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Abstract

This study explores the stabilising interplay of finite Larmor radius corrections and quantum pressure on the Rayleigh-
Taylor instability in a non-Newtonian, magnetised fluid. The investigation is motivated by the need to understand how
quantum and magnetohydrodynamic effects jointly influence instability behaviour in complex fluid systems. The govern-
ing magnetohydrodynamic equations are linearised using normal mode analysis and appropriate boundary conditions to
derive a general dispersion relation for Rayleigh-Taylor instability under the Jeffrey fluid model. Numerical results show
that the combined presence of finite Larmor radius corrections and quantum pressure suppresses the growth rate of Ray-
leigh-Taylor instability modes. In contrast, the Jeffrey parameter amplifies instability, while quantum and finite Larmor
radius effects reduce both the cut-off and critical wavenumbers.
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1. Introduction

The Rayleigh-Taylor instability (RTI) arises at the interface be-
tween fluids of differing densities when a heavier fluid is placed
above a lighter one in the presence of a vertical gravitational
field [1]. This type of instability plays a crucial role in various
physical and astrophysical phenomena, including laser—plasma
interactions, Z-pinch implosions and magnetised target fusion,
as well as in systems such as inertial confinement fusion, galaxy
clusters and dense plasma focus devices. Goldston and Ruther-
ford [2] extended the analysis of RTI to fluids with continuously
varying density profiles and demonstrated that angular velocity,
mass concentration and stress relaxation time have a stabilising
influence on the instability.

The significant potential of quantum plasma in diverse fields
—such as laser fusion, white dwarfs, semiconductor devices and

dense astrophysical plasmas — has recently drawn extensive re-
search interest. Quantum plasma consists of charged particles
exhibiting distinct behaviour at moderate temperatures, differ-
ing from classical plasmas. This quantum effect arises when the
de Broglie wavelength of charged particles becomes comparable
to or larger than the system’s characteristic length [3]. The pres-
sure term in the equations of motion is divided into two terms,
p =p¢ +p? (p¢ - classical pressure, p° — quantum pressure),
by using Wingen principle and Schrodinger wave equation in
% v2/p
e ( " )
A lot of work has been done in this direction to evaluate the
growth rates of RT1I in various processes with quantum pressure
by many researchers, both theoretically and experimentally.
Gardner [4] noticed that the quantum hydrodynamic conser-
vation laws have the same form as the classical hydrodynamic

the momentum equations, (—Vp) and Q =
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Nomenclature

d —thickness of layer, m

eij — rate of strain tensor

g - gravitational acceleration, m/s?

h  —Planck constant, 6.62607015x10-%* m2 kg/s
H — magnetic field, A/m

k —wave number, 1/m

Kmax— cut-off wave number, 1/m
Lo — length scale, m

m, — mass of electron, amu

m; — mass of ion, amu

n —growth rate, 1/s

ni — growth rate of RTI, 1/s

ng — quantum parameter, kg m/s
p —pressure, Pa

p¢ — classical pressure, Pa

p? — quantum pressure, Pa

Q —quantum pressure, Pa

t —time,s

T —temperature, K

Tij — stress tensor, Pa

u - velocity vector of fluid, m/s

equations. Haas [5] employed the quantum hydrodynamics
model to analyse charge mobility in dense quantum plasmas.
Elena et al. [6] investigated the influence of quantum effects on
RTI and internal waves in plasmas, while Bychkov et al. [7]
studied RTI in incompressible, stratified quantum plasmas, es-
tablishing that quantum pressure at low temperatures stabilises
perturbation growth. Sharma et al. [8] explored the combined
effects of angular velocity and surface tension on the stability of
two superimposed fluids embedded with dust particles. Ho-
shoudy [9-11], and Hoshoudy and Awasthi [12] analysed RTI
in stratified quantum plasmas under the influence of vertical
magnetic fields and viscosity, concluding that quantum pres-
sure, in conjunction with the magnetic field, plays a crucial role
in stabilising the system and suppressing RTI. Additionally, Ho-
shoudy and Prajapati [13] demonstrated the impact of suspended
particles on RTI, observing a stabilising effect due to both quan-
tum pressure and dust particle mass concentration.

