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Abstract

In the first part of this paper, we measured the frequency stability of widely available software-defined radio
(SDR) platforms. The second part focuses on the problem of modeling the frequency instability of these
devices, which is necessary in the process of designing new applications using simulation studies. This
modeling is based on the measurement results obtained in the first part. For this purpose, the nature of changes
in the instantaneous frequency of the received signal as a function of time is analysed, separating them into
two parts, i.e., a slow-changing trend and a fast-changing random component. A method of estimating the
trend and fitting the normal distribution to fast frequency fluctuations is proposed to model the instantaneous
frequency changes for several popular SDRs (including ADALM-PLUTO, B200mini, bladeRF, and USRP).
The assumption about normal distribution for fast fluctuations is verified using the chi-square test. The models
obtained enable the generation of signals in simulation studies that realistically represent the frequency
variability observed in the measurements. The proposed approach enables simulation tests on SDR-based
solutions, considering the impact of frequency instability without conducting long-standing or complex
laboratory experiments.

Keywords: software-defined radio (SDR), frequency stability, measurement, modeling.

1. Introduction

In recent years, software-defined radio (SDR) has become one of the most important tech-
nologies in modern wireless communications. Its ability to implement most radio functions in
software provides exceptional flexibility and adaptability compared to traditional hardware-based
architectures [ 1, 2]. Continuous progress in digital signal processing (DSP) and computing power
has allowed SDRs to play a crucial role in various domains, including consumer electronics,
commercial telecommunications, defense, and scientific research [3,4].
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Thanks to reconfigurability, compact size, and low power consumption, SDR platforms are now
widely used in battery-powered systems, sensor networks, and mobile devices [5]. Moreover, SDRs
allow for the implementation of advanced signal processing algorithms, directly improving the
quality and reliability of received signals. Current trends in SDR development include integration
with artificial intelligence (Al) and machine learning (ML) algorithms, which allow automatic
adaptation of transmission parameters, such as modulation schemes or waveforms, to changing
channel conditions [6,7]. SDR also plays a key role in emerging communication standards
such as Long-Term Evolution (LTE), fifth-generation (5G) New Radio (NR), and the upcoming
sixth-generation (6G) systems [8,9]. In parallel, this technology has found extensive applications
in the field of vehicular communications and intelligent transportation systems, where reliability
and frequency stability are critical to maintaining synchronization and ensuring safety [10, 11].

The versatility of SDRs has also led to their increasing use in metrology [12,13], sensing [ 14—16],
radar [17, 18], satellite communications [19-21], localization systems [22,23], and electronic
warfare [24, 25]. In many of these fields, especially those requiring precise time—frequency
synchronization or accurate spectral analysis, frequency stability is a key performance factor [26,27].
Even minor frequency fluctuations can affect the accuracy of synchronization, degrade signal
integrity, or introduce phase noise — ultimately influencing the precision of the measurement and
the reliability of the system.

The importance of frequency stability has been extensively discussed in metrological re-
search [28-30], as it determines the applicability of SDR platforms in high-precision systems.
However, commercial off-the-shelf (COTS) SDR devices are often characterised only by the
accuracy of their internal oscillators, with little information on long-term or short-term stability.
This limitation motivates empirical evaluation and modeling of SDR frequency stability to better
understand its impact on practical applications.

In Part I of this study [31], we proposed a comprehensive measurement methodology to evaluate
frequency stability on selected SDR platforms. The results obtained demonstrated significant
differences in stability between various SDR models and highlighted the influence of an external
rubidium frequency standard (RFS) on improving performance. Based on these experimental
results, the present work focuses on developing mathematical models of SDR frequency instability
that can be used directly in simulation studies.

Modeling the frequency instability of SDRs enables the prediction of real-world behavior in
simulated environments, which is particularly valuable during the design and validation of the
system. Accurate models allow engineers to evaluate the performance of synchronization algorithms,
communication protocols, and measurement procedures prior to hardware implementation, thus
reducing design costs and development time.

The main contributions of this paper are as follows:

— We propose a systematic methodology for modeling the frequency instability of the SDR
based on experimentally measured data.

— We develop parametric models of frequency instability for selected SDR platforms.

— We provide ready-to-use models that can be applied directly in simulation environments to
evaluate system performance under realistic conditions.

