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The paper describes the model of an oscillator with damping, whose vibrations
are forced by a random series of impulses. The mathematical model of the inverse
problem used to calculate the distributions can only be applied when the values of
the random impulses are known. If impulse values cannot be estimated based on the
vibration signal, machine learning algorithms and feature engineering should be used
to determine their distribution. In the discussed paper, unsupervised machine learning
(specifically, the agglomerative hierarchical clustering) is employed to evaluate the
applicability of the algorithms to the problem of recognizing the magnitudes of random
impulses and characterizing their distributions.

1. Introduction

In this paper, we advance the study of stochastic mechanics [1–4] by in-
corporating unsupervised learning methods [5, 6] in the analysis of stochastic
dynamical systems. The clustering of distributions was carried out using hierar-
chical clustering. This approach makes it possible to detect hidden structures and
similarities within the data. Stochastic mechanics provides theoretical and math-
ematical tools [7–9] that enable the analysis [10, 11] and prediction [12, 13] of
the behavior of systems subject to random influences [14, 15]. In works published
in the 21st century, the approaches introduced by Sobczyk [16] and Soong [17]
established the theoretical framework for random differential equations and their
applications in engineering. Contemporary research introduces advanced studies

B Natalia FRANKOWSKA, email: frankows@agh.edu.pl
1AGH University of Krakow, Krakow, Poland

0

© 2025. The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/), which permits
use, distribution, and reproduction in any medium, provided that the author and source are cited.

https://orcid.org/0009-0003-4647-7218
https://orcid.org/0000-0001-8032-0677
mailto:frankows@agh.edu.pl
https://creativecommons.org/licenses/by/4.0/


2 Natalia FRANKOWSKA, Agnieszka OZGA

of first-order differential equations with Dirac impulses, in which all parame-
ters (initial condition, equation coefficients) are random variables with continuous
probability densities [18]. These works can be applied to modeling phenomena
with parametric uncertainty, where impulses represent external disturbances or
interventions. Recent advances in uncertainty quantification for stochastic differ-
ential equations have been significantly enhanced by the work of Bevia et al.,
who developed forward uncertainty quantification methods for random differential
equation systems with delta-impulsive terms [19]. This approach directly addresses
the computational challenges in quantifying uncertainty for general classes of ran-
dom differential equations with Dirac impulses at finite time instances. Studies
devoted to tools for solving inverse problems have also been published. In [20],
the authors presented a comprehensive treatment of the RVT (Random Variable
Transformation) technique for determining the first probability density function
of solutions to linear random initial value problems, which provides a useful
tool in inverse problems, especially when the realizations of impulses are un-
known.

The aim of the work presented in this article, as in other studies involving
random systems [21–26], is to solve a technical problem. The discussed problem
is connected with an attempt at designing and constructing a measuring device
controlling the homogeneity of granularity of the medium in a dust pipe. To be
more precise, the device had to signal the appearance of big or small particles in
excessive quantity in the transported dust, at a given mean input value in a real
technological system.

The degree of coal fragmentation and the type of fuel used have a significant
impact on the efficiency of the combustion process and the level of pollutant emis-
sions, including harmful compounds such as PAHs [27]. The literature discusses
the influence of coal particle size, combustion conditions, and the composition
of fuel mixtures on the quantity and composition of emitted pollutants [28, 29].
Moreover, studies have shown that processes such as granulation can effectively
reduce the dusting of fine coal fractions [30].

To solve the problem, a mathematical model of responses of discrete systems
and continuous ones to forcing with a random series of impulses was presented
in accord with the system Definition – Theorem – Proof. Theoretical studies on
systems forced by a random series of impulses were started in the second half
of the 20th century [31–33]. Research was also carried out by [34]. Using a set
of stochastic differential equations [35], the transformations taking place on an
oscillator with damping and on a string in damping were described.

