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Abstract: Hyperspectral data obtained from unmanned aerial vehicles (UAVs) provide high
spectral and spatial resolution, bringing potential for an accurate identification of individual
tree species. The aim of this paper was to thoroughly investigate the possibilities of forest
tree classification using hyperspectral data taken by the Resonon Pika L camera. Both
hyperspectral and ground reference data were collected for a heterogenous forest in the
Czech Republic. Standard processing methods (radiometric, atmospheric, and geometric
corrections) were applied, followed by testing the methods for reduction (spectral resampling,
MNF, PCA) and PPI. The classification phase consists of both unsupervised and supervised
approaches, including Maximum Likelihood, Mahalanobis Distance, Spectral Angle Mapper,
Minimum Distance, Random Forest, Extra Trees, Support Vector Machines, and Naive Bayes.
Within the classical classifiers, the best results were achieved using the Maximum Likelihood
classifier. In terms of machine learning algorithms, the best performing classifiers were
Random Forest and Extra Trees. The use of Pika L camera in forestry classification is so far
minimal, therefore the results can be helpful in potential utilization of this type of camera.
The findings of this research not only contribute to a better understanding of UAV-based
hyperspectral remote sensing for tree classifications but also provide practical insights and
recommendations for improvement.
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1. Introduction

Progress in remote sensing technologies has opened up new possibilities in forest
management, as they allow image data acquisition without the need for physical interaction
with trees and to perform classification and identification of tree species over large areas
without negatively impacting forest ecology (Modzelewska et al., 2020; Hou et al., 2023).

Hyperspectral data acquired from unmanned aerial vehicles (UAVs) provide high
spectral and spatial resolution. Obtained tree spectral signatures are useful for classification,
identification of tree diseases (Dalponte et al., 2012) etc. The identification of the
unique spectral signatures of different tree species is made possible by capturing surface
reflectance in hundreds of very narrow bands providing precise spectral information.
Effective analytical methods are necessary due to the complex structure and large size of
data resulting from numerous spectral bands (Mäyrä et al., 2021). In addition to the need
to apply corrections as part of pre-processing, for example, it is highly desirable to apply
methods for dimensionality reduction due to the unwelcome correlation and amount of
the data (Burger and Gowen, 2011; Cozzolino et al., 2023).

Choosing an appropriate classification algorithm and using data reduction methods is
a challenging task and is still being tested, compared, and evaluated. Hycza et al. (2018)
tested nine classification algorithms and achieved 90.3% accuracy using three MNF
(Minimum Noise Fraction) bands and Maximum Likelihood (ML) classification on the
AISA Eagle II data from a Polish forest. Burai et al. (2015) found that Support Vector
Machines (SVM) and Random Forest (RF) classifiers performed best with the first nine
MNF bands in a Hungarian steppe on AISA Eagle II data, with SVM being optimal due
to its training sample size insensitivity. ML provided high accuracy (80.8%), but using
a smaller training dataset significantly reduced the classification accuracy (52.6%). For
the original bands (without MNF), the SVM and RF classifiers provided high accuracy
regardless of the number of training pixels. Richter et al. (2016) found PLS-DA most
successful in a German forest on AISA Dual data, outperforming RF and SVM. Nezami
et al. (2020) achieved 98.3% accuracy with a 3D-CNN (convolutional neural network)
using hyperspectral and RGB bands. Tree species classification using hyperspectral data
from UAVs utilizing machine learning and deep learning techniques has also been addressed
by other studies, e.g., by Amarasingam et al. (2024) or Xu et al. (2024). A combination of
using hyperspectral and LiDAR data for the same purpose has been discussed by several
authors (e.g., Sankey et al., 2017; Almeida et al., 2021; Ma et al., 2024).

