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Tensegrity robots represent a groundbreaking advancement in robotic design, of-
fering advantages such as lightweight construction, self-deformation, and fold-ability.
Thanks to their interesting properties, this type of structure can be used, for example,
in space applications. This study focuses on the modelling and simulation of a six-
bar tensegrity robot. A mathematical framework is developed using node-generalized
coordinates and connection matrices, and a design scheme is proposed where move-
ment is driven by altering bar lengths. The robot’s movement was simulated using
the multibody dynamics simulation software MSC ADAMS. The robot achieves loco-
motion through self-rolling, driven by controlled changes in bar lengths that shift the
centre of gravity, demonstrating reduced energy consumption and improved structural
stability compared to string-driven models. The design ensures stability and control
by maintaining horizontal contact of actuated bars with the ground, preserving geo-
metric configurations like squares or diamonds. In the article, in addition to the results
of simulation tests, a robot control algorithm based on the tensegrity structure was
proposed.

1. Introduction

The topic of robots using the concept of tensegrity structure is the subject of
research work by many scientific centres. They pioneered the exploration of dy-
namic tensegrity structures, conducting detailed studies through physical hardware
experiments and computational simulations. The scientific efforts have focused on
detailed analyses conducted via these two complementary approaches, advancing
the understanding and application of tensegrity robotics [1]. In other works, we can
find methods of describing and constructing free-standing structures using axially
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loaded compression elements arranged within a carefully constructed network of
tension elements. This type of arrangement is known as a tensegrity structure (short
for tensile integrity). In such structures, each component is subjected exclusively
to either pure axial compression or pure tension [2]. Tensegrity robot is a type of
mobile robot that uses the concept of tensegrity, a structural principle that involves
a network of compressive and tensile elements to create a lightweight yet flexible
and stable structure. The robot consists of rigid bars (often called struts) and a
series of connecting cables under tension. This setup enables the robot to absorb
and distribute forces efficiently, making it ideal for applications where robustness
and adaptability to uneven terrain are required. The tensegrity structures are inde-
pendent of gravity, meaning they do not need to be anchored or supported by any
surface to maintain stability [3]. These characteristics make them well-suited for
aerospace and robotic applications.

From a robotics standpoint, another key advantage of tensegrity structures is
the diffusion of forces. Unlike traditional serial manipulators, they lack lever arms,
preventing torque accumulation at joints. Instead, forces are distributed across mul-
tiple load paths, enhancing the structure’s robustness and resilience to mechanical
failures. The springs in the robot structure should be mentioned. Thanks to them, the
structure becomes more resistant to the effects of force impulses, e.g., during a fall.
Research has explored vibration-driven locomotion using single-actuated tenseg-
rity structures [4]. The study utilized finite element analysis (FEA) via ANSYS
software to simulate dynamic behaviours of two prototypes; a planar and a spatial
tensegrity configuration. The dynamic responses to varying driving frequencies
and prestress levels were assessed, identifying their influence on locomotion per-
formance. Experimental validation was conducted with physical prototypes to
confirm the simulation findings, focusing on achieving bidirectional locomotion
with minimal control complexity. Related work has been carried out on utilizing
vibration-based actuation for small tensegrity systems [5]. To support this design,
mathematical models were created to describe the interactions among nodes, bars,
and strings. Simulations using a multi-body analysis environment MSC ADAMS
software provided valuable insights into motion paths, dynamic stability, and over-
all system efficiency, showcasing the benefits of bar-driven mechanisms compared
to string-based systems, but they only used single bar actuation mechanisms.

Another innovative advanced example of tensegrity robot was SUPPERball
introduced by NASA, featuring six bars and twenty-four strings, where the strings
functioned as the robot’s actuators [6]. As a result, the robot’s movement is energy
intensive, inefficient, and difficult to control. Similarly a Real2Sim2Real (R2S2R)
strategy has been introduced for Control of Cable Driven tensegrity robotics [7].
Similar structure was introduced by using bars as driving components rather than
strings, addressing issues related to energy efficiency and structural resilience
found in earlier models [8]. In addition, a bar-driven locomotion mechanism that
enhances stability and reduces energy consumption is proposed [9]. Their research
demonstrated that controlling the length of two base bars in contact with the ground
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can effectively drive the robot. In parallel, energy-based optimization has been
employed which improve trajectory planning with minimal control complexity [10].

A novel four-bar tensegrity robot was designed to simplify structural com-
plexity while maintaining efficient locomotion [11]. The structure was modelled
mathematically using node generalized coordinates and connection matrices, cap-
turing the relationships among rigid bars, elastic cables and diagonal actuation
elements. Simulations in multi-body analysis environment MSC ADAMS software
provided insights into the rolling dynamics, showing that a complete rolling cycle
involved eight discrete steps. However, deviations in the trajectory were observed,
resulting from elastic collisions and spring-induced jitter during ground contact,
highlighting challenges in achieving dynamic stability and precise control.

