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Abstract: Coastal areas are essential for human welfare but are increasingly vulnerable to
environmental and anthropogenic pressures. Accurate shoreline monitoring is for sustainable
coastal management. This study undertakes a multi-temporal analysis of the Badagry coastline,
Nigeria, from 1982 to 2022, using Landsat (MSS, TM, ETM+), Landsat 8 OLI, and Sentinel-
2A imagery. Shoreline change rates using the Digital Shoreline Analysis System (DSAS) with
End Point Rate, Linear Regression Rate, and Weighted Linear Regression models. The analy-
sis reveals a complex dynamic where a net accretionary trend masks a critical hotspot of severe
erosion. This erosional pattern is in the central and western portions of the study area, partic-
ularly downdrift of the Badagry Creek inlet. The Linear Regression Rate model demonstrated
a strong statistical fit to the historical data, with R2 values consistently exceeding 0.9. The LRR
indicated a maximum accretion rate of +5.32 m/yr. However, the End Point Rate model cap-
tured severe localized erosion, with rates reaching up to –0.65 m/yr in specific hotspots. These
findings provide a classic example of an interrupted littoral system, a phenomenon observed
globally where coastal engineering structures disrupt natural sediment transport. The results
strongly suggest that while natural depositional processes, driven by the regional longshore sed-
iment transport system, are active, localized anthropogenic activities, maintenance, and jetty
construction at the Badagry Creek inlet are the primary drivers of significant downdrift erosion.
The study emphasizes the need to shift from uniform coastal protection policies to spatially
targeted management interventions targeting erosion hotspots to prevent further degradation.

Keywords: Badagry coastal shoreline changes, DSAS, interrupted littoral drift, end point
rate, linear regression rate
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1. Introduction

The unprecedented rise in sea levels is causing significant changes along coastlines
worldwide. This phenomenon results in more extensive beach erosion, land submersion,
and coastal inundation (IPCC, 2023). These changes severely endanger ecosystems,
infrastructure, and human settlements (Nicholls et al., 2011; Giardino et al., 2018; Young
and Carilli, 2018; Vousdoukas et al., 2020; Adesina et al., 2022) predicted that by 2050,
rising sea levels and more intense storms could force nearly 200 million people to relocate.
The situation poses significant risks for coastal ecosystems and communities, especially
those dependent on fishing in low-lying regions. Areas with low elevation and limited
sediment availability are more vulnerable to shoreline retreat and coastal erosion. It
highlights the urgent need for attention and action (IPCC, 2023).

Detecting and mapping the coastline is one of the most crucial techniques for assessing
coastal erosion and accretion and studying the dynamics of coastal morphology (Adeaga
et al., 2021; Daniela et al., 2018). Because of its high precision, increased efficiency, and
cost-effectiveness, remote sensing is a more effective means to monitor shoreline change
in coastal areas than traditional survey methods (Thakur et al., 2017; Arjasakusuma et al.,
2021), especially in real-time. An essential component of coasts is the shoreline, a linear
structure on Earth’s surface that constantly changes in form and location (Roy et al., 2018;
Natesan, et al., 2013). Both natural and artificial forces influence shoreline alterations.
The shoreline is a variety of natural elements, including geology, geomorphology, storm
surges, wind speed, tidal currents, and wave height, which are all exacerbated by sea
level rise and yearly variations in precipitation (Shetty et al., 2015; Boateng et al., 2016;
Hakkou et al., 2018; Tiemele et al., 2022; IPCC, 2023).

Moreover, human modifications to coastal systems, such as urbanization, harbor
defense engineering structures, buildings, sand, vegetation clearance, dam development,
etc., also contribute to changes in the coastal environment (Obowu and Abam, 2014).
These alterations frequently result in silt buildup or erosion, flooding, and other problems
for coastal areas (Aman et al., 2019). Human activities, whether direct or indirect, impact
the geomorphology and processes of the shore (Brown et al., 2017). Coastal erosion is
a significant marine geologic challenge that poses different levels of risk depending on
its sources (Mentaschi et al., 2018; Pollard et al., 2015). The urgent need for adaptation
is highlighted by increasing coastal hazards and nearby development. Implementing
adaptation strategies is hindered by various technological, financial, economic, and social
challenges (Neide et al., 2022). According to Cooper et al. (2020), modelling coastal
landscapes and maintaining ecosystem services requires shoreline dynamics, which are
often characterized by coastal erosion and recurrent floods (Smail et al., 2019). Studying
how shorelines change is crucial for managing sustainable coasts and preventing erosion.
Because shorelines are constantly shifting, it’s essential to use an indicator that accounts
for their natural variability over time and space. It is key to understanding coastal evolution
(Boak and Turner, 2005).