The goal of this study was to thoroughly investigate the possibilities of forest tree
classification using hyperspectral data taken by an UAV. To achieve this goal, hyperspectral
and ground reference data were collected over a heterogeneous forest in the Czech
Republic. Standard preprocessing steps, including radiometric, atmospheric, and geometric
corrections, were applied. Several data reduction techniques were tested, including spectral
resampling, Minimum Noise Fraction, Principal Component Analysis, along with Pixel
Purity Index extraction. The classification phase involved both unsupervised and supervised
approaches, utilizing methods such as Maximum Likelihood, Mahalanobis Distance,
Spectral Angle Mapper, Minimum Distance, Random Forest, Extra Trees, Support Vector
Machines, and Naive Bayes classifiers.
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The use of UAV data from hyperspectral sensors can be expected to become more and
more significant in a near future and therefore due attention should be paid in the research
of optimal procedures for their processing. In our case, capturing a heterogeneous forest
with a variety of tree species allows a detailed evaluation of various pre-processing and
classification techniques and contributes to the above-mentioned effort. Novelty of the
work also lies in utilization of the Resonon Pika L hyperspectral camera. The use of
this camera in forestry classification is so far minimal (Shuai et al., 2024), but finds
its use for instance in vegetation analysis, disease detection, chlorophyll quantification
or segmentation models for crop mapping (Yang et al., 2021; Yu et al., 2021a, 2021b;
Niu et al., 2022; Hariharan et al., 2023), so this work can offer valuable information for
the case of tree species classification. Most importantly, it can provide insights into the
potential of hyperspectral data from UAVs for forest monitoring and management.

2. Materials and methods

2.1. Study site

The area of interest (approximately 3.3 ha) is located in Ostrava-Poruba (Fig. 1), Czech Re-
public. It is a part of the local forest (approx. 49.837249◦N, 18.149631◦E to 49.835390◦N,
18.151746◦E). The area is densely forested with more than ten of deciduous and coniferous
tree species, which is desirable in terms of testing classification methods.

Fig. 1. Area of interest with mapped trees
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2.2. Equipment

The DJI Matrice 600 Pro hexacopter and the Resonon Pika L hyperspectral VNIR camera
(spectral range: 400–1000 nm; spectral resolution: approx. 3 nm; total of 200 bands)
were used for aerial imaging. Field of view (FOV) of the used camera lens is 17.6◦. For
image stabilization, the camera was placed in a DJI Ronin-MX gimbal. SBG Ellipse-N
localization unit was used. The flight planning and realization was performed with DJI
Ground Station Pro software.

For tree species mapping, GNSS receiver Trimble R10 receiver with RTK (Real-Time
Kinematic) positioning technique was used in the first round. The second mapping was
performed using an internal GNSS receiver of smartphone Samsung A52 5G.

2.3. Field data collection

Hyperspectral imagery of the selected area was acquired on June 2, 2022 during the
growing season of the trees. Data were captured on a cloudless, windless day around
9:30 A.M. A total of 46 raw data cubes were captured from a flight height of 90 m. The
area of interest was covered by five flight lines with a planned side overlap of 20%.

The ground works to obtain a reference dataset on the location and species of trees
was carried out in two days. Information was collected on tree species, approximate
height, health status and whether they were single trees or groups. On March 26, 2021,
14 individual trees were recorded with a mean formal horizontal accuracy of 0.8 m. On
September 23, 2022, additional 67 trees were mapped with an average formal accuracy of
2.4 m. Efforts focused on mapping solitary trees at the forest edge for a better recognition.
The PlantNet app (https://identify.plantnet.org/) verified species identification when
uncertain. A few out-of-area points were discarded, so altogether 71 usable points were
collected in the field in Table 1, representing the best and largest possible dataset.

Table 1. Number of individual mapped trees according to their specie and number of polygons used for the
training and test dataset

Species Mapped Training Test

European white birch (Betula pendula) 5 2 1

Northern red oak (Quercus rubra) 11 3 6

Pedunculate oak (Quercus robur) 28 4 19

Sycamore maple (Acer pseudoplatanus) 15 3 7

European spruce (Picea abies) 2 2 2𝑎

European aspen (Populus tremula) 4 3 1

Wild cherry (Prunus avium) 6 3 2

Total: 71𝑏 20 38
𝑎two validation polygons added via manual labelling based on their typical shape
𝑏15 ambiguous points were not used for training nor test dataset

https://identify.plantnet.org/
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2.4. Data processing

Data pre-processing was done in the Resonon Spectronon software (ver. 3.0 and 3.1),
while data reduction, masking, and classification were performed in ENVI (ver. 4.8 and
5.0). The hyperspectral data were acquired in the so-called radiance mode (Resonon,
2018), which ensured a conversion from raw data to radiance in the camera itself, based
on the calibration file supplied by the camera manufacturer. The imagery data obtained
during the flight over a calibration tarp of known reflectivity (0.36) was used to convert
the radiance to reflectance. Consequently, the data cubes were orthorectified and their
mosaic was derived (Fig. 2a).