Path planning algorithms, such as A*, have also been utilized to optimize
navigation, ensuring efficient movement in rolling tensegrity robots [12]. Recently,
the integration of Pneumatic Artificial Muscles (PAMs) has enabled efficient pla-
nar motion, enhancing the stability of quadrupedal robots in various environments
[13]. In addition, the Port-Hamiltonian framework offers a more accurate model
by considering internal forces and environmental interactions, improving control
in real-world applications [14]. Another example of recently advanced tensegrity
robotics is the rimless-wheel-like tensegrity walker (RTW), which combines the
stability of rimless wheels with the flexibility of tensegrity for efficient movement
across varied terrains [15]. Likewise, TICBot utilizes tensegrity structures to nav-
igate confined spaces, offering superior manoeuvrability compared to traditional
robots [16]. Furthermore, hybrid model-based and deep reinforcement learning
approaches improve control efficiency, enabling effective rolling on varied surface
[17]. The application of tensegrity structures in robotics is well-established, with
recent studies concentrating on their statics [18, 19], kinematics [20, 21], dynamic
simulations [22–24], and workspace exploration [25–27]. These control strategies,
actuation, and modelling advancements continue to drive tensegrity robotics toward
more efficient, adaptable, and practical real-world applications.

This study introduces a six-bar tensegrity robot that achieves locomotion
through bar-length modulation, unlike most prior works that rely on string or
cable actuation. In addition, the paper presents a comprehensive mathematical
framework using node and connection matrices, a realistic multi-body simulation
in MSC ADAMS, and a step-function-based control strategy and bar actuation
method that enables continuous rolling through a twelve-step actuation sequence.
Finally, the inclusion of dynamic analysis of joint displacement, velocity, and
contact forces goes beyond many earlier studies, making this work a distinctive
contribution to tensegrity robotics.

2. Mathematical model

The six-bar tensegrity structure shown in Fig. 1 is made up of 12 nodes, 6
bars, and 24 cables (in our case, the six-bar components of the simulation model
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Fig. 1. Six bar tensegrity robot structural model.
Nodes (the connecting point of black bar and blue
thin members), bars/struts (black thick members),

and cables (blue thin members; modelled as springs
in the simulation)

were substituted with six translation pairs, and we also used springs instead of
string), which are divided into three distinct groups to create a well-organized
framework. In each group, the bars lie within a single plane and the three planes
are oriented perpendicular to one another, ensuring a balanced and symmetrical
arrangement. As shown in Fig. 2, these three orthogonal planes correspond to
the coordinate planes of a Cartesian coordinate system. The intersection of these
planes defines the origin of the coordinate system. This arrangement highlights
the precise geometric design of tensegrity structure, where the bars and cables
work together within this spatial configuration to maintain stability, symmetry, and
structural efficiency.

In this configuration, the strings experience only tensile forces, while the bars
are subjected to compressive stresses. These opposing forces work in harmony
to ensure the structural stability of the system. This balance between tension and
compression allows the tensegrity structure to maintain its form and effectively
resist external loads. Furthermore, the bars in this tensegrity model are all of equal
length, contributing to the symmetry and uniformity of the structure. Each bar is
connected at its ends to nodes, which are evenly distributed across the surface of the
structure. This arrangement ensures that the forces are evenly distributed, further
enhancing the stability and resilience of the structure under various conditions.

Mathematical modelling of a tensegrity structure begins with the definition of
its nodes, which serve as connection points for the bars and strings. The spatial
coordinates of these nodes determine the position of each structural element. By
classifying nodes according to specific rules, a node matrix can be constructed to
represent each node category. These individual matrices are then combined into a
complete tensegrity node matrix. As shown in Fig. 2, the structure consists of three
mutually perpendicular planes, each containing one group of bars and four nodes.
The distance between parallel bars is represented by d, while the length of each bar
is denoted as ls.



Locomotion of tensegrity robot through bar-length modulation: simulation and . . . 5

Fig. 2. Layout of the six-bar grouped into three orthogonal planes in Cartesian
coordinate system: (a) YQX plane between bar 𝐿1 and 𝐿2, (b) ZQY plane

between bar 𝐿3 and 𝐿4, (c) ZQX plane between bar 𝐿5 and 𝐿6

2.1. Node matrix

The coordinate vector for each node in the XQY plane is specified as follows.
These coordinates define the precise positions of the nodes in relation to the XQY
plane

𝑛1 =

[
𝑛1𝑥 𝑛1𝑦 𝑛1𝑧

]T
=

[
−0.5𝑑 −0.5𝑙𝑠 0

]T
,

𝑛2 =

[
𝑛2𝑥 𝑛2𝑦 𝑛2𝑧

]T
=

[
−0.5𝑑 0.5𝑙𝑠 0

]T
,

𝑛3 =

[
𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

]T
=

[
0.5𝑑 −0.5ls 0

]T
,

𝑛4 =

[
𝑛4𝑥 𝑛4𝑦 𝑛4𝑧

]T
=

[
0.5𝑑 0.5ls 0

]T
,

(1)

where 𝑛𝑖 = [𝑛𝑖𝑥 , 𝑛𝑖𝑦 , 𝑛𝑖𝑧]T is the 3-D coordinate vector of node 𝑖; 𝑑 is the spacing
between the two bars in the plane (mm); ls is the length of the bar (mm); (·)T

denotes transpose.
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From equation (1), the positions of all nodes within the XQY plane can be
systematically represented using a node matrix

𝑁1 =

[
𝑛1 𝑛2 𝑛3 𝑛4

]
3×4

, (2)

where 𝑁1 ∈ R3×4 is the node matrix for the XQY plane; 𝑛 𝑗 are the node position
vectors defined in equation (1); [·]3×4 indicates the matrix dimensions.