However, optical imaging satellites recently pinpointed coastline locations (Jawak and
Luis, 2014; Duru, 2017; Gumus et al., 2021; Wu et al., 2022). The scientists, engineers,
planners, and coastal managers use it as a crucial indicator for comprehending how
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coastlines change and evolve (Mobio et al., 2024). Remote sensing data is now widely
available and provides an affordable way to access long-term coastal change measurements
within the last thirty years at many different sites throughout the world (Donchyts et
al., 2016; Luĳendĳk et al., 2018; Mentaschi et al., 2018; Ajayi et al., 2023; This study
investigates the changes caused by tidal flooding and wave impacts on the coastal plain
of Badagry seashore in Lagos State, Nigeria, between 1982 and 2022, which may be
further intensified by rising sea levels due to global warming (Ogunrayi et al., 2023).

The hazards of accelerated erosion related to coastal modifications have been the
subject of numerous scientific investigations. Komolafe et al. (2022) investigated coastal
changes using satellite images from 1987 to 2017 in the Ilaje region. Ogunrayi et al.
(2023) matched satellite photographs from 1986 and 2013 with a topographic map from
1969 using statistical methods like endpoint rate and net shoreline movement (NSM)
during various periods. Komolafe et al. (2022) also examined changes in the coastal
environment using the methodologies of linear regression, rate endpoint, and root mean
square error (RMSE). Similarly, Oyedepo and Oluyege (2024) investigated variations
in coastal positions. While these studies provide valuable regional context, their shorter
timeframes and broader spatial scales present a critical limitation. They often fail to
capture the multi-decadal persistence of trends or robustly link shoreline dynamics to
specific, localized anthropogenic drivers. A significant research gap, therefore, exists
in conducting a high-resolution, 40-year analysis focused on the Badagry coastline that
integrates early Landsat archives with modern Sentinel-2 imagery. This study addresses
this gap by providing the most detailed long-term assessment of this coastal segment to
date, beyond general trend analysis to pinpoint erosion hotspots and identify their primary
geomorphic and anthropogenic causes.

This study evaluates changes along the Badagry coastline using methods such as the
weighted linear regression endpoint and the linear regression rate to calculate coastal
change rates. By analyzing multi-temporal satellite images, the research aims to examine
shoreline alterations, accretion, and coastal erosion for 40 years. Additionally, the study
seeks to project shoreline protection measures for 2035 and assess the rate of change
along the Badagry coast. This information will aid decision-makers in determining the
suitability of coastal zones for various upcoming development projects.

2. Study area

Badagry Local Government Area (LGA) is located approximately on latitude1 7◦15′N
to 7◦00′N and longitude 5◦00′W to 7◦00′W. To its east lies Ologe Lagoon, to its north
Ogun State, to its south the Atlantic Ocean, and to its west the Republic of Benin. Badagry
(traditionally known as Gbagle) is a coastal town and local government area (LGA) in
Lagos State, Nigeria. It is between Lagos and the border with Benin at Seme. According
to a 2022 population projection, the population of Badagry is around 241,093 people.
Badagry Local Government Area covers an area of 498 km2. Another aspect peculiar to the
area is the tourist attraction sites in this region. Figure 1 shows the map of the study area.
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The Badagry coastline is part of the transgressive barrier-lagoon complex of the
Bight of Benin, characterized by a narrow, sandy beach fronting a series of lagoons
and creeks, most notably the Badagry Creek. Geomorphologically, the coast consists of
fine to medium-grained quartz sand and high-energy wave conditions from the South
Atlantic Ocean. The dominant wave direction is from the southwest, driving a significant
east-directed longshore sediment transport system (Ibe, 1988; Anthony et al., 2015). The
tidal regime is microtidal, with a mean spring tidal range of approximately 1.2 m. This
high-energy, transport-dominated environment makes the coastline inherently dynamic.
Anthropogenic pressures are significant, including sand mining, the construction of local
jetties, and increasing urbanization near the coast. These factors, combined with the
low-lying topography, increase its vulnerability to erosion and flooding.