Fig. 2. The resulting forest mosaic in (a) true color, (b) image visualization using the 4th, 6th, and 9th MNF
bands (b), and result of supervised ML classification of (c) spectrally resampled data and (d) for unresampled

data without smoothing

Georectification was performed using the Czech national digital terrain model (DTM)
called DMR 5G derived from aerial laser scanning data. Still, some of the infill rows did not
fit together perfectly. Improved DTM or increased flight line overlap might enhance this.

Spectral resampling was performed as part of the data reduction. The original spectral
resolution was about 3 nm. Following the example of Cervena et al. (2020), spectral
resampling was performed, reducing the original 3 nm spectral resolution. Three options
were tested: merging 3, 5 or 7 bands. Merging five bands (16 nm) shown to be optimal
band reduction, based on the spectral curves obtained after the spectral reduction, the
curves were smooth and still detailed enough.
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The MNF method (Green et al., 1988) revealed the first 16 bands with the least
noise (eigenvalue > 3) (NV5 GEOSPATIAL SOLUTIONS, 2024; Shawky et al., 2019).
Visualization in Figure 2b used the 4th, 6th, and 9th MNF bands.

Although the classification results for the MNF bands were not successful, PPI (Pixel
Purity Index) (Boardman et al., 1995) calculation (16 bands, 1000 iterations) was applied
twice – first to identify shadows, then to clean pixels on illuminated areas. Principal
Component Analysis (PCA) (Pearson, 1901; Ma, 2014) was applied to the reflectance
image. According to Eigenvalues, the first PCA band contains the most information
(99%); adding the remaining bands would add only a small amount of information.

2.5. Classification

Training and test data set

Training polygons for supervised classification were manually created based on the field
data. Several different ratios of training and test were prepared and tested, the variant
presented in Table 1 was selected since it provided the best classification accuracy. Fewer
training points (34:66) were selected rather than standard ratios (Abriha et al., 2023;
Elvanidi and Katsoulas, 2023). The training set was chosen to be well balanced (roughly
the same number of polygons for each species). Fifteen points from field works were not
used at all, as it was not clear to which crown the point belonged. The training set also
included a class for shadows. Validation in form of a confusion matrix and overall accuracy
was counted using ENVI software.

Classification methods

Unsupervised and supervised classification was performed in ENVI software on both
spectrally resampled data (40 bands) and unresampled data (200 reflectance bands).
Object-oriented classification to determine tree canopies was ineffective due to dense
forest cover, so only species composition was classified. For unsupervised classification,
all available algorithms within ENVI were tested. The classic ones were K-means (Jain,
2010) and IsoData (Tou and Gonzalez, 1974). Machine learning algorithms included
BIRCH (Zhang et al.,1997) and Mini Batch K-means (Sculley, 2010).

Maximum Likelihood (Aldrich, 1997), Mahalanobis Distance (Mahalanobis, 1936),
Spectral Angle Mapper (SAM) (Kruse et al., 1993), Minimum Distance (MD) (Wolfowitz,
1957), and Parallelepiped (Richards and Jia, 1999) algorithms were tested for supervised
classification. For machine learning algorithms, Random Forest (Breiman, 2001), Extra
Trees (Geurts et al., 2006), Support Vector Machines (Cortes and Vapnik, 1995), Naive
Bayes (Wickramasinghe and Kalutarage, 2021) and K-Neighbors (Zhang, 2016) algorithms
were used. The classification result was smoothed in all cases (Smooth Kernel Size: 13,
Aggregate Minimum Size: 15) and the confusion matrix including the overall classification
accuracy was calculated using the test dataset.
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3. Results

3.1. Classification results based on derived data products

To assess the applicability of the MNF data, unsupervised classification for the five classes
was used. Unfortunately, the first three MNF bands were found to contain undesirable
strips along the flight paths. Even when using the most optimal MNF bands, neither
supervised nor unsupervised classification yielded good results, so the MNF results were
not further utilized.

In case of PPI image, clean pixels (endmembers) were selected for each mapped tree
species and SAM classification was performed for both the MNF image and the reflectance
image (both with masked shadows). The result was poor in both cases, which could be due
to the small number of selected clean pixels. For the original reflectance image, the overall
accuracy was 51.39% and the kappa was 0.017. Therefore, the results were not used further.