The problem of control of medium homogeneity may be solved by examining
the motion of a vibrating system that is influenced by this medium. The motion of
such a system X is a stochastic process that can be mathematically described in the
following way:

𝑋 (𝑡, 𝑥) =
∑︁

0<𝑡𝑖<𝑡
𝐺 (𝑥, 𝜂𝑖 , 𝜖𝑖 , 𝑡 − 𝑡𝑖), (1)
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where G is a function dependent on the choice of the vibrating system, x are coor-
dinates of the point of the vibrating system, 𝜂𝑖 are the values of i-th impulse, and
𝜂𝑖 is a sequence of independent identically random variables with finite expecta-
tion, where each 𝜂𝑖 is a discrete random variable taking values 𝜂1,𝜂2,. . . ,𝜂𝑛 with
probabilities 𝑝1,𝑝2,. . . ,𝑝𝑛, 𝜖𝑖 are the places where the i-th impulse acts, 𝑡𝑖 are i-th
moment of excitation of the movement.

𝜏𝑖 = (𝑡𝑖 − 𝑡𝑖−1). (2)

𝜏𝑖 is a sequence of independent identically distributed random variables with an
exponential distribution:

𝑡 (𝜏) =
{

𝜆𝑒−𝜆𝜏 for 𝜏 ⩾ 0,
0 for 𝜏 < 0.

(3)

The constant 𝜆 is the intensity of impulse occurrence. The intervals between
the impulses and values of the impulses are independent random variables.

Continuing the research, this work presents verification of the stochastic model.
The idea of the described studies relates to non-deterministic mechanics – the state
of the system observed at a chosen moment does not determine the state at any
subsequent time, which follows from the stochastic character of the process. We
were seeking research methods that would allow for analyzing an inverse problem
[36] while taking into account the uncertainties included in the computed loads.
Analysis techniques applied in stochastic mechanics are characterized by the fact
that with the help of models it is possible to obtain the value of the random variable
recorded in the form of a temporal series describing the position of the system.
The presented approach includes analyses of thousands of samples for different
parameters of random forcing.

2. Mathematical model of an oscillator forced by a random series of
impulses

A mathematical model for the inverse identification problem that allows one
to determine the distribution of the values of impulses forcing the vibrations of the
system was developed [35] in several stages and was constructed on the basis of
linear differential equations using ergodic theory together with the basics of the
theory of dynamic systems, measure theory, group theory, probability calculus, and
the theory of stochastic processes based on it. This universal mathematical model
will enable us to perform a statistical interpretation of the measurement data. In
the article, the mathematical model will be used in an analysis of vibrations of an
oscillator. Removal of a random variable, that is, the location of the impulse hit,
allows simplification of the model for an analysis of the impact of two random
variables in the vibrations of the system. When the vibrations are forced in the
form of a random series of impulses described with the equation:
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d2𝑋

d𝑡2
+ 2𝑏

d𝑋
d𝑡

+ 𝑎2𝑋 =
∑︁
𝑡𝑖<𝑡

𝜂𝑖𝛿(𝑡 − 𝑡𝑖), (4)

where 𝜂𝑖 are random value of the i-th impulse, 𝛿(𝑡 − 𝑡𝑖) is the Dirac distribution at
the moment of excitation 𝑡𝑖 and 𝑏 and 𝑐 are parameters of the vibrating system the
damping coefficient 𝑏 and the frequency 𝑐 =

√︁
𝑎2 − 𝑏2 [35].

The solution of this problem (4) using the superposition method at zero initial
conditions 𝑋 (0) = 0 and 𝑋 ′(0) = 0 for each stochastic impulse is the equation:

𝑋 (𝑡) = 1
𝑐

∑︁
0<𝑡𝑖<𝑡

𝜂𝑖𝑒
−𝑏 (𝑡−𝑡𝑖 ) sin(𝑐(𝑡 − 𝑡𝑖)). (5)

Computation of the distribution of impulse values 𝜂𝑖, that is, the solution of an
inverse problem, is possible through the application of the estimators of k-th raw
moments calculated from 𝑋 (𝑡).