Similarly, the coordinate vector for each node located within the ZQY plane is

𝑛5 =

[
𝑛5𝑥 𝑛5𝑦 𝑛5𝑧

]T
=

[
0 −0.5d −0.5ls

]T
,

𝑛6 =

[
𝑛6𝑥 𝑛6𝑦 𝑛6𝑧

]T
=

[
0 −0.5𝑑 0.5ls

]T
,

𝑛7 =

[
𝑛7𝑥 𝑛7𝑦 𝑛7𝑧

]T
=

[
0 0.5𝑑 −0.5ls

]T
,

𝑛8 =

[
𝑛8𝑥 𝑛8𝑦 𝑛8𝑧

]T
=

[
0 0.5𝑑 0.5ls

]T
.

(3)

The positions of all nodes within the ZQY plane can be represented by:

𝑁2 =

[
𝑛5 𝑛6 𝑛7 𝑛8

]
3×4

, (4)

where 𝑁2 ∈ R3×4 is the node matrix for the ZQY plane; 𝑛 𝑗 are the node position
vectors defined in equation (3).

The coordinate vector for each node located within the ZQX plane is defined
as:

𝑛9 =

[
𝑛9𝑥 𝑛9𝑦 𝑛9𝑧

]T
=

[
−0.5ls 0 0.5d

]T
,

𝑛10 =

[
𝑛10𝑥 𝑛10𝑦 𝑛10𝑧

]T
=

[
0.5ls 0 0.5d

]T
,

𝑛11 =

[
𝑛11𝑥 𝑛11𝑦 𝑛11𝑧

]T
=

[
−0.5ls 0 −0.5d

]T
,

𝑛12 =

[
𝑛12𝑥 𝑛12𝑦 𝑛12𝑧

]T
=

[
0.5ls 0 −0.5d

]T
.

(5)

The node matrix consisting of the positions of all nodes within the ZQX plane
can be represented by

𝑁3 =

[
𝑛9 𝑛10 𝑛11 𝑛12

]
3×4

, (6)

where 𝑁3 ∈ R3×4 is the node matrix for the ZQX plane; 𝑛 𝑗 are the node position
vectors defined in equation (5).
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The node matrix for the entire tensegrity structure, which incorporates the
positions of all nodes in the system, is given as:

𝑁 =

[
𝑁1 𝑁2 𝑁3

]
3×12

, (7)

where 𝑁 ∈ R3×12 stacks all node coordinates by column-wise concatenation of 𝑁1,
𝑁2, and 𝑁3; 𝑁1, 𝑁2, 𝑁3 are the node matrices for the XQY, ZQY, and ZQX planes,
respectively.

Therefore, the matrix representing the complete set of node positions is fully
defined as:

𝑁 =


𝑛1𝑥 𝑛2𝑥 𝑛3𝑥 𝑛4𝑥 𝑛5𝑥 𝑛6𝑥 𝑛7𝑥 𝑛8𝑥 𝑛9𝑥 𝑛10𝑥 𝑛11𝑥 𝑛12𝑥

𝑛1𝑦 𝑛2𝑦 𝑛3𝑦 𝑛4𝑦 𝑛5𝑦 𝑛6𝑦 𝑛7𝑦 𝑛8𝑦 𝑛9𝑦 𝑛10𝑦 𝑛11𝑦 𝑛12𝑦

𝑛1𝑧 𝑛2𝑧 𝑛3𝑧 𝑛4𝑧 𝑛5𝑧 𝑛6𝑧 𝑛7𝑧 𝑛8𝑧 𝑛9𝑧 𝑛10𝑧 𝑛11𝑧 𝑛12𝑧

 , (8)

where 𝑛𝑖𝑥 , 𝑛𝑖𝑦 , 𝑛𝑖𝑧 are the 𝑥-, 𝑦-, and 𝑧-coordinates (of units mm) of node 𝑛𝑖 for
𝑖 = 1, . . . , 12; rows correspond to axes 𝑥, 𝑦, and 𝑧, and columns correspond to
nodes 𝑛1–𝑛12.