A critical anthropogenic influence within the study area is the management of the
Badagry Creek inlet. This inlet, a key navigation channel for local maritime traffic, has
been subject to periodic maintenance dredging to ensure navigability. Historical records
and project timelines indicate that the planning and initial construction of modern jetties
and breakwaters associated with the Badagry Deep Seaport project began in the early
2010s, with major agreements signed around 2016. Furthermore, significant maintenance
dredging campaigns, likely in preparation for this larger development and to maintain
existing channels, were reported to have intensified around 2008 and again post-2015. These
structures and activities at the inlet directly intercept the natural east-directed longshore
sediment transport, creating the conditions for the sediment starvation and downdrift
erosion observed in the central portion of the coastline. Figure 1 shows the study area map.

Fig. 1. Study area map
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3. Materials and methods

This section outlines the methodology utilized to study shoreline dynamics from 1982 to
2022. The workflow involved three main stages: (1) acquisition and pre-processing of
multi-temporal satellite imagery; (2) semi-automated shoreline extraction and associated
uncertainty assessment; and (3) calculation of historical change rates and future shoreline
projection using the Digital Shoreline Analysis System (DSAS). A detailed methodological
flowchart is in Figure 2.

Fig. 2. Methodology flow diagram
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3.1. Data acquisition and shoreline extraction

The shorelines and corresponding changes over the last 40 years were retrieved using
satellite images and GIS techniques. Between 1982 and 2022, a selection of nine years,
specifically 1982, 1987, 1992, 1997, 2002, 2007, 2012, 2017, and 2022, was used for
this investigation based on data availability. Table 1 presents the specific attributes of the
images used. The alterations in the vector-form shorelines using the Digital Shoreline
Analysis System (DSAS) software extension (Thieler et al., 2009), which operates within
the ArcGIS environment (ArcGIS Desktop version 10.8).

Table 1. Details of satellite images used in the study

Data Type Path/Row Source
Spatial

resolution
(m)

Data of
acquisition

Landsat
MSS Secondary 189/053 USGS 60 02/05/1982

Landsat
MSS Secondary 189/053 USGS 60 01/02/1987

Landsat
TM Secondary 189/053 USGS 30 02/03/1992

Landsat
TM Secondary 189/053 USGS 30 01/01/1997

Landsat
ETM+ Secondary 189/053 USGS 30 02/03/2002

Landsat
ETM+ Secondary 189/053 USGS 30 01/01/2007

Landsat
ETM+ Secondary 189/053 USGS 30 01/01/2012

Landsat
8 OLI Secondary 189/053 USGS 30 01/01/2017

Sentinel
2A Secondary T31NFJ Copernicus

Archive 10 01/01/2022

*MSS, TM, ETM+, OLI: These are acronyms for different sensors aboard the Landsat satellite
series: Multi-Spectral Scanner, Thematic Mapper, Enhanced Thematic Mapper Plus, and Opera-
tional Land Imager, respectively. They represent different generations of technology with varying
spatial resolutions.
Secondary: This indicates that the data was not collected primarily by the authors for this study
but from existing, publicly available archives.
USGS: United States Geological Survey, the primary provider of Landsat data.
Copernicus Archive: The data repository for the European Union’s Earth Observation Programme
manages the Sentinel satellites.

Thus, shorelines were extracted from the multi-temporal satellite imagery using
a semi-automated approach based on the Modified Normalized Difference Water Index
(MNDWI) (Duru, 2017; Gumus et al., 2021), which is effective at separating land and
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water boundaries (Xu, 2006). The MNDWI was calculated for each image using the Green
and Short-Wave Infrared (SWIR1) bands presented in Eq. 1 (Xu, 2006):

MNDWI = (Green − SWIR1)/(Green + SWIR1). (1)

The resulting raster for each date was binarized into land and water classes using
a threshold value of zero; pixels with values > 0 are land, and those < 0 are water.
This process creates a land-water interface. The raster boundary was then converted to
a vector polyline using ArcGIS tools, representing the instantaneous shoreline for that
date. To minimize the influence of seasonal and daily water level variations, we focus
on the dry season (December–March). Additionally, imageries captured during low-tide
conditions were used. For recent imagery (Sentinel-2, Landsat 8), acquisition times were
cross-referenced with global tidal models (e.g., FES2014) to ensure they represented
a low-tide state. However, for historical imagery, where such verification is less reliable,
this uncertainty is acknowledged and factored into the calculations (see Section 3.2).
This consistent approach to selecting a shoreline proxy ensures maximum comparability
throughout the 40-year study period.