𝑚̂𝑘 =
1

[𝑡/ℎ]
∑︁
𝑛<𝑡/ℎ

𝑋 𝑘 (𝑛ℎ), (6)

where ℎ is the sampling period [35].

3. Numerical details

In this case, the mathematical model of an oscillator is understood in accord
with the terminology used for defining statistical models as a formalized description
of a certain theory or causal situation that is assumed to generate the observed data.

In this article, we introduce the limitations of the mathematical model used to
solve the problem of recognizing the distribution of value of impulses generated
for seven different distributions:

1. 𝜙1 : 𝑝(𝜂1 = 70) = 0.5, 𝑝(𝜂2 = 80) = 0.5
2. 𝜙2 : 𝑝(𝜂1 = 140) = 0.5, 𝑝(𝜂2 = 10) = 0.5
3. 𝜙3 : 𝑝(𝜂1 = 130) = 0.5, 𝑝(𝜂2 = 20) = 0.5
4. 𝜙4 : 𝑝(𝜂1 = 85) = 0.5, 𝑝(𝜂2 = 65) = 0.5
5. 𝜙5 : 𝑝(𝜂1 = 145) = 0.5, 𝑝(𝜂2 = 5) = 0.5
6. 𝜙6 : 𝑝(𝜂1 = 120) = 0.5, 𝑝(𝜂2 = 30) = 0.5
7. 𝜙7 : 𝑝(𝜂1 = 110) = 0.5, 𝑝(𝜂2 = 40) = 0.5
The distributions were characterized by two events of different forces of impact.

Distributions were selected so that the mean value was the same in all seven cases,
stochastic raw moments of the second order (and subsequent orders) are different
in most cases. The first and fourth distributions represent the situation which is
the most desirable from the point of view of technological application – we have
two impulses of similar values. The remaining distributions represent the situation
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which includes errors in the granulation process, since there occur large and small
particles in the distribution.

Studies on the model should be appropriately designed so that step changes do
not occur in the computed raw moments some time after the start. Earlier analyses
have shown [35, 37–40] that oscillators with strong damping should be used and that
impulses should occur frequently enough for values of estimators of raw moments
calculated from the equation to change to the least extent. The parameters used in
the simulations, which satisfy the above mentioned assumption, have been shown
in Table 1.

Table 1. Parameters used in simulations
Parameter Parameter‘s value

𝜆 10
𝑐 20
𝑏 10
period of time 0 to 3600 s
number of random samples
generated for each distribution 1000

For such selected parameters of the vibrating system, the calculation of prob-
abilities with an error of less than one percent is possible in the first few minutes
[40] from the equations:

𝑞∑︁
𝑖=1

𝑝𝑖

(𝑚𝑛𝑚1 − 𝑚𝑛+1)𝜂𝑖 +
𝑛∑︁
𝑗=1

(
𝑛

𝑗

)
𝑚𝑛− 𝑗𝑚1𝜂

𝑗+1
𝑖

𝐶 ( 𝑗 + 1)
𝐶 (1)𝑐 𝑗

 = 0, (7)

𝑞∑︁
𝑖=1

𝑝𝑖 = 1, (8)

where 𝐶 ( 𝑗) are constants to be determined: for even 𝑗 from equation (9), and for
odd 𝑗 > 0 from equation (10):

𝐶 ( 𝑗) = 1
𝜔 𝑗+1

𝑗!
𝑗/2∏
𝑟=1

(( 𝑗 𝑏/𝜔)2 + (2𝑟)2)

𝜔

𝑗𝑏
, (9)

𝐶 ( 𝑗) = 1
𝜔 𝑗+1

𝑗!
( 𝑗−1)/2∏
𝑟=0

(( 𝑗 𝑏/𝜔)2 + (2𝑟 + 1)2)
, (10)

which, for the distribution composed of two equations, takes the form (11) and
(12):
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𝑝1(𝑡) =
−
(
4𝑏