2.2. Component matrix

The spatial positions of the nodes determine the component vectors of the
structure. Therefore, using the information provided in the node matrix, the coor-
dinates of the bars can be accurately calculated. From the picture shown in Fig. 2,
the coordinates of the nodes associated with each bar can be determined. Let 𝐿𝑖

denote the vector representing each bar, wich can be derived using the positions of
its corresponding nodes

𝐿𝑖 = 𝑛2𝑖 − 𝑛2𝑖−1, where 𝑖 ∈ {1, 6}, (9)

where 𝐿𝑖 is the vector of bar 𝑖 (from node 𝑛2𝑖−1 to node 𝑛2𝑖), 𝑖 ∈ {1, . . . , 6}; 𝑛 𝑗 are
node position vectors as defined above. Therefore, in the XQY plane we have

𝐿1 = 𝑛2 − 𝑛1 and 𝐿2 = 𝑛4 − 𝑛3, (10)

where 𝐿1 and 𝐿2 are the bar vectors in the XQY plane, connecting node pairs
(𝑛1, 𝑛2) and (𝑛3, 𝑛4), respectively.

The rod matrix corresponding to the plane can be expressed as

𝑅1 =

[
𝐿1 𝐿2

]
3×2

, (11)

where 𝑅1 ∈ R3×2 is the rod matrix for the XQY plane, whose columns are the bar
vectors 𝐿1 and 𝐿2; 𝐿𝑖 ∈ R3 is the vector of bar 𝑖 (compression member).
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Thus, 𝑅1 organizes the vector components of the two bars in the XQY plane into
a single matrix for compact representation. So, the matrix 𝑅1 can be represented
by

𝑅1 =

[
𝑛2 − 𝑛1 𝑛4 − 𝑛3

]
3×2

. (12)

This can be rewritten in the following matrix form

𝑅1 =

[
𝑛1 𝑛2 𝑛3 𝑛4

] 
−1 0

1 0
0 −1
0 1


. (13)

From the equation (13), 𝑅1 can be expressed in terms of the node matrix 𝑁1 and
a connection matrix [28], which defines the relationships between the nodes and
bars 𝐶𝑇

𝑅1:
𝑅1 = 𝑁1𝐶

𝑇
𝑅1. (14)

Similarly, the rod matrix corresponding to the ZQY plane can be expressed as:

𝑅2 =

[
𝐿3 𝐿4

]
3×2

, (15)

where 𝑅2 ∈ R3×2 is the rod matrix for the ZQY plane, whose columns are the bar
vectors 𝐿2 and 𝐿3. Therefore, by utilizing the node matrix 𝑁2 and a connection
matrix 𝐶𝑇

𝑅2 the expression can be written as:

𝑅2 = 𝑁2𝐶
𝑇
𝑅2. (16)

In a similar manner, the rod matrix associated with the ZQX plane can be defined
as in equation (17).

𝑅3 =

[
𝐿5 𝐿6

]
3×2

. (17)

The bar matrix in the XOZ plane can also be represented as the product of the node
matrix and a constant matrix, as

𝑅3 = 𝑁3𝐶
𝑇
𝑅3. (18)

Therefore, the rod matrix of the whole complete tensegrity structure can be repre-
sented by:

𝑅 =

[
𝑅1 𝑅2 𝑅3

]
3×6

, (19)

where 𝑅 ∈ R3×6 is the rod matrix of the complete structure; 𝑅1, 𝑅2, 𝑅3 ∈ R3×2 are
the rod matrices of the three orthogonal planes, each containing the two bar vectors
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of that plane. Therefore, the rod matrix for the entire structure can be represented
as the product of the node matrix and the connection matrix:

𝑅 = 𝑁𝐶T
𝑅, (20)

where 𝑁 = [ 𝑁1 𝑁2 𝑁3 ] ∈ R3×12 stacks all node coordinates (see equation (7);
𝐶𝑅 ∈ R12×6 is the overall connection (incidence) matrix that encodes the bar–node
relationships ; thus 𝐶T

𝑅 ∈ R12×6 and 𝑅 = 𝑁 𝐶T
𝑅 ∈ R3×6.

𝐶T
𝑅 =


𝐶𝑇
𝑅1 0 0
0 𝐶𝑇

𝑅2 0
0 0 𝐶𝑇

𝑅3

12×6

. (21)

The string matrix is derived following a similar approach, utilizing the connec-
tion matrix as its basis. The relationship between the nodes and the strings is
comprehensively presented in Table 1, clearly depicting their interconnections and
structural dependencies.

Table 1. Relationships between strings and nodes
String 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8
Starting point 𝑛5 𝑛5 𝑛5 𝑛6 𝑛6 𝑛7 𝑛3 𝑛9
End point 𝑛4 𝑛2 𝑛11 𝑛10 𝑛9 𝑛12 𝑛10 𝑛8
String 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16
Starting point 𝑛1 𝑛1 𝑛7 𝑛8 𝑛3 𝑛9 𝑛2 𝑛5
End point 𝑛11 𝑛7 𝑛3 𝑛1 𝑛8 𝑛2 𝑛11 𝑛2
String 𝑆17 𝑆18 𝑆19 𝑆20 𝑆21 𝑆22 𝑆23 𝑆24
Starting point 𝑛9 𝑛10 𝑛6 𝑛12 𝑛5 𝑛12 𝑛7 𝑛10
End point 𝑛1 𝑛8 𝑛4 𝑛4 𝑛12 𝑛3 𝑛11 𝑛4

