance is checked using a line graph of initially beneficial, ultimately results in reduced residence time
the data fit and three key evaluation measures. These measures  Of the air in contact with the heat transfer surface. Consequently,
are root mean squared error (RMSE) [45], mean absolute error  the thermal exchange efficiency begins to deteriorate despite
(MAE) [46], and the Nash-Sutcliffe efficiency (NSE) [47]. higher turbulence levels. Furthermore, the system may reach
These methods are well-known and often used to assess how  a state of excessive mixing, wherein the intensification of turbu-
well machine learning models make predictions. This quantita-  lence ceases to contribute positively to thermal performance and
tive comparison shows that the GB model developed in this  may even become counterproductive.
work not only outperforms other models used in this study (e.g. The graphs in Fig. 6 illustrate the temperature variation
SVR, DT), but also clearly exceeds the performance of existing ~ along the normalised length of the tube for various tube
traditional or physics-based models reported in the literature. ~ materials (PVC, HDPE and AL) and six different design
This affirms the robustness and accuracy of the GB model for
modelling the thermal behaviour of earth-air heat exchangers . . . : . .
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highlighting its superior ability to capture the variance in the
data.

The results presented in Table 3 clearly demonstrate the su-
perior predictive performance of the GB model compared to
both the other machine learning models evaluated in this study fsean |
and the traditional/physics-based models reported in the litera- 0 AR
ture [48]. During the testing phase, the GB model achieved the Basiccase tabs  Stabs [0 tabs 1S tabs 20
lowest RMSE of 0.1032 and MAE of 0.0612, outperforming
Gong et al.’s LGBM model, which yielded an RMSE of 0.2856
and an MAE of 0.2242. Similarly, in the training phase, the GB
model achieved an RMSE of 0.0188 and an MAE of 0.0138,
which are significantly better than those reported for the LGBM
(0.1929 and 0.134, respectively), and much lower than the SVR
(0.3647, 0.2169) and RF (0.2868, 0.178) models in [48].
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Fig.5. Heat transfer coefficient for various configurations of EAHE.

configurations, all evaluated under the same soil condition
(soil 3). The temperature profiles consistently show a decline
with increasing x/L, indicating progressive cooling of the
airflow along the tube. Notably, all five modified configurations

134



Forecasting the energy efficiency of an earth-air heat exchanger with integrated twisted tabs...

314

PVC —— Basic case

2 twisted tabs
5 twisted tabs
- 10 twisted tabs
15 twisted tabs
20 twisted tabs

3124

310

308

306

Temperature of air in pipe [K]
8
h

302

300 T T T
100
X/D

—— Basic case

2 twisted tabs

5 twisted tabs

------10 twisted tabs
15 twisted tabs

-~ 20 twisted tabs

306

Temperature of air in pipe [K]
g

302

300 ; ,

HDPE —— Basic case

2 twisted tabs
5 twisted tabs
------10 twisted tabs
15 twisted tabs
20 twisted tabs

[

i=1

=
1

Temperature of air in pipe [K]
8
B

302

300 . ‘

T T T
100 150 200

XN
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yield lower outlet temperatures compared to the basic case,
which can be attributed to the enhanced turbulence and
improved convective heat transfer resulting from the
incorporation of twisted tabs. As only soil 3, characterised by
a relatively high thermal conductivity (see Table 1), was
considered in this analysis, its pronounced effect on the thermal
performance of the EAHE system is evident. Higher conduc-
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tivity facilitates more efficient heat exchange between the
subsurface soil and the air flowing through the tube, thereby
improving the overall cooling effectiveness of the system.
Figure 7 illustrates the temperature contours at the outlet of
a heat exchanger, emphasising the impact of incorporating
a twisted tab within the inner tube. The presence of twisted tabs
generates vortices along their surfaces, which enhances
turbulence in the airflow, disrupts the thermal boundary layer,

EAHE, PVC

EAHE, AL

EAHE, HDPE

O
O
O

EAHET-02, AL

EAHET-02, HDPE

EAHET-02, PVC

EAHET-05, AL EAHET-05, HDPE EAHET-05, PVC

EAHET-10, AL EAHET-10, HDPE EAHET-10, PVC

EAHET-15, AL

EAHET-15, HDPE EAHET-15, PVC

EAHET-20, AL EAHET-20, HDPE EAHET-20PVC

Fig.7. Temperature contours at the outlet of a heat exchanger.
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and promotes better mixing between hotter and cooler regions.
As depicted in the figure, the flow contours in the basic case
without twisted tabs are more irregular and display cooler
regions at the outlet. This indicates less effective heat transfer,
primarily due to the presence of laminar flow near the tube
walls. This behaviour is consistently observed across the three
tube materials studied: PVVC, HDPE and AL.

The effectiveness of incorporating twisted tabs into the
EAHE system (referred to as EAHETS) is evident in the temper-
ature contours, where the temperature difference between the in-
let and outlet can reach up to 7°C. This cooling effect can be
further enhanced with extended system operation. Additionally,
Fig. 7 highlights the influence of tube materials on the perfor-
mance of both EAHE and EAHET systems. Among the tested
materials, the aluminium tube yielded the lowest outlet temper-
ature. This indicates that the combination of high thermal con-
ductivity and the presence of twisted tabs significantly improves
heat transfer. The twisting of the wall promotes enhanced fluid
mixing, maintaining a strong temperature gradient near the tube
surface and thereby increasing the overall heat exchange effi-
ciency.