(
𝑚̂2

1(𝑡) − 𝑚̂2(𝑡)
)
𝜂2 + 𝑚̂1(𝑡)𝜂2

2
)

(𝜂1 − 𝜂2)
(
4𝑏

(
𝑚̂2

1(𝑡) − 𝑚̂2(𝑡)
)
+ 𝑚̂1(𝑡) (𝜂1 + 𝜂2)

) , (11)

𝑝2(𝑡) =
4𝑏

(
𝑚̂2

1(𝑡) − 𝑚̂2(𝑡)
)
𝜂1 + 𝑚̂1(𝑡)𝜂2

1

(𝜂1 − 𝜂2)
(
4𝑏

(
𝑚̂2

1(𝑡) − 𝑚̂2(𝑡)
)
+ 𝑚̂1(𝑡) (𝜂1 + 𝜂2)

) . (12)

The values of the impulses 𝜂1 and 𝜂2 are of fundamental importance in these
equations. With simulation parameters selected to resemble those present in the
technical problem considered, no individual impulse is visible in the response signal
(Fig. 1). In the conducted simulation, impulses most frequently occurred before the
vibrations induced by previous impulses had subsided. As a result, estimating the
values of the impulses 𝜂1 and 𝜂2 present in the distribution is unattainable, and the
use of equations (11) and (12) is not possible.

Fig. 1. The course of 𝑋 (𝑡) for a selected sample

Therefore, only the values of the moments calculated from equation (6) are
subject to analysis.

The aim of the research is to solve the inverse problem, that is, to determine the
values of 𝜂 present in the distribution under the assumptions given at the beginning
of this section.

To achieve our goal, we pose the research question:
Which statistical parameters describing time series allow for distinguishing of

distributions?
In the search for the answer to this research question, we are going to ap-

ply hierarchical analysis executed in Python environment. For seven distributions
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generated during simulation studies, three consecutive stochastic moments were
calculated (5). The data were imported into the Python environment [41, 42], where
features of the calculated moments [43] were extracted using the Time Series Fea-
ture Extraction Library (TSFEL) [44]. This library was developed for the analysis
of time series and enables the determination of 65 different statistical, temporal,
and spectral features. To reduce the number of data points, a significance test of the
features’ importance was conducted. Two supervised learning algorithms, decision
trees and random forests, were used for permutation [45]. Based on the obtained
results, four features were selected for analysis [46]. During the analysis of the first
moment, one significant feature was identified – the sum of absolute differences.
The remaining features were determined based on the analysis of the second and
third stochastic moments.Due to the similar distribution of most generated features,
resulting from their strong correlation, three representative features were selected
for further analysis to reduce dimensionality: the minimum, the median, and the
area under the curve. The selection of these three features was sufficient, and the
results obtained were close to those achieved when analyzing all generated features.

4. Results

As it has already been stated, the study involves 1000 trials for every course.
As we can see in Fig. 2 [47], using the first raw moment in the analysis will not
allow for a division of the distributions. As regards the second moment, from the
2000th second, we can distinguish three groups of distributions characterized by
similar values of 𝜂1 and 𝜂2 (𝜙1, 𝜙4 and 𝜙2, 𝜙5 and 𝜙3, 𝜙6, 𝜙7) on the basis of the
computed mean value for any arbitrarily long time interval. In the case of the third
moment, three groups of distributions can be distinguished even before the 1000th
second, and the distributions 𝜙1 and 𝜙4 are completely distinguishable.