Table 1 defines the relationship between the node matrix and the string matrix
through their interconnected properties, highlighting the structural dependencies
within the tensegrity system. This relationship forms the foundation for mathemat-
ical modelling, enabling precise representation of the structure’s configuration and
dynamics. It can be expressed as follows:

𝑆 = 𝑁𝐶T
𝑆 , (22)

where 𝑆 ∈ R3×24 is the string (cable) matrix whose 𝑘-th column is the oriented
vector of string 𝑆𝑘 ; 𝑁 ∈ R3×12 is the node matrix stacking the coordinates of nodes
𝑛1, . . . , 𝑛12 (see equation (7)); 𝐶𝑆 ∈ R12×24 is the string connection (incidence)
matrix with entries (𝐶𝑆)𝑘,𝑖 = +1 at the starting node of string 𝑆𝑘 , (𝐶𝑆)𝑘, 𝑗 = −1 at
its end node, and 0 otherwise (node pairs as listed in Table 1); 𝐶T

𝑆 ∈ R12×24 is its
transpose.
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𝐶T
𝑆 =



0 0 0 0 0 0 0 0 1 1 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 −1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1 −1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0



(23)

3. Simulation of the tensegrity robot

The simulation model of the six-bar tensegrity robot developed using the multi-
body analysis environment MSC ADAMS software is illustrated in Fig. 3. The
geometric node coordinates and material parameters for the robot’s components
are detailed in Table 2 and Table 3, providing comprehensive insights into the
structural configuration and material properties.

Fig. 3. Six bar tensegrity robot simulation model
in multi-body analysis environment

To ensure the simulation’s accuracy, the model is designed such that the weight,
centre of gravity, movement inertia, and product of inertia for each component are
equivalent to those of the corresponding components in the physical structure. The
simulation results closely align with the robot’s real-world behaviour by maintain-
ing this equivalence. This congruence ensures that the dynamic response, stability,
and overall performance observed in the simulation accurately represent the actual
characteristics of the robot, making it a reliable tool for analysing and optimizing
the design and functionality of the tensegrity structure.
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Table 2. Simulation model geometric node coordinates

Nodes Loc-x Loc-y Loc-z Nodes Loc-x Loc-y Loc-z

𝑛1 −100 −90 0 𝑛7 0 100 −90

𝑛2 −100 90 0 𝑛8 0 100 90

𝑛3 100 −90 0 𝑛9 −90 0 100

𝑛4 100 90 0 𝑛10 90 0 100

𝑛5 0 −100 −90 𝑛11 −90 0 −100

𝑛6 0 −100 90 𝑛12 90 0 −100

Table 3. Material parameters of the robot’s components

Parameter Value

Bar length 180 mm

The distance between parallel bar 200 mm

Bar weight 150 g

Spring stiffness coefficient 5 N/mm

Damping coefficient 8 × 10−2 N·s/mm

Spring preload 10 N

Static friction coefficient 0.9

Dynamic friction coefficient 0.7

The precise positioning of each node is determined by specifying the coordi-
nates of the node. The connections between nodes are established using these coor-
dinates, thereby defining the arrangement of bars and strings within the structure.
The simulation model also incorporates elastic springs as the string components,
requiring the specification of relevant parameters for these elements. The stiffness
and damping coefficients of the springs play a critical role in determining the robot’s
ability to maintain self-equilibrium in the absence of external forces. Additionally,
including a spring preload provides initial prestress to the robot’s components. By
adjusting the preload value, the equilibrium stability of the tensegrity robot can be
fine-tuned, ensuring the desired structural balance and performance. To provide a
clear understanding of the simulation model, Table 2 outlines the detailed node co-
ordinates used in its configuration, while Table 3 provides the material parameters
of the robot’s components, ensuring clarity in the structural and material properties
of the model.

The robot must roll continuously for twelve rotations to complete one full cycle.
For clarity within the multi-body analysis environment, the six pairs of bar groups
are labelled as shown in Fig. 3. During every 5 seconds, the maximum extension
occurs on the same end face, with one pair of bars extending to a maximum length
of 260 mm, while the other pair remains at its original length of 180 mm.
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3.1. Design scheme and control strategy

Building upon the previous analysis, the six-bar tensegrity structure is devel-
oped. Any change in the structure’s shape results in a shift in its overall centre of
gravity; if the centre of gravity moves away from the ground, the structure initiates
a rolling motion, enabling locomotion [29]. Following this principle, the six-bar
tensegrity structure is oriented on its side and adapted into a six-bar tensegrity
robot capable of achieving movement through self-rolling.

The rolling motion of the six-bar tensegrity robot is achieved by altering the
lengths of the bars, which drives changes in the structure’s overall shape. As the
six-bar tensegrity structure deforms, the lengths of the connected springs also vary
accordingly. The bars are designed to expand and contract as required to ensure
that the robot’s shape transformation remains controllable.