3.2. Uncertainty analysis

A Weighted Linear Regression was determined using the total uncertainty value for each
shoreline date. This value accounts for various sources of error and is essential for the
influence of each shoreline in the regression analysis (Fletcher et al., 2003; Ruggiero
et al., 2013). The uncertainty was computed as the square root of the sum of squared
errors, using Eq. 2 (Hapke et al., 2011), which is a standard method employed in shoreline
change studies worldwide (Boak and Turner, 2005; Thieler et al., 2009).

𝑈𝑡 =

√︃
(Upixel2 +𝑈𝑔𝑟2 + Utide2), (2)

where Upixel is the pixel resolution error, taken as the spatial resolution of the sensor (e.g.,
60 m for MSS, 30 m for TM/ETM+/OLI, 10 m for Sentinel-2). 𝑈𝑔𝑟 is the georeferencing
error, conservatively estimated as 0.5 pixels for all images. Utide is the uncertainty due
to tidal variation. This was calculated based on the horizontal shoreline displacement
caused by vertical tidal fluctuations. The mean spring tidal range for the region was taken
as approximately 1.2 m.

The average beach slope was estimated at 1:30 (a gradient of 0.033), consistent with
literature on sandy beaches in the Bight of Benin (Ibe, 1988; Anthony et al., 2015). While
local beach morphology will vary along the coast, this regional average represents the best
estimation, based on contemporaneous bathymetric surveys for each shoreline date. The
potential variation from this average slope is a component of the overall uncertainty. The
horizontal uncertainty was therefore calculated as the tidal range divided by the beach slope.

The calculated 𝑈𝑡 for each shoreline was entered into the “Uncertainty” attribute
field of the shoreline geodatabase, as required by the DSAS tool for the WLR analysis.
Based on this formula, the calculated total uncertainty (𝑈𝑡) values, which were input
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in the DSAS tool, were approximately ±30.2 m for Landsat MSS images, ±15.1 m for
Landsat TM/ETM+/OLI images, and ±5.1 m for the Sentinel-2A image. These values
quantitatively informed the weighting in the WLR model, giving higher influence to the
more recent, higher-resolution shorelines.

The Landsat imagery data, acquired from 1982 to 2022, was processed using ArcGIS
10.8 for atmospheric correction. A composite band was subsequently created by combining
the individual Landsat imagery bands, from which the shorelines were then extracted.
To establish the precise location of each shoreline, key attributes including Date, Shape
Length, and Uncertainty were added to a geodatabase.

A baseline was defined to cast transects perpendicular to the extracted shorelines
and as a reference for calculating distances. It is important to note that this baseline is
a computational reference line created for the DSAS analysis and not the official national
baseline of Nigeria established under the United Nations Convention on the Law of the
Sea (UNCLOS). An official UNCLOS baseline serves legal and jurisdictional purposes,
defining the territorial sea and Exclusive Economic Zone.

In contrast, the DSAS baseline’s purpose is purely analytical: to be placed parallel
to the general trend of the shorelines to ensure that measurement transects are cast
orthogonally for accurate change calculation. Using the official UNCLOS baseline, which
may be located far offshore or have a different orientation, would not be appropriate for
the specific geometric requirements of this geomorphic analysis. A baseline was used
for this study, positioned 100 meters offshore and parallel to the 1982 shoreline. The
distance between transects was set to 10 m to ensure high-resolution capture of shoreline
variability, particularly around the narrow erosional hotspot adjacent to the Badagry Creek
inlet. Figure 3 presents shorelines.

Fig. 3. Extraction of shorelines

Figure 4 illustrates the significant progradation (seaward movement) of the eastern
shoreline over the 40 years, alongside the more complex and clustered changes in the
central and western sections.
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Fig. 4. The multi temporal position of shorelines and baseline (1982-2022)

A shapefile (.shp) was used with the required properties for an offshore baseline 100 m
away and nearly parallel to the shoreline. This baseline is to quantify how far the shoreline
is from it at each orthogonal transect. The baseline data, received from the DSAS, are
shown in Figure 5. It is made concurrently with the casting of the transect. Details such as
the polyline shape, casting direction (CastDir), ID, group, and offshore are displayed. The
casted transect lines in Figure 5; the baseline is red, and the shorelines are green.