The remainder of the paper is organised as follows. Section 2 briefly discusses the principles
of instantaneous frequency measurement in the time domain. Section 3 presents analysis of
experimental data and methodology used to model SDR frequency instability. Section 4 provides
conclusions and recommendations for future work.
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2. Changes in Instantaneous Frequency in the Time Domain

The first part of the paper on the measurements [31] presents the testbed and methodology
to obtain the instantaneous frequency measured in the baseband f, as a function of time and
to estimate the frequency stability parameters of SDRs. In addition, an example curve for the
USRP-2930 radio is depicted. In this paper, Figs. | and 2 present instantaneous frequency changes
for all tested SDRs measured for the carrier frequency of the transmitting signal (i.e., from the
signal generator — see [31]) at 1358 MHz and 5138 MHz, respectively. They constitute the basis
for modeling frequency instability. The results presented were obtained for the acquisition time
t4 = 1 s and the time step Af4 = 0.1 s. The graphs illustrated on the left side of Figs. | and 2 were
obtained for measures without an RFS in the receiving part of the testbed, whereas the graphs shown
on the right side of these figures were determined with an RFS connected to the examined SDR.

Depending on the requirements of the designed systems, a different value of frequency stability
is required. The influence of frequency stability on the accuracy of radio emitter localization was
studied in [27,32]. Considering the results obtained there and in this paper, a general conclusion
can be drawn: the use of COTS SDR without a highly stable external clock does not ensure
frequency stability at a sufficiently high level. The graphs presented on the left side of Figs. 1
and 2 show that the instantaneous frequency measured for SDR platforms changes significantly in
the time domain. In the case of USRP N210 + RFX1200 and USRP-2930 for 1358 MHz, there are
mainly instantaneous frequency fluctuations around a certain average value. In other cases, some
trend of changes in the average frequency can also be observed in the measurement curves.
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Fig. 1. Instantaneous frequency measured in the baseband £, versus time (f = 1358 MHz, 14 = 1 s, Ats = 0.1 s) without
an RFS (on left) and with an RFS (on right) for SDRs: (a) ADALM-PLUTO, (b) B200mini, (c) bladeRF 2.0 micro xA4,
(d) USRP N210 + RFX1200, (¢) USRP N210 + WBX, (f) USRP-2930, (g) USRP-2950R.

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
b.1) b.2)
2000 ~=
i 1000
=
n¥
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
cl) c2)
6000 , 0.05 .
@ 5000 0

£00

4000

1500

Time (s)

1000

2000

2500

500

1000

1500 2000 2500

Time (s)

Fig. 2. Instantaneous frequency measured in the baseband f), versus time (f = 5138 MHz, 14 = 1's, Ato = 0.1 s) without
an RFS (on left) and with an RFS (on right) for SDRs: (a) B200mini, (b) bladeRF 2.0 micro xA4, (c) USRP N210 +
XCVR2450.



Metrol. Meas. Syst.,Vol. 32 (2025), No. 4, pp. 1-16
DOI: 10.24425/mms.2025.155811

3. Analysis of measurement data for modeling SDR frequency instability

Modern techniques for testing the functionality of devices under various environmental
conditions use simulation testing techniques that allow continuous verification of the developed
solutions. Therefore, to assess the impact of instantaneous frequency instability on the correct
functioning of devices using SDR, it is necessary to develop an appropriate simulation model
that will reflect the actual frequency changes. Such a model allows one to perform tests for various
measurements, not only for those resulting from a specific scenario. The practical implementation of
measurement allows testing only for selected measurement scenarios. In addition, a single practical
measurement requires setting up measurement testbeds, which involves significant time and work.
An appropriate place, temperature, time, efc., is often required, which cannot always be achieved.

For this reason, based on the results obtained, a method was proposed to model instantaneous
frequency instability for the test-bed configurations presented in the first part of the paper [31]. It
consists of several steps, which will be discussed later. In statistical measurements of the physical
quantity f,(¢), the measurement results are obtained in the form of time series [33]. Analyzing
Fig. 1, we can see that the frequency fluctuations studied have a twofold nature. Fast f7(¢) and
slow f;(¢) fluctuations are observed. The random value of the instantaneous frequency f,(¢) can
be represented as:

Tp () = fr () + fs(2) )

Repeating the measurements over several consecutive days showed that slow changes (i.e.,
trends) in frequency are of a deterministic nature for each type of equipment tested. On the other
hand, the analysis of the frequency fr(¢), which is obtained as a result of reducing the trend
fr(t) = fp(t) — fs(¢) in subsequent time intervals of length A, = 5 s, is the basis for assuming the
random nature of this frequency component. Examples of results obtained for fast fluctuations
fr(t) are shown on the right side of Fig. 3. In the adopted model, we assume that fast fluctuations
fr() are a stationary normal process N (0, 0 s), which can be described by one-dimensional
probability density function (PDF) g ¢ (fr,0f):

1 17
gr (froop) = Vomos exp _E : )

where o is a standard deviation as a time-independent measure of instantaneous-frequency
dispersion.