For PCA image, the first band was used for classification. Interestingly, with a 99.49%
match, the result is almost the same as the unsupervised classification result for the original
reflectance image. However, the supervised classification (ML) for the single PCA band
was not successful, with an overall success rate of only 22.07%. The MD classification
was similarly unsuccessful. At least 2 bands would have been required to perform RF and
SVM. Due to the unacceptable success rate, the PCA result was not used further.

Issues in all three cases are attributed to a lower side overlap setting (20%) with respect
to the camera FOV. The off-nadir angle was too wide and therefore influenced pixels along
boundaries of flight lines. The effect was clearly visible in the case of MNF bands (Fig. 2b).

3.2. Unsupervised classification results

The unsupervised classification results were almost identical for the spectrally resampled
and unresampled data, e.g. 99.20% match for the five classes. The overall accuracy of
the IsoData method after assigning the appropriate tree type for each identified class was
48.66% for 5 classes, and for 6 classes the accuracy dropped to 38.06%. Setting more
classes led to an ambiguous classification.

The machine learning algorithms were not successful. Unsupervised classification
using the BIRCH algorithm always produced an output of three classes when set to 3, 6 and
7 classes. Mini Batch K-means classification, when set to 6 classes, the output consisted
of virtually only two classes, one for the shadows and one for the rest of the image.

3.3. Supervised classification results

The overall accuracy (OA) and kappa coefficients of all the classifiers tested can be seen
in Table 2. Confusion matrix for the best performing Maximum Likelihood classification
can be seen in Table 3 all the others can be requested from the corresponding author.
Within the classical classifiers, the best results were achieved using the ML classifier
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(Fig. 2c and Fig. 2d), with an OA of 84.55% (kappa 0.656) for the spectrally unresampled
image and 82.70% (kappa 0.631) for the resampled image. The worst performing classifier
was the MD classifier, with an OA of around 28% in both cases. Interestingly, we found
that the spectrally resampled data provided a lower accuracy by a few percent. For the
Parallelepiped classification, the result image was incorrectly covered mostly by one class.

In terms of machine learning algorithms, the best performing classifiers were RF
and Extra Trees (OA in the range of 82.04–82.68%). SVM was the only successful
algorithm where the accuracy of the spectrally resampled data was higher than that of the
unresampled data (81.89% and 73.85%, respectively). The same was observed for the
Naive Bayes algorithm, but it was very inaccurate. An error occurred immediately after
running the K-Neighbors algorithm.

Table 2. Overall accuracy and kappa coefficients for supervised classification results

Classification
type

Spectrally resampled image
(40 bands)

Original spectrally
unresampled image

(200 bands)
Overall

accuracy (OA)
Kappa

coefficient
Overall

accuracy
Kappa

coefficient

C
la

ss
ic

al
m

et
ho

ds

ML 82.70% 0.631 84.55% 0.656
Mahalanobis
Distance 81.49% 0.599 83.88% 0.662

SAM 46.30% 0.260 51.12% 0.273
MD 28.06% 0.067 28.19% 0.068

M
ac

hi
ne

le
ar

ni
ng

RF 82.33% 0.551 82.68% 0.564
Extra Trees 82.04% 0.537 82.34% 0.548
SVM 81.89% 0.560 73.85% 0.461
Naive Bayes 24.41% 0.112 15.85% 0.071

ML: Maximum Likelihood, SAM: Spectral Angle Mapper, MD: Minimum Distance,
RF: Random Forest, SVM: Support Vector Machine

4. Discussion

The difference between supervised and unsupervised classification using PCA is notable.
Unsupervised classification was nearly identical for both PCA and the original reflectance
image, but supervised results differed. This likely stems from the single band PCA image’s
sensitivity to training dataset inconsistencies. While classifying from a single band seems
meaningless, a paper by [10]Carr (1996) showed it is possible with bands having drastic
value differences, as seen in our PCA band.