Sharma and Gupta [14] examined the stability of an elastico-
viscous fluid under the influence of magnetic field and rotation.
Dolai and Prajapati [15] analysed RTI in strongly coupled,
dusty, rotating plasmas and observed significant suppression of
instability due to the combined influence of shear and angular
velocities. Micro-level instabilities in plasmas are often de-
scribed by models incorporating collisionless dissipative effects,
finite Larmor radius (FLR) corrections and other non-ideal be-
haviours. Although the length and time scales associated with
micro-instabilities typically match those of transport coeffi-
cients and turbulence — leading to a common practice of neglect-
ing FLR effects — this assumption breaks down when the Larmor
radius becomes comparable to the hydromagnetic wavelength or
when the ion gyrofrequency approaches the wave frequency.
Under such conditions, the FLR must be considered. Conse-
quently, the time and spatial scales at which magnetohydrody-
namics (MHD) fails align with the scales of ion gyration and the
ion Larmor frequency.
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uj — velocity vector components, m/s
u, v, w — velocity vector components, m/s
X, Y,z — Cartesian coordinates, m

Greek symbols

d8;; — Kronecker delta

A —Jeffrey parameter

Ao — stress relaxation time parameter
A, — strain retardation time parameter
u —dynamic viscosity, Pa-s

Ue — Magnetic permeability, H/m

v —kinematic viscosity, m?/s

vrg — finite Larmor radius correction, kg/(m? s?)
p —density, kg/m3

T;; — Viscous stress tensor

0 —ion gyro-frequency, rad/s

Abbreviations and Acronyms

FLR  —finite Larmor radius

ICF  —inertial confinement fusion
MHD - magnetohydrodynamics
QMHD- quantum magnetohydrodynamics
RTI  — Rayleigh-Taylor instability

The effects of finite Larmor radius have drawn significant
attention due to their applicability in a range of astrophysical
environments, including mirror machines, the solar corona, and
both interplanetary and interstellar plasmas, particularly in the
presence of gyro-viscous forces. Rosenbluth et al. [16] demon-
strated the stabilising influence of FLR on RTI by employing
plasma fluid equations. Roberts and Taylor [17] extended MHD
theory by incorporating finite Larmor radius effects. Jukes [18]
showed that FLR can suppress RTI, though with some con-
straints introduced by the presence of a sheared magnetic field.
Following these foundational studies, numerous investigations
explored the effects of FLR, dust particles, rotation and viscosity
on RTI in continuously stratified magnetofluids [19—22]. Nota-
bly, Tiwari et al. [23] were the first to establish the influence of
FLR corrections on the RTI in an inviscid, stratified plasma, in-
corporating both magnetic fields and quantum pressure. They
concluded that FLR corrections suppress the instability more ef-
fectively than quantum pressure alone. Sun et al. [24] high-
lighted the RTI in magnetised fluids relevant to inertial confine-
ment fusion (ICF), emphasising that viscosity, rather than elec-
trical resistivity, plays a dominant role in determining the inter-
face dynamics.

It is important to note that most of the aforementioned stud-
ies have been conducted in the context of Newtonian plasma flu-
ids. However, in recent years, the mechanisms and applications
of non-Newtonian fluids described by various rheological mod-
els have gained considerable interest due to their relevance in
both industrial (e.g. chemical processing) and astrophysical set-
tings. A fluid is characterised as Newtonian or non-Newtonian
based on the nature of the relationship between stress and strain
rate, expressed through its constitutive equation. Among non-
Newtonian models, the Jeffrey fluid model [25] is of particular
interest in this study. It exhibits linear viscoelastic behaviour,
yield stress, shear-thinning properties and high shear viscosity,
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making it well-suited for modelling complex plasma dynamics
with non-Newtonian characteristics.

In Jeffrey fluid, the two-time parameters — namely, the strain
retardation time and stress relaxation time — play a significant
role in understanding wave propagation phenomena, such as
those occurring within the Earth’s mantle. The strain retardation
time relates to the delay in deformation under stress, while the
stress relaxation time represents the time a fluid takes to return
from a disturbed state to its original equilibrium. Fluids exhibit-
ing such time-dependent behaviour are particularly relevant in
environmental and biomedical applications, including polypro-
pylene coalescence sintering, geological flows and blood flow
dynamics.

Yadav [26—28] investigated the effects of anisotropy, electric
fields, and thermal non-equilibrium on the onset and instability
mechanisms of Jeffrey fluid convection in various porous media
configurations and found that rotation and anisotropy in thermal
diffusivity delay the onset of Jeffrey fluid convection, whereas the
Jeffrey parameter and permeability anisotropy exhibit dual effects
under rotation. Increased electric field and internal heating param-
eters reduce system stability. Gautam et al. [29] investigated the
influence of an electric field on thermal convection in a nanofluid-
saturated porous medium, whereas Sharma et al. [30] analysed the
Rayleigh-Taylor instability of superposed dusty Jeffrey fluids in
a porous medium, considering interfacial surface tension. Yadav
et al. [31-32] analysed the Horton-Rogers-Lapwood problem and
convective flow of ethylene glycol-silver Jeffrey nanofluid in
a Hele-Shaw cell under the influence of a magnetic field.