Therefore, the statistical model that represents the random frequency fluctuations of the SDR
devices analysed describes the PDF g,,(fp, 07 f, t) as follows:

NACE A0
207

&p (fpr0p1) 3)

1
= exp
V2roy
Let u,(t) represent a function that approximates the slowly varying component of frequency
fluctuations f;(¢). The function ug(¢) is determined based on data obtained throughout the
measurement cycle according to the following criterion:

ps(t) iVt e, VI=1,2,...,LE{(us(t) - f(1))*} = min — 0, 4)

where: A; is the /th time interval in which f, (¢) is approximated, L is the number of time intervals
determined in the entire measurement cycle, E {-} is the expectation operator analysed in each
time interval A;.
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Table 1 presents the relationships approximating the slowly varying components f; () in
accordance with conditions (4) for the analysed SDRs. The graphs of these functions in red are
plotted against the background of the actual measurement data on the left side of Fig. 3. This
allows for a visual comparison of the nature of the changes.

x10% al)
17¢ —
L 1es) T
2 6l =
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
b.1)
5 10 3
S a0} =
25 1420 =
0 500 1000 1500 2000 2500
cl
100 )
::L {\_ P e =
-100 w

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

- d.2)
1500 200
N =
1000 -200 i ; : ; ;
0 500 1000 1500 2000 2500
e.2)
~ 1500 200
] 100 Hi ]
L 1000 % 0 0 1) T !JJ
= = f ; Y
s E 100 LUK LR A
Snn 1 L L 1 L L L L I
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
£2)
200
g g, .
e =
! . -200 | | | | |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
gD 82)
950
£ 2
2 900 =
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (s) Time (s)

Fig. 3. Instantaneous frequency measured in the baseband versus time f, (#) with the designated approximating function

s (t) (on left) and after removing trend f¢(¢) (on right) (f = 1358 MHz, t4 = 1's, At4 = 0.1 s, without an RFS) for

SDRs: (a) ADALM-PLUTO, (b) B200mini, (c) bladeRF 2.0 micro xA4, (d) USRP N210 + RFX1200, (e) USRP N210 +
WBX, (f) USRP-2930, (g) USRP-2950R.
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Table 1. Relationships approximating slowly varying components of frequency fluctuations f (z).

SDR Approximating formula p(¢)
ADALM-PLUTO ps (1) = 363.34 - log (1 + 858.63) + 13340.47
B200mini ps (1) = 6.26 - log(z +201.09) + 1378.69
bladeRF 2.0 micro xAd ws (1) = 138.16 - 31710741 _ 64 75
USRP N210 + REX1200 s (1) = —8.66 - 107 - 1 + 1192.94
0.03 - 7+ 1221.61 for 0 < < 5000
USRP N210 + WBX s (1) =
120.12 - log (7 — 4907.93) — 128.44 for 1 > 5000
USRP-2930 s (1) =70.36 - cos (2.97 10741+ 0.28) +85.60
126 - cos (3.52- 10741 +2.60) +1017.52 for 0 < 1 < 2750
USRP-2950R s (1) =

9.03 - log (1 — 2370) + 848.84 for ¢ > 2750

After data detrending, we describe local oscillations using a normal PDF N (0, of) according
to the assumption adopted. So, the standard deviation o ¢ of the detrended data must be determined.
To do this, first, the data is grouped in the form of a histogram representing the number M; of
frequency that occurred in ith bin. The resulting data are normalised by dividing M; by the total
number M of measurement data. So, the normalised histogram value m; is defined for each bin:

m; = ﬁ (5)

The frequency histogram determined from the measurement data allowed the calculation of
o¢. This parameter can be determined in two ways. In the first one, a deviation estimator oy, is
determined based on the following simple relationship:

(6)

where [ is the total number of histogram bins and f; is the center of the ith bin.
Another way is to use the optimization procedure. In this case, the value of density g 7 (ffi, o)
for center of the ith bin fy; is estimated by the expression

2 (fri) = —, ()

where g (f;) is the estimator of g ¢ ( ff, o) for frequency f; and A is the width of the single bin.
So, in this case, determining optimal deviation with respect to minimizing mean square error
comes down to solving the optimization problem in the form below:

1
Tfo =argmin$ (o) : S (o) = D & Ur0) = gr (frinop))* ®)
i=1

By minimizing S (of), we found the fitted standard deviation o, for which g 7 (fy:, of) best
approximates the frequency histogram expressed in the set of points {(ff:, g (f1:))}-
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For the analysed SDRs, Table 2 presents oy, and o ¢, calculated based on the measurement
data and relationships (6) and (8), respectively.