For study the method of unsupervised learning [48, 49], connected with data
clustering, was selected. Single observations are grouped into increasingly larger
clusters, until a cluster consisting of the maximum number of elements is formed.
Similarities between elements – expressed with the help of metrics like Man-
hattan, Euclidean, Chebyshev or Minkowski distance, etc., were adopted as the
basis for clustering. Apart from the metric, the algorithm requires also selection
of the method of clustering. In Python environment, in which the study was car-
ried out, agglomerative analysis can use the following methods: average, centroid,
complete, median, single, ward and weighted [50]. The previously prepared data
were imported into the Python environment and then normalized. Dendrograms
were generated for all possible combinations of distance metrics and clustering
methods, based on which the number of separated clusters was determined. To
evaluate the results, external validation was conducted. Answering the research
question posed in the paper we obtain the following results. Using the hierar-
chical analysis to distinguish time series computed for the second raw moment
between the 1500th second and 1800th one we can see two different classifica-
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Fig. 2. The first, the second and the third stochastic raw moments 𝑚̂𝑘 calculated from the location
𝑋 (𝑡) for a thousand different courses

tions. On the one hand, the division into two classes seems natural – the first
group, characterized by the correct technological process responsible for the gran-
ulation of dust, and the second group is connected with two faulty processes. On
the other hand, however, it should be checked whether it is possible to distin-
guish all seven distributions of impulses. In the best case, based on the features
of the second moment, it was possible to distinguish 4 groups of distributions.
However, adding the features of the third moment to the dataset allowed for
the differentiation of 5 groups (Fig. 3). The only indistinguishable distributions
were the very similar 𝜙1 and 𝜙4, as well as 𝜙6 and 𝜙7. External validation, in-
volving the comparison of predicted and actual clusters, was conducted using
two metrics: adjusted Rand index (ARI) [51] and Folkes-Mallows index (FMI)
[52] (Table 2). In both cases, the obtained results were compared with the ac-
tual labels. The Rand index (RI) [53] can be described by the following equa-
tion:

RI =
𝑎 + 𝑏(
𝑛

2

) , (13)
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where: 𝑎 are correct similar pairs, 𝑏 are correct dissimilar pairs, 𝑛 is the total
number of elements,

(𝑛
2
)

is the total number of possible pairs of elements. Its
adjusted version is given by the following equation:

ARI =
RI − RIexpected

RImax − RIexpected
, (14)

where: RIexpected is the expected value of the Rand index for random clusterings,
RImax is the maximum possible value of the Rand index.

Fig. 3. Dendogram for the second and third stochastic moment

Table 2. Results of external validation
moment second second and third

number of clusters seven four seven five
Fowlkes-Mallows index 0,84 0,99 0,84 0,99

Rand index 0,71 0,99 0.71 0,99

Fowlkes-Mallows index, which is the geometric mean between precision and
recall is given by:

FM =
TP√︁

(TP + FP) (TP + FN)
, (15)

where: TP – true positive, TN – true negative, FP – false positive, FN – false
negative.

Thanks to the fact that in the time series we applied four statistics: minimum,
median, area under the curve, and sum of absolute differences, for the second
stochastic moment we obtain the division into four groups. Adding features of the
third moment to the analysis allows for the classification of 5 groups. Distributions
in which 𝜂1 i 𝜂2 have similar values are well distinguishable from distributions
where the values of impulse are significantly different. Distributions 𝜙1 and 𝜙4,
as well as 𝜙6 and 𝜙7, are indistinguishable at this stage. The data come from a
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simulation and therefore it is possible to verify the obtained results. By grouping
distributions into groups with similar values of the specified impact force, we are
able to distinguish them with almost 100% accuracy, as indicated by the metrics
used for external validation.

5. Conclusions

The paper describes the model of an oscillator with damping, whose vibra-
tions were forced by a random series of impulses. Analysis techniques applied
in stochastic mechanics is characterized by the fact that with the help of models
it is possible to obtain the random variable recorded in the form of a temporal
series describing the position of the system. On the other hand, the mathematical
model of the inverse problem used to calculate the distributions can only be applied
when the values of the random impulses are known. If impulse values cannot be
estimated based on the vibration signal, machine learning algorithms and feature
engineering should be used to determine the distribution of impulses. In the paper
discussed, one makes use of unsupervised machine learning to determine the po-
tential of application of the algorithms for solution of the recognition of value of
random impulses. Research has shown great potential in using artificial intelligence
algorithms to solve the inverse problem.
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