Prajapati [33] investigated RTI in a strongly coupled visco-
elastic fluid, considering the effects of non-homogeneous
magnetic fields, uniform rotation and density gradients, and
observed a substantial suppression of the instability. Garai
et al. [34] examined RTI in viscoelastic plasma embedded with
dust particles and magnetic fields, highlighting the significant
stabilising influence of non-Newtonian properties. Dey [35] ex-
plored Jeffrey fluid flow in the presence of suspended particles
and angular velocity, including the Hall effect and volume frac-
tion, and concluded that non-Newtonian parameters tend to have
a retarding influence on the evolution of instability in the sys-
tem. Garai et al. [36] analysed RTI in strongly coupled quantum
plasma with shear velocity and found that shear effects could
either suppress or trigger instability, depending on the direction
of the shear velocity gradient. Adak et al. [37] studied RTI in
inhomogeneous pair-ion plasma and derived the instability cri-
teria for the classical case.

Das et al. [38] investigated the collective behaviour of
strongly coupled dusty plasma, whereas Dharodi and Das [39]
performed numerical simulations on gravity-driven instabilities
in such plasmas. The result indicates that increasing the coupling
strength of the medium leads to suppression of these instabili-
ties. Dharodi [40-41] conducted numerical investigations on
gravity-driven instabilities in strongly coupled dusty plasmas,
focusing on hetero-interactions between a rising bubble and
a falling droplet, as well as homo-interactions between pairs of
rising or falling bubbles/droplets. The study revealed that, under
gravity, the formation of counter-rotating vorticity lobes causes
bubbles to ascend and droplets to descend. In viscoelastic fluids,
besides the initial separation, shear waves generated by rotating
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vortices were found to play a key role in bringing two droplets
or bubbles closer together.

Motivated by the work presented above, this study focuses
on investigating the influence of FLR corrections on the Ray-
leigh-Taylor instability in a non-Newtonian plasma fluid ar-
ranged in horizontal stratification, incorporating quantum pres-
sure effects. The RTI is a fundamental plasma instability that
plays a critical role in astrophysical plasmas, ICF and space
weather phenomena. Understanding the onset and control of
RTI under the influence of quantum and magnetic effects is cru-
cial for enhancing the stability of fusion plasmas and improving
performance in high-energy density systems. The inclusion of
FLR corrections and non-Newtonian (Jeffrey) fluid behaviour
provides a more realistic model for magnetised plasmas found
in laboratory and astrophysical environments, such as solar
prominences, planetary magnetospheres and accretion disks.
The novelty of this study lies in the combined consideration of
quantum pressure effects, FLR corrections and non-Newtonian
fluid dynamics (via the Jeffrey model) in analysing RTI. While
previous studies have independently examined RTI in Newto-
nian or classical fluids with either quantum effects or magnetic
field influences, this is the first comprehensive analysis that in-
tegrates all three aspects simultaneously in a stratified magnet-
ised plasma system. Moreover, the use of the Jeffrey fluid model
introduces a new viscoelastic framework that captures memory
effects absent in earlier studies. The non-Newtonian behaviour
of the plasma is modelled using the Jeffrey fluid framework,
which effectively captures viscoelastic features and complex
rheological behaviour.

2. Mathematical models

The equation that governs the behaviour of fluid flow in the con-
text of Jeffrey fluid, as formulated by [26-32], can be expressed
as follows:

Tij = —pdij + Tyj @
and
2 6(2€i ) 0 i
T = —pbi + = [1 + A {T] + B—ZJ}] eij- )
For incompressible fluids, the above relation reduces to
2
7 = —pbi; + :Mleij- ©))

Here, an incompressible, heterogeneous, infinitely extending
and infinitely electrically conducting viscoelastic Jeffrey fluid
of finite thickness d, comprised of the planes z = 0 and z = d,
is organised in a horizontal layer of electrons and immobile ions
saturating homogeneous, isotropic porous media. A uniform
gravitational field g (0,0, —g) acts vertically downward, thereby
influencing the buoyancy-driven motion within the system. In
addition, the plasma is subjected to a uniform externally applied
magnetic field H(H, 0,0) directed along the horizontal axis, in-
troducing magnetohydrodynamic (MHD) effects into the flow.
The presence of a quantum pressure term @, originating from
quantum mechanical effects associated with electron degener-
acy, further modifies the momentum balance and contributes to
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g-g(0,0,-g [ i y
» i i e
v —» H(H, 0, 0)
Jeffrey plasma fluid layer in porous
medium
- Z=0

Fig. 1. Physical configuration.

stabilising or destabilising tendencies in the convective motion.
The schematic representation of the physical system, along with
the associated external forces and boundary constraints, is illus-
trated in Fig. 1.