Fig. 5. Casted transect lines

3.3. Shoreline change analysis

The historical change of shorelines was analysed using the Digital Shoreline Analysis
System (DSASv5) developed by the United States Geological Survey (Thieler et al., 2009).
DSAS computes rate-of-change statistics from multiple historic shoreline positions. The
methods used in this study include:
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– End Point Rate (EPR): Calculated by dividing the distance between the oldest and
youngest shorelines (Net Shoreline Movement, NSM) by the time elapsed, shown
in Eq. 3 (Thieler et al., 2009).

EPR = NSM/(Time in years). (3)

– Linear Regression Rate (LRR): This rate is measured by fitting a least-squares
regression line to all shoreline positions for a given transect. The LRR is the slope
of this line, representing the average rate of change over the entire period. It does
not have a simple formula like EPR because it is a statistical output derived from
fitting the model 𝑦 = 𝑚𝑥 + 𝑏 to the data points, where y is the shoreline position, 𝑥
is time, and 𝑚 (the LRR) is the slope. DSAS calculates this slope for each transect.
It is robust because it uses all available data points, making it less susceptible to the
influence of outlier shorelines by Dolan et al. (1991).

𝑦 = 𝑚𝑥 + 𝑏. (4)

– Weighted Linear Regression (WLR): This is a modified LRR designed to incorporate
the uncertainty of each shoreline’s position. Shorelines with lower uncertainty (e.g.,
from high-resolution imagery) are given more weight in the regression calculation.
The weight (𝑤) is defined as the inverse of the squared uncertainty (𝑒), as established
in Eq. 5 (Thieler et al., 2009; Mullick et al., 2019).

𝑤 = 1/𝑒2. (5)

Beyond calculating rates, DSAS performs a crucial statistical evaluation of the LRR and
WLR models for each transect. Two key metrics are used: The R-squared (𝑅2) value, which
assesses the model’s goodness of fit by explaining temporal variation in shoreline position,
and a 95% Confidence Interval (𝐶𝐼) for each rate. The 𝐶𝐼 defines the statistical range of
the calculated rate, thereby indicating the reliability of the erosion or accretion trend. The
future prediction of the shoreline for 2035 was generated using the shoreline forecasting
tool in DSAS, which extrapolates from the calculated LRR in Eq. 6 (Mullick et al., 2019).

Future Shoreline Position = (LRR × Time Interval) + Intercept (6)

4. Results

This section presents the quantitative findings of the shoreline change analysis from 1982
to 2022. The results are organized to first show the temporal variability of shoreline
dynamics, followed by an analysis of the long-term spatial patterns of erosion and accretion.
The section concludes with a shoreline forecast for the year 2035 based on the calculated
long-term rates.

4.1. Temporal variability of shoreline change

The End Point Rate (EPR) was quantified using successive 5-year intervals to analyze
the short-term dynamics of the coastline. Instead of showing individual maps for each
period, Table 2 presents the key statistics. The analysis reveals a highly dynamic system
with significant accretion and erosion. Notably, the 2007–2012 period was characterized
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by dominant and severe erosion across most of the coastline, with an average rate of
–12.07 m/yr. In contrast, other periods, such as 1997–2002 and 2002–2007, were strongly
accretionary. The overall 40-year EPR (1982–2022) shows a net accretionary trend
(average +2.3 m/yr), but with localized erosion reaching –0.65 m/yr (Fig. 6).

Table 2. Summary of End Point Rate (EPR) Statistics for Different Time Intervals

Time
interval

Average EPR
(m/yr)

Max accretion
(m/yr)

Max erosion
(m/yr) Dominant trend

1982–1987 +3.41 +8.05 –7.50 Accretion

1987–1992 –4.39 +40.97 –8.61 Erosion (with anomalies)

1992–1997 +4.10 +15.26 –16.86 Accretion (with anomalies)