Table 2. Standard deviation o . and o, of the detrended data for the analysed SDRs.

ADALM- USRP USRP
SDR PLUTO B200mini | bladeRF | N210+ N210+ USRP-2930 | USRP-2950R
RFX1200 WBX
o e [Hz] 0.049 0.274 0.332 7.432 4.865 12.832 4.682
T fo [Hz] 0.052 0.291 0.335 6.887 4.648 12.279 4.853

To assess the validity of the assumption that a normal PDF describes the fast frequency
fluctuations, we used the chi-square statistical test. This test is widely used in statistics to test the
normality of data distribution [34], however, its applications extend to a variety of other fields [35].
The normal PDF hypothesis was verified on subsets of the measurement data. Each subset consists
of Q = 270 elements of f7 (i.e., determined by the instantaneous frequencies after removing the
trend). In this way, the influence of slow frequency changes on the verification result is eliminated.
Histograms for an exemplary subset of the measurement data are shown in Figs. 4 and 5 for
selected SDRs. Additionally, these figures present graphs of normal PDFs, determined for o ¢,
and o ¢, and marked by blue and green lines, respectively. This presentation of results allows for
a visual assessment of accuracy of approximation of the measurement data by the assumed PDF.
We can see that the presented PDFs show high convergence with the approximated data. This is
a promise for verifying the statistical properties of measurement data using a normal PDF.
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Fig. 4. Frequency histograms and approximating normal PDFs for SDRs: a) ADALM-PLUTO, b) B200mini, ¢) bladeRF
2.0 micro xA4, d) USRP N210 with an REX1200 daughterboard.
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Fig. 5. Frequency histograms and approximating normal PDFs for SDRs: a) a USRP N210 radio with a WBX daughterboard,
b) USRP-2930, c) USRP-2950.

The significance level o adopted for our study is 0.01. For hypothesis verification by this test
the empirical value of the statistic X? is calculated according to the equation:

v 2
(ni — Opi)
x2= Y P )
~ Opi

where n; is the number of frequencies in the ith bin for a single subset, p; is a theoretical probability
of frequency occurrence in the ith bin determined based on the normal PDF, V is the number of
bins, Q is the number of the measured instantaneous frequencies f, in each bin.

The critical value of 0.99 order quantile )(,%,0'01 of the chi-squared PDF with k = V — 3 degree
freedom constitutes a base for accepting the analysed hypothesis according to the dependency:

X2 < X,i’o_m. (10)

The test results for each SDR tested are summarised in Table 3.

Table 3. Chi-squared test results for the SDRs analysed.

SDR Xioot x = Ko

’ for o, for o7y, for o, for o7y,
ADALM-PLUTO 15.086 6.684 5.484 True True
B200mini 15.086 2.079 3.186 True True
bladeRF 2.0 micro xA4 15.086 10.851 10.800 True True
USRP N210 + RFX1200 16.812 5.953 9.315 True True
USRP N210 + WBX 16.812 11.372 14.972 True True
USRP-2930 24.725 15.262 20.137 True True
USRP-2950R 15.086 4.044 3.358 True True
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It can be seen that for each case, a positive test result is obtained that confirms the normality of
the distribution for all the data tested. Therefore, for a single curve that presents the instantaneous
frequency f,(f) measured in the baseband versus time, the frequency instability can be modeled
by providing a determined function u,(#) (see Table 1) and the PDF f¢(t) reproducing the
slow-changing and fast-changing component, respectively. The statistical properties of fy ()
describe a normal PDF with calculated oy (see Table 2) because this is justified by the verification
results based on the chi-squared test. Example curves generated in this way are shown on the right
side of Fig. 6. For comparison, the original data are shown on the left side of this figure.
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Fig. 6. Original data (on left) and the modeled curves (on right) of instantaneous frequency measured in the baseband f,
versus time (f = 1358 MHz, t4 = 1 s, At4 = 0.1 s, without an RFS) for SDR: (a) ADALM-PLUTO, (b) B200mini, (c)
bladeRF 2.0 micro xA4, (d) USRP N210 + RFX1200, () USRP N210 + WBX, (f) USRP-2930, (g) USRP-2950R.
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Analyzing Fig. 6, it can be seen that the obtained curves visually reflect the changes in the
frequency of the original data very well. However, it was decided to use appropriate metrics to assess
the accuracy of the modeled curves. It is worth recalling here that the curve of the instantaneous
frequency measured in the baseband over time consists of both fast fr () and slow f; (¢) fluctuations.