This design enables the robot to alter its entire structural configuration by ac-
tuating the bars located at its end faces. To maintain precise control over the robot’s
shape, the bar which is always in horizontal contact with the ground undergoing
actuation. Additionally, to change the direction of movement, the bar positioned
opposite to the intended direction is actuated. This approach ensures that the robot
consistently retains a defined geometric configuration, such as a square or dia-
mond, thereby preserving stability and controllability during motion. To alter the
structural configuration, we use a step function (Fig. 4) STEP(𝑥, 𝑥0, ℎ0, 𝑥1, ℎ1)
that interpolates between two markers using a cubic polynomial [30]. The equation
governing the STEP function is given below.

Fig. 4. Step function graph

STEP =



ℎ0, when 𝑥 ⩽ 𝑥0,

ℎ0 + (ℎ1 − ℎ0)
[
𝑥 − 𝑥0
𝑥1 − 𝑥0

]2 {
3 − 2

𝑥 − 𝑥0
𝑥1 − 𝑥0

}
, when 𝑥0 ⩽ 𝑥 ⩽ 𝑥1,

ℎ1, when 𝑥 ⩾ 𝑥1.

(24)

Figs. 5 and 6 present the centre of mass and translational displacement of
Link 1 in a six-bar tensegrity structure, with the motion governed by the step
function equation (24), which smoothly varies the length of the bar. Fig. 5 shows
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the centre of mass trajectory for Link 1 along Y-axis from (0 to 10 sec). The graphs
indicate a smooth and symmetric displacement profile, suggesting a controlled and
continuous motion. Similarly Fig. 6 show the translational displacement of Link 1
extending up to 80 mm and then returning to its original position. This suggests
that the extension and contraction of the bars directly influence the displacement
characteristics of the mechanism.

Fig. 5. Centre of mass of Link 1 along Y-axis

Fig. 6. Translational displacement of Link 1 along Y-axis

Based on this mechanism, we implemented a sequence of twelve steps, effec-
tively completing six full rotations of the six-bar tensegrity robot. The controlled
variation in bar length, governed by the step function shown in Fig. 7, facilitates
smooth rolling motion, enabling efficient locomotion over multiple cycles.

The motion cycle of the six-bar tensegrity robot spans 60 seconds, and the
robot’s rolling motion can be divided into twelve steps with each step of movement
lasting 5 seconds, as shown in Table 4. The symbol ’+’ indicates that the extendable
bar is stretched, while the symbol ’–’ signifies that the bar is contracted. The symbol
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Fig. 7. Schematics of control strategy

’0’ indicates that the length of the extendable bar remains constant. These twelve
steps effectively complete six full rotations of the robot. Upon completing the
six rotations, the robot returns to its original configuration shown in Fig. 10 (see
Section 3.3).

Table 4. The actuation sequence for the extendable bar along X-axis

Time 0–30 s 30–60 s
0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 55–60

𝐿1 + – 0 0 0 0 0 0 + – 0 0
𝐿2 0 0 + – 0 0 0 0 0 0 0 0
𝐿3 0 0 0 0 + – 0 0 + – 0 0
𝐿4 0 0 0 0 0 0 + – 0 0 + –
𝐿5 0 0 0 0 0 0 0 0 0 0 + –
𝐿6 + – 0 0 0 0 0 0 0 0 0 0

3.2. Quantitative locomotion and efficiency metrics

Geometry and rolling radius. From the node layout (Table 2) and component
parameters (Table 3), the half-spans are 𝑑/2 = 100 mm and 𝑙𝑠/2 = 90 mm. A
contact node lies at

𝑅 =
√︁
(𝑑/2)2 + (𝑙𝑠/2)2 =

√︁
1002 + 902 = 134.53 mm. (25)

Hence, the circumference is

𝐶 = 2𝜋𝑅 = 0.8453 m, (26)

where 𝑅 is rolling radius; 𝑑 is the spacing between the two bars in the plane (mm);
ls is the bar length (mm); 𝐶 is circumference.
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Distance per cycle and mean forward speed. With 6 rotations in 60 s (12 steps
× 5 s), the forward distance is

𝐷 = 6𝐶 = 5.0718 m, 𝑣̄ =
𝐷

60
= 0.0845 m/s. (27)

Rotation rate.

rps =
6
60

= 0.10 rev/s, 𝜔 = 2𝜋 rps = 0.6283 rad/s. (28)

Normalized speeds. Defining body length as 2𝑅, 𝐵𝐿/𝑠 (the body-lengths per
second) are

BL/s =
𝑣̄

2𝑅
=

6 · 2𝜋𝑅/60
2𝑅

=
𝜋

10
= 0.3141 BL/s. (29)

In bar-lengths per second:

𝑣̄

𝑙𝑠
=

0.0845
0.180

= 0.4696 bar-lengths/s. (30)

Actuation stroke. Each event changes bar length by Δ𝐿 = 260 − 180 = 80 mm
over 5 s, i.e., 16 mm/s stroke rate. Table 4 contains 𝑁events = 18 “+/−” marks in the
60 s cycle, so ∑︁

|Δ𝐿 | = 18 × 0.08 = 1.44 m. (31)

Stroke-per-distance (SPD).

SPD =

∑ |Δ𝐿 |
𝐷

=
1.44

5.0718
= 0.2839, (32)

1
SPD

= 3.5221 m forward per 1 m stroke. (33)

The lower the SPD the more distance per actuation cycle. We include stroke-per-
distance (SPD) = 0.284 m stroke per m forward as a size-independent efficiency
proxy to enable cross-platform comparisons going forward.