1997–2002 +7.56 +16.99 –4.79 Strong Accretion

2002–2007 +7.47 +14.17 –2.78 Strong Accretion

2007–2012 –12.07 0.00 –19.34 Severe Erosion

2012–2017 +2.26 +7.40 –8.28 Net Accretion

2017–2022 +1.66 +6.00 –8.77 Net Accretion

1982–2022
(overall) +2.30 +5.52 –0.65 Net Accretion

Fig. 6. Shoreline EPR from 1982 to 2022

4.2. Long-term spatial patterns of shoreline change

The long-term rates calculated using the Linear Regression Rate (LRR) and the Weighted
Linear Regression (WLR) models offer a more statistically strong perspective of the
40-year trend. The LRR model (Fig. 7) demonstrated statistical robustness as an indicator
of the long-term trend, directly linking shoreline behavior to persistent drivers.
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Across all 4118 transects, the mean value was 0.89, with over 70% of transects
yielding a value greater than 0.85, indicating that the linear model explains a very high
proportion of the variance in shoreline position over time. The 95% confidence interval
for the LRR rates (LRR_CI95) further confirmed the certainty of these trends. The model
revealed a mean shoreline change rate of +2.42 m/yr. However, the spatial distribution of
this change is highly heterogeneous and can be in three distinct zones:

– eastern accretionary zone: The easternmost ~15 km of the coastline is dominated
by moderate to high accretion rates, with values ranging from +3.0 to a maximum
of +5.32 m/yr.

– central erosional hotspot: A ~10 km segment in the central portion of the study area
(spanning approximately from transect ID 1800 to 2800) is a persistent erosion
hotspot. Shoreline change rates here are consistently negative, with LRR values
reaching a maximum erosion rate of –0.28 m/yr.

– western zone of relative stability: The western portion of the coastline exhibits
relative stability, with LRR change rates generally fluctuating between –1.0 and
+1.0 m/yr.

Fig. 7. Shoreline LRR from 1982 to 2022

The WLR model (Fig. 8), which gives more weight to higher-quality recent data,
confirms this spatial pattern, yielding slightly more conservative rates with a maximum
accretion of +5.25 m/yr and maximum erosion of –0.21 m/yr.

Figures 6 to 8 show the three zones: stable rates hovering around zero in the west
(low transect IDs), a sharp dip into negative values in the central erosional hotspot, and
a rise to high positive values in the eastern accretionary zone (high transect IDs). The
spatial variability of the long-term trend is most clearly illustrated in Figures 6 to 8, which
display the values for each transect along the coast.

It delineates three distinct coastal segments: a western zone of relative stability,
a central hotspot of persistent erosion, and an eastern zone of high accretion, quantitatively
confirming the patterns observed in the map. Figure 9 compares the predicted 2035
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Fig. 8. Shoreline WLR from 1982 to 2022

shoreline (green line) with the most recent 2022 shoreline (blue line). The forecast
was created by extending the Linear Regression Rate (LRR) for each transect, and the
comparison visually highlights areas of future erosion and expansion.

Fig. 9. Forecasted Shoreline Position for 2035

5. Discussion

The results reveal a complex shoreline system where a net accretion trend conceals
a critical, localized erosion issue. This discussion interprets the driving forces behind these
patterns, compares the findings within a regional context, and outlines the implications
for management.

5.1. Interpretation of driving forces: interrupted littoral drift

The spatial patterns of shoreline change along the Badagry coast provide a classic geomor-
phic signature of an interrupted littoral system. Our analysis reveals a stark dichotomy:
persistent, high-rate accretion in the eastern zone (+3.0 to +5.32 m/yr) coexisting with
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a concentrated hotspot of chronic erosion in the central zone (–0.28 m/yr, with short-term
rates up to –0.65 m/yr). This pattern is not random; it is a direct consequence of the inter-
action between the natural sediment transport regime and an anthropogenic intervention.

The prominent accumulation of sediment in the east aligns with the well-known net
eastward longshore sediment transport in the Bight of Benin (Ibe, 1988; Almar et al., 2015).
This area is a natural depositional sink for sediment moving along the coastline. However,
a significant finding of this study is that this natural process is affected by artificial means.

The erosion hotspot is situated directly east of the Badagry Creek inlet, confirming that
the maintenance of the navigation channel and related structures is the main contributing
factor. Our temporal analysis (see Table 2) further supports this, showing that the most
severe erosion rate of –12.07 m/yr occurred between 2007 and 2012. This period directly
corresponds with reports of a major maintenance dredging campaign at the inlet around
2008, providing a direct temporal link between the anthropogenic activity and the
acute shoreline response. These structures act as a sediment trap or a “littoral barrier”,
sequestering sand that would naturally bypass the inlet to nourish the central coastal
segment (Komar, 1998; Mullick et al., 2019).