In the case of slow fluctuations f;(¢), to assess the relative error in approximating the trend in
the instantaneous frequency curves f,(¢), it was necessary to use an additional metric. That metric
allowed us to assess the accuracy of the approximation of the instantaneous frequency curves
fp(t) using the approximating functions p,(¢) presented in Table 1. A frequently used metric
in journals is the root mean square error (RMSE) [36]. In our case, we additionally normalised
it [37] by dividing the RMSE by the range of changes defined by the maximum and minimum
values of the instantaneous frequency f,,. In this way, we use the normalised RMSE (NRMSE) 6
expressed by the following formula:

1

oV JZ_; (s (1) = £ (17))?
5[%] = ; p- - 100, (11)
pmax — Jpmin

where fpmax and fpmin are the maximum and minimum of the instantaneous frequency fp,
respectively, and j = 1,2,...,Q - V is the index of the selected instantaneous frequency f,.

To assess the accuracy of the fast fluctuations fr(¢) distribution estimation (see Figs. 4 and 5),
the Kolmogorov—Smirnov statistic D is used in the form as in [38]:

; (12)

D= st;pIFm(f) - Fr(f)

where F,,(f) and Fy(f) are the empirical and theoretical cumulative distribution functions (CDFs),
respectively, and f is the center value of the subsequent frequency ranges for the histograms shown
in Figs. 4 and 5.

The evaluation results for approximation accuracy of slow fluctuations f;(#) and the estimation
of fast fluctuations f(¢) distributions are presented in Table 4.

Table 4. Results for approximation accuracy of slow fluctuations fi (¢) and estimation of fast fluctuations f () distributions

for the analysed SDRs.
ADALM USRP USRP
SDR PLUT O- B200mini | bladeRF N210+ N210+ USRP-2930 | USRP-2950R
RFX1200 WBX
S [%] 3 8 22 19 10 16 9
D 0.135 0.126 0.110 0.129 0.160 0.148 0.137

The evaluation of slow and fast frequency fluctuations performed shows differences in their
representation accuracy. Regarding slow fluctuations, the representation of frequency changes
across the tested SDR platforms shows significant differences. The best accuracy for slow frequency
fluctuations f(¢) approximation (6 metric), was obtained for ADALM-PLUTO (6 = 3%) and
B200mini (6 ~ 8%), while bladeRF results gave the largest RMSE (6 ~ 22%). In the case of the
bladeRF and USRP N210+RFX1200 platforms, obtaining small approximation errors is hindered
by large, random frequency changes in the time domain, which are shown in Fig. 6¢.1) and d.1),

11
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whereas for fast fluctuations fr(z), all D statistics are limited to the range from 0.11 to 0.16. This
indicates statistical convergence of the results of the developed representation of fast frequency
fluctuations for all tested platforms. Therefore, the obtained results are satisfactory and indicate that
it is possible to use an appropriate model to perform simulation studies for various measurement
scenarios, not limited to the one used for model development.

4. Conclusions

The conducted research and analyses have shown that frequency instability in common SDRs
can be reliably represented in simulation conditions by dividing it into a slowly changing component
(trend) and a fast-changing component (fast fluctuations represented by a stationary process with
a normal distribution). This approach allows for taking into account both long-term frequency
drift and short-term fluctuations in the systems under study.

The results of the analyses can be useful in designing and verifying solutions based on SDR
in various areas, such as radio communication, location systems, radio spectrum monitoring,
and sensor systems. The presented model allows for easy generation of signals in simulations
burdened with a characteristic type of frequency instability, which significantly facilitates testing
new algorithms and solutions. The ability to conduct repeatable and controlled experiments
in a simulation environment significantly reduces the costs and time needed to verify projects,
especially compared to extensive tests in real conditions. In the future, methods may be developed
to consider additional environmental factors (e.g., temperature fluctuations) and integration with
advanced radio system design tools.
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