Of all the data reduction methods tested (spectral resampling, MNF, and PCA), only
the spectral resampling option was suitable. Generally, in most cases, the use of reduced
and otherwise modified data leads to an improvement in the data properties and thus to
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Table 3. Confusion matrix for Maximum Likelihood classification of spectrally resampled image

Ground truth (%)

Class Quercus
rubra

Quercus
robur

Prunus
avium

Populus
tremula

Picea
abies

Acer
pseudo-
platanus

Betula
pendula Total

Quercus rubra 34.16 3.62 0.00 0.00 0.00 14.46 0.00 9.33

Quercus robur 26.17 94.84 21.12 91.63 0.00 9.89 0.00 71.64

Prunus avium 21.76 0.00 58.24 0.00 0.00 0.00 9.46 3.88

Populus tremula 0.00 0.70 0.00 0.00 0.00 0.00 5.41 0.50

Picea abies 0.00 0.43 0.00 0.49 100.00 0.00 0.00 0.60

Acer pseudoplatanus 17.91 0.40 14.40 7.88 0.00 75.65 0.00 13.67

Betula pendula 0.00 0.01 6.24 0.00 0.00 0.00 85.14 0.37

Total: 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

an increase in classification accuracy, but this was not the case for our data, very likely
due to the non-sufficient side overlaps with respect to the FOV. For example, [11]Cervena
et al. (2020) compared the classification results with and without spectral reduction. A
Headwall Nano-Hyperspec camera was used. For band reduction, spectral resampling and
PCA were tested. The best results were obtained with the resampled data – five adjacent
bands were merged. In case of our work and evaluation of spectral resampling, the result
of unsupervised classification is visually identical using both spectrally resampled and
unsampled data. A slight difference occurred when using supervised classification, where
the overall accuracy of, e.g., ML classifier for the spectrally resampled image was 82.70%
and 84.55% for the original spectrally unresampled image. The spectrally unresampled
image showed better results for all the classifiers tested, except for the two machine
algorithms SVM and Naive Bayes. Nevertheless, the overall results were expected; ML
and RF algorithms are popular based on their quality. [22]Kluczek et al. (2022) realized
forest data classification from HySpex camera with a broader range (416-2510 nm).
They reached OA of 83.4% for RF and 87.9% for SVM. Our results were just slightly
lower, more visibly in case of SVM. The reasons behind the varying performance of
all the classifiers can be found for example in an extensive review of [40]Tejasree and
Agilandeeswari (2024). In any case, it should be pointed out that the number of reference
data used, although was the highest possible using available methods, was still very low.

The suboptimal side overlap setting and wide off-nadir angle likely contributed to the
issues observed, particularly in the MNF bands. It is advisable to recommend an overlap at
the level of 30-40% to reduce inaccurate pixels at the flight line boundaries, which could
affect the classification results. When using a reference tarp with high reflectance during
data acquisition, we recommend capturing an image of it without a forest or other very
dark surface around to avoid oversaturation of pixels with the tarp. To further improve
classification accuracy, integrating laser scanning data of a reasonable point density
with hyperspectral imaging could be beneficial. Laser scanning derived Digital Terrain
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Models and Canopy Height Models (CHMs) can enhance georectification and facilitate
more precise object-oriented classification, especially in dense vegetation covers, as
demonstrated by [9]Cao et al. (2021). The applied methodology is general; it can be applied
in other forest types and regions. Nevertheless, it needs to be tested on other data sources.

5. Conclusions

The aim of this study was to thoroughly investigate the possibilities of forest tree
classification using hyperspectral data taken by an UAV. The selection of a heterogenous
forest with a high number of tree species and the use of the Resonon Pika L camera,
whose application in forestry is so far minimal, is a significant advantage over other works.
Individual trees were mapped in the area of interest to obtain training and test dataset. A
total of 71 reference points entered the processing.

After data pre-processing in the native Spectronon software, masking and testing of PPI
and methods for data reduction were performed in ENVI. Of all the data reduction methods
tested, only the spectral resampling option was suitable. Both spectrally resampled and
unresampled data (40 and 200 bands) were used for classification of forest tree species.
Within the supervised classification, four classical algorithms were used: ML, Mahalanobis
Distance, MD and SAM. The best results were achieved using the Maximum Likelihood
classifier: the overall accuracy for the spectrally unresampled image was 84.55% (kappa
0.656) and for the resampled image 82.70% (kappa 0.631). Interestingly, we found that the
spectrally resampled data provided a few percentage points less accuracy. The machine
learning algorithms tested were RF, Extra Trees, SVM, and Naive Bayes. RF and Extra
Trees were the best performing ones (OA ranging from 82.04% to 82.68%). The study
concludes that both classical classifiers (particularly ML) and selected machine learning
algorithms performed well. The quality of their results could be improved by extending
the training dataset, especially in the case of machine learning.
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