5.2. Quantitative model assessment and recommendation

A quantitative comparison of the models reveals their distinct strengths and applications
for coastal management. The EPR captured the most extreme rates (+5.52 m/yr accretion;
–0.65 m/yr erosion), highlighting the magnitude of change over short periods but remaining
sensitive to outliers (Dolan et al., 1991). In contrast, the LRR (+5.32 m/yr accretion;
–0.28 m/yr erosion) and WLR (+5.25 m/yr accretion; –0.21 m/yr erosion) provided more
statistically robust long-term trends.

Factoring in data quality, the Linear Regression Rate (LRR) is the preferred method.
Its main advantage is that it utilizes all available shoreline data, allowing for a statistically
robust trend line less affected by single anomalous events (Fletcher et al., 2003; Ruggiero
et al., 2013). The LRR in this study demonstrates high 𝑅2 values (averaging 0.89) along
with associated confidence intervals, which confirms its reliability. Additionally, the
Weighted Linear Regression (WLR) offers valuable refinement by considering data quality
(Anthony et al., 2015; Mohanty et al., 2015).

The projected shoreline for 2035 was estimated using the robust long-term rate of
retreat (LRR) in the Digital Shoreline Analysis System (DSAS) forecasting tool. However,
the interpretation of this linear forecast is with caution because it assumes stationarity; that
is, it presumes that the statistical properties of the system will remain constant (Milly et al.,
2008). This assumption faces increasing challenges due to climate change. Linear models
fail to account for non-linear accelerations resulting from sea-level rise and changing storm
patterns (Ranasinghe, 2016; Vousdoukas et al., 2020). As a result, this forecast reflects
a conservative “business-as-usual” scenario rather than a definitive prediction. A com-
prehensive management strategy should incorporate LRR and long-term wave response
(WLR) for identifying long-term trends, while utilizing extreme event response (EPR) to
pinpoint periods of significant change that may necessitate immediate tactical responses.
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However, a quantitative comparison of the models reveals their distinct strengths
and applications for coastal management. The End Point Rate (EPR) captured the most
extreme short-term changes, with a maximum accretion of +5.52 m/yr and erosion of
–0.65 m/yr, making it possible to identify periods of acute change linked to specific events
like major storms or dredging campaigns. In contrast, the Linear Regression Rate (LRR) is
the recommended method. Providing a more moderate trend (max accretion +5.32 m/yr;
max erosion –0.28 m/yr), the LRR utilizes all available shoreline data, resulting in
a statistically robust trend line less influenced by single anomalous events (Dolan et al.,
1991). The high mean 𝑅2 values of 0.89 in this study confirm its reliability. The Weighted
Linear Regression (𝑊𝐿𝑅), which gave the most conservative estimates (max accretion
+5.25 m/yr; max erosion –0.21 m/yr), is also highly valuable as it refines the LRR by
considering data quality (Mullickz et al., 2019).

6. Conclusion

This study successfully quantified forty years of shoreline dynamics along the Badagry
coast, revealing a deceptive narrative of overall accretion that conceals a critical, anthro-
pogenically driven erosion hotspot. By integrating multi-sensor satellite imagery from 1982
to 2022 within the DSAS framework, we demonstrated that human activities at the Badagry
Creek inlet have interrupted the regional longshore transport system, causing chronic down-
drift erosion, a classic pattern of an interrupted littoral system documented in diverse coastal
settings worldwide. The Linear Regression Rate model, validated by high statistical confi-
dence (> 0.9), proved most robust for identifying this long-term, spatially-defined problem.

The main conclusion of this research is that a uniform coastal management policy for
Badagry is ineffective and potentially wasteful. Instead, allocate resources to a targeted
strategy that addresses sediment starvation at the specific erosion hotspot. It could involve
engineered sediment bypassing or an ongoing beach nourishment programme.

While this study robustly establishes historical trends, we acknowledge that the linear
forecasting models have limitations. They assume that the rates and causes of past change
will continue unchanged. This approach cannot account for non-linear accelerations
associated with climate change, such as accelerated sea-level rise and increased storm
intensity or frequency, which worsen coastal erosion globally (Vousdoukas et al., 2020;
IPCC, 2023). Future research must therefore pivot towards process-based numerical
models (e.g., Delft3D, XBeach) to project shoreline positions under various climate
scenarios (Lyddon et al., 2021). Such models could simulate sediment transport pathways
and test the efficacy of potential interventions, such as a sediment bypassing system or
optimized beach nourishment designs. Integrating the outputs of these physical models
with socio-economic vulnerability assessments will be crucial for developing a truly
resilient and sustainable management plan for the Badagry coastline.
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