3.3. Simulation result

This section reports the motion and force responses of the six-bar tensegrity
robot over a 60 s cycle under the actuation schedule in Table 4. The results are
organized from kinematics to contact/element forces and configuration evolution.
The motion responses confirm that the bar–length actuation strategy yields smooth
and periodic rolling. In Fig. 8a, the displacement curves indicate a periodic rolling
motion, with peaks and valleys corresponding to the extension and contraction
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of specific bars. The smooth progression of displacement suggests that the rolling
motion is continuous and stable over the 60-second cycle. Similarly, Fig. 8b provides
insights into the movement of individual joints over time. Each coloured curve
corresponds to a specific joint’s displacement. The repetitive pattern observed
in the graph aligns with the cyclic actuation strategy, confirming that each joint
undergoes a consistent and predictable movement pattern.

(a)

(b)

Fig. 8. Visualization of motion and joint translational displacement along the X-axis; (a) motion
translational displacement, (b) joint translational displacement

One key observation from Fig. 8 is the inverse relationship between the motion
translational displacement and the joint translational displacement resulting from
the phase shift induced by the robot’s rolling motion. The robot moves forward
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through the alternating extension and contraction of its bars. As a particular bar
extends, it pushes against the ground, causing the robot’s body to roll forward, while
the contraction of another bar shifts the centre of mass, altering the displacement of
individual joints. This rolling motion introduces a rotational component, causing
the individual joints to experience displacement in the opposite direction relative to
the ground. This behaviour is similar to a rolling wheel where the top moves in the
direction of travel while the bottom moves momentarily in the opposite direction
relative to the ground. The actuation follows a sinusoidal, wave-like pattern, with
joint displacement fluctuating over time. Consequently, when a joint reaches its
maximum displacement (peak), the robot body is typically in a lower displacement
phase and vice versa.

Fig. 9 presents the translational velocity magnitude of the link (𝐿1) at differ-
ent time intervals. The peaks in Fig. 9a, indicate instances of rapid acceleration,
corresponding to moments where (𝐿1) is actively extending and the initial ground
interaction. The graph shows a sharp increase in velocity, suggesting that rapid
accelerations or oscillations in Link 1’s motion, likely due to transient forces or
structural adjustments within the tensegrity system. The presence of multiple peaks
indicates that Link 1 undergoes brief periods of high velocity, followed by deceler-
ation and reorientation. In contrast, Fig. 9b highlights a moment where the velocity
approaches zero, signifying a temporary pause in movement before transitioning
into the next phase. These decay is due to internal tensions and damping redis-
tribute loads, bringing the mechanism to a quasi steady regime between actuation
steps. Therefore, reduction in velocity suggests that the system is approaching a
more stable configuration after the initial oscillations. The damping effect observed
here aligns with the expected behaviour of tensegrity structures, where oscillations
eventually settle as internal forces and tensions balance out. These results confirm
that the simulation captures the dynamic and stabilizing nature of the robot, with
Link 1 transitioning from highly dynamic motion to a stable state over time. This
behaviour is crucial for understanding and optimizing the control and stability of
tensegrity robots during operation. This observation is consistent with the periodic

(a) (b)

Fig. 9. Visualization of motion translational velocity of link one (𝐿1) along X-axis
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motion cycle, as each bar undergoes alternating active (stretching/contracting) and
passive (constant length) phases.

The drive mechanism forms the core of the robot’s functionality, with bar-based
actuation employed to control the tensegrity robot. By altering the lengths of all
six bars, the robot can perform rolling motions and execute its intended movement
tasks effectively. Fig. 10 presents the simulated motion visualization of the six-bar

(a) 0 – 5 (b) 5 – 10 (c) 10 – 15

(d) 15 – 20 (e) 20 – 25 (f) 25 – 30

(g) 30 – 35 (h) 35 – 40 (i) 40 – 45

(j) 45 – 50 (k) 50 – 55 (l) 55 – 60

Fig. 10. Visualization of one actuation sequence of the six-bar tensegrity robot. Snapshots over
consecutive 5 s windows illustrate the shape changes that produce locomotion



Locomotion of tensegrity robot through bar-length modulation: simulation and . . . 19

tensegrity robot based on the implemented driving scheme, demonstrating that
the robot achieves overall movement through continuous rolling according to the
control strategy.