Figure 8 illustrates the findings of the sensitivity analysis,
which quantifies the relative impact of various input parameters
on the outlet air temperature of the (EAHE) system. Among the
examined factors, the thermal conductivity (1) of the surround-
ing soil emerges as the most influential, contributing approxi-
mately 45.5% to the variation in outlet temperature. This sub-
stantial influence underscores the critical role of soil thermal
properties in governing heat exchange between the buried pipe
and its environment. In contrast, the effects of the pipe material
and the number of internal twisted tabs are markedly less signif-

45.5 %

40

Importance (%)

0,
1.05 % 3.00 %

Number of tabs Tube material ) of earth

Fig. 8. Relative importance of input variables
on the outcome temperature.

icant, accounting for only 3.09% and 1.05%, respectively. The
comparable and minimal contributions of these two variables
highlight their secondary roles relative to soil conductivity.
These findings suggest that while geometric and material modi-
fications within the EAHE system can offer marginal perfor-
mance improvements, optimising the thermal characteristics of
the soil environment should be prioritised for maximising sys-
tem efficiency.

Figure 9 presents a comparative analysis between the actual
outlet temperatures (Tou) Obtained through numerical simula-
tions of the EAHE system and those predicted by the GB ma-
chine learning model. Each subfigure corresponds to distinct
combinations of system parameters, including the type of pipe
material, the thermal conductivity (1) of the surrounding soil,
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Fig. 9. Comparison between the numerical results and predicted outlet temperature for all tested parameters.
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and the number of twisted tab inserts within the pipe. The pre-
dicted temperature values exhibit a strong correlation with the
simulated results across all parameter configurations. This high
level of agreement underscores the GB model's robustness, ac-
curacy, and reliability in capturing complex nonlinear interac-
tions within the system, thereby validating its potential as a pow-
erful predictive tool for evaluating EAHE performance.

4.1. Industrial applicability and scalability

The present study proposes a hybrid approach combining com-
putational fluid dynamics (CFD) and machine learning (ML) to
evaluate and optimise twisted tab-based earth-air heat exchang-
ers (EAHES).

The configuration is particularly important in industrial and
commercial buildings needing sustainable and passive cooling
strategies. The design results have direct implications for actual
HVAC and green building systems, where sub-surface temper-
ature can be used to pre-condition ventilation air. The twisted
tabs added improve air-side turbulence and augment heat ex-
change with the adjacent soil, rendering the system viable in
high-density city centres with limited areas of land for installa-
tion of conventional cooling devices. At a scalability level, the
datasets generated by CFD that are employed to train the ML
models can be scaled across a broader span of operating condi-
tions, geometries and soil properties. The trained models, espe-
cially ensemble learners XGBoost and CatBoost, produced ex-
cellent prediction precision with minimal computational over-
head and can therefore be employed for integration into indus-
trial control systems, real-time monitoring platforms or digital
twins. Furthermore, these ML models are platform-agnostic and
lightweight, making them deployable on embedded systems or
cloud platforms for large-scale monitoring and optimisation.
Subsequent research can examine integrating these models with
SCADA systems or building energy management systems
(BEMS) to support automated, real-time decision-making for
energy-efficient operation.

5. Conclusions

This study presented a numerical and data-driven hybrid ap-
proach to examine and optimise the thermal performance of an
earth-air heat exchanger (EAHE) system equipped with twisted
tab inserts. A dataset of 216 entries from CFD simulations was
used to train and test various machine learning (ML) models.
The originality of this study lies in the integration of turbulence-
inducing geometrical modifications with predictive ML models
for the enablement of rapid performance analysis of EAHE con-
figurations.
The key findings are summarised as follows:

e CFD analysis, including temperature contour plots and
profiles, centreline revealed that twisted tabs signifi-
cantly enhance convective heat transfer. This is attributed
to the generation of localised turbulence and thermal
boundary layer disruption, thereby leading to better
thremal mixing and increased energy exchange. These
enhancements are beneficial to the performance of the
EAHE in both heating and cooling modes;

e Among the ML algorithms tried (DT, SVR and GB), GB
worked better than the others in predictive accuracy. It
learned nonlinear interactions between input parameters
nicely and offered a good surrogate model for the rapid
and accurate prediction of EAHE performance parame-
ters.

e Sensitivity analysis revealed soil thermal conductivity (1)
as the most influential parameter on system efficiency.
Though the tube material and the number of twisted tabs
both played a secondary individual effect (4.14%), they
remain important design parameters for optimising sys-
tem performance by internal geometry and material se-
lection.

Overall, this study demonstrates that the combination of
CFD simulations and machine learning provides an effective
framework for EAHE system analysis and optimisation. While
the results are promising, limitations include the use of steady-
state simulations and a static geometric range. Transient flow
regimes, longer datasets with a wider variety of geometries, and
experimental validation should be the focus of future work to
enhance model generalizability even further. In addition, the de-
ployment of trained ML models within real-time building con-
trol systems can open doors towards adaptive and energy-saving
climate control.
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