Fig. 11 illustrates the displacement curve of the centre of gravity of the six bars
along the X-axis direction. The trends observed in the graph show that the centre
of gravity of the six bars undergoes noticeable displacement along the X-axis over
time. As time advances, the displacement along the X-axis steadily increases, sig-
nifying the forward progression of the robot. This continuous increase in displace-
ment confirms that, under the actuation provided by the bar, the six-bar tensegrity
robot can achieve forward locomotion. Quantitatively, this trend corresponds to
a mean normalized speed of 0.314 BL/s, placing our platform above the typical
0.010–0.250 BL/s reported for rolling spherical tensegrities [31] (e.g., ReCTeR
at 0.250 BL/s) and indicating comparatively brisk translation for a bar-driven six-
strut design. At the same time, the required actuation remains conservative; a stroke
rate of 16 mm/s, is in line with ∼ 10 mm/s values commonly assumed in mod-
elling studies and well below actuator capabilities reported for NASA SUPERball
(⩽ 60 cm/s) [6]. Taken together, the steadily increasing X-axis displacement and
the favourable speed–actuation profile confirm that the proposed bar-drive scheme
enables controlled forward locomotion without aggressive actuation, supporting
the robot’s suitability for executing designed motion tasks efficiently.

Fig. 11. The trajectory of the centre of gravity of the six bars along the X-axis

Fig. 12 shows the trajectory of the robot’s centre of mass, displaying the mag-
nitude of its motion path, along with the rotation axis position that allows the bars
to adjust the direction of movement. This diagram provides insights into how the
bars’ adjustments influence the overall movement dynamics, highlighting the key
role of rotational positioning in directing the robot’s motion. The representation
emphasizes the relationship between the centre of mass displacement and the bar
rotations, demonstrating the robot’s ability to manoeuvre effectively by altering its
movement direction through strategic bar positioning. Additionally, the figure high-
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Fig. 12. The trajectory of the robot’s centre of mass magnitude

lights that the robot’s movement trajectory deviates from a straight path, revealing
noticeable motion discrepancies.

Contact force variation of Link 1 is illustrated in Fig. 13 which is vertically
aligned and forms a point contact with the ground in the six-bar tensegrity robot.
The contact force magnitude experiences a sharp spike, suggesting that Link 1
momentarily undergoes a high-impact contact with the ground due to a sudden
shift in load distribution. Similarly, in Fig. 14 the motion-induced element force
also exhibits a peak at the same time, indicating a corresponding internal force
reaction within the structure. This implies a marking phase where the link absorbs
and transmits maximum force to sustain movement.

Fig. 13. Contact force variation of Link 1

Similarly, contact force variation of Link 6 is shown in Fig. 15. The results
show that Link 6 which is horizontally aligned to the ground experiences a high
contact force peak at the initial seconds due to a sudden impact when it first makes
ground contact. This implies a rapid force application upon contact, which gradually
stabilizes as the movement continues. In Fig. 16, the motion-induced element force
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Fig. 14. Motion elemental force magnitude of Link 1

Fig. 15. Contact force variation of Link 6

Fig. 16. Motion elemental force magnitude of Link 6

exhibits multiple oscillations, suggesting continuous force redistribution during
rolling motion. These fluctuations result from structural deformations and shifting
loads as the robot progresses. The observed force variations confirm that Link 6
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plays a crucial role in absorbing and transmitting forces to maintain the rolling
movement of the tensegrity robot. When selecting drives for the robot, especially
its dynamic parameters, the interaction with the ground must be taken into account.
Thanks to stimulation we can obtain, for example, guidelines for optimizing drive
parameters. In particular, the contact force or the force course in the actuator well
illustrate the required values.

4. Conclusion

This research successfully establishes the feasibility of a six-bar tensegrity
robot for locomotion through bar-length modulation. The robot achieves stable,
efficient, and continuous movement by implementing controlled adjustments to
bar lengths while preserving its structural integrity. The simulation results validate
the proposed design, confirming that bar-driven actuation enables precise motion
control, enhanced mobility, and consistent performance across different conditions.
Furthermore, observations of dynamic parameters, such as joint translation, mo-
tion, and contact force interaction with the ground, are critical in determining the
appropriate drives for the robot.

Relative to prior rolling spherical tensegrities, our normalized speed sits
above the commonly reported 0.010–0.250 BL/s range for string–driven plat-
forms, yet is achieved without aggressive actuation, lower energy consumption,
improved structural stability, and simplified control, highlighting the promise
of bar–driven control for precise motion and robust ground interaction. These
characteristics make tensegrity robots highly promising for applications requiring
lightweight, resilient, and efficient mobility, such as planetary exploration, search
and rescue.

Moreover, the study highlights the potential for further innovations in tenseg-
rity robotics, including advanced control strategies, vibration reduction, real-world
deployment, and material optimization to enhance performance. By applying the
unique properties of tensegrity structures, future research can unlock new pos-
sibilities in autonomous locomotion, bio-inspired robotics, and adaptive robotic
systems. This work contributes to the growing field of soft, reconfigurable and
flexible robotics, demonstrating that tensegrity-based mechanisms can play a cru-
cial role in the next generation of robotic solutions for space applications.

One of the directions of further work is to create a lab-scale prototype equipped
with embedded sensors to benchmark energy use. The resulting data support sys-
tem identification to refine contact and friction models, reducing impact-induced
oscillations and lateral drift. Building on these models, energy-aware trajectory
planning and drive optimization are developed. And also, passive and active damp-
ing are investigated to mitigate vibration. Together, these efforts culminate in a
co-optimization of geometry, actuation, and control to validate simulation assump-
tions and to quantify real-world efficiency and robustness.
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