The equations of momentum balance in quantum hydrody-
namics (QHD) are [33—-37]:

9 . - _ ) B2
platu-V]u=-Vp+pg+V-P+Q+-Lviu+

He
+.-(VXH)xH, 4)
where u, p, p, 4, A, and u, represent the velocity of fluid, density,
pressure, dynamic viscosity, Jeffrey parameter and magnetic
permeability, respectively. Here, P represents the pressure ten-
sor that anticipates the finite Larmor radius effects.

The mass balance equation of incompressible plasma fluid is

()

The condition of compressibility implies that the fluid den-
sity is not constant and may vary with pressure and temperature.
Accordingly, the continuity equation takes the general form as:

V-u=0.

2L+ @-v)p=0. (6)

In various circumstances of physical intrigue in ICF, insta-
bility occurs at velocities much smaller than that of local sound
speed. Consequently, accelerations in flow are too weak to vary
the fluid flow density appreciably, and the fluid moves without
expanding or compressing, meaning that elements of fluid move
with constant density, as seen in Eq. (6).

Maxwell’s equations, due to the presence of a magnetic field,
are:

V-H=0, @)

(8)

Furthermore, the initial steady state is characterised by no
flow motion and each physical variable varies along the vertical,
i.e. z-axis, only. Therefore, the steady state solutions are given
as

OH
E—Vx(uxH).

u=1(000), p=p@), p=p), Q=Q=). (9
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To investigate the stability of the hydrodynamic motion, in-
finitesimal perturbations are superimposed on each of the phys-
ical quantities of the initial state solutions as

p=pot+p, p=po+p, H=Hy+h
u=uy+u, Q=0Q,+4Q,

where p" ,0’, h(hx' hy' hz)' u’ (u' v, W)' Q’(pr lei Qzl)
represent the perturbations in the pressure, the density of fluid,
the magnetic field, the plasma fluid velocity and the quantum
force, respectively. The subscript ‘0” denotes the equilibrium
state.

Utilising the disturbance equations (10) and the linear the-
ory, Egs. (4)—(8) take linear form as

(10)

V-u =0, (11)
a_u’ _ I " B 1 K g2,
P = Vp"+gp"—V-P+Q +1+/1|7u (12)
He !
+E[(V X h) X H|
2+ (u-7p=0, (13)
V-h=0, (14)
Z—?sz(uxH), (15)
where
'l 2 A1 _i 1772 _i 2 17
V(o) = Vp'Vip — VPV p
2oz, — L '
o= +o2VPVip = VeV )
mem| 4 Loy(Vp)? + 5 (V)T |
4p2 2p2
+5 (VpVp")Vp = & (7p)?

For the horizontal magnetic field, the stress tensor in the
component form is [23]:

Pey = Py = =2pVpg (g_:)' Pz = P = 2pVrr (Z_Z)’ (17)
B, = B,y = pvpg (g_:, - Z_::)’

2
where vpg = % represents the FLR correction, with a being the
ion Larmor radius and Q denoting the ion gyrofrequency.

3. Methodology adopted

To investigate the stability of a system, perturbations in physical
variables are analysed in terms of modes by ascribing a horizon-
tal wave number, depending on y, z and time (t), are supposed to
vary as

f'(,zt) = f(2)expli(ky + nt)],

where i is the imaginary unit, and the term expli(ky + nt)] rep-
resents a wave-like disturbance varying sinusoidally in space

(18)
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(in the y-direction with the wave number k) and in time (with the
growth rate n).

Using Eq. (18), Egs. (11)—(15) transform to Cartesian com-
ponents as:

ikv + Dw = 0, (19)
pinv = —ikp' + pve(D? — k?)w + (20)
2verDpDW + <= (D* — k*)v + Qyy’

pinw = —=Dp’ — gp' — vprDp(ikw + Dw)
—pupg(D? —kz)v+$(D2 —kDw + Q' @)
inp' + wDp =0, (22)
hy = hy = h, =0, (23)
where
le =
Ky 4
ky 2enmem; {l p— _Dpsz — —Dp + (D,D) }
Qzl =
—DpD3W+{ (DZP) }02w+
A2 {;D3P DPDZP - _Dp tor (Dp) }DWkZ (25)
. (25
2enmem; p—;DpD3P —7D2p—;(D2P)2
5 K? !
+302 (DPY*D?p + 5 (Dp)? =2 (Dp)*

In the above, D stands for , £1is the medium porosity, and ky and

ky are the horizontal and vertlcal components of the wave num-
ber, respectively.

On eliminating v, p’, and p' from Eq. (17) and using
Egs. (15)—(16) and Egs. (18)—(21), we get the general differential
equation for w as

[pn2 + 2vpgknDp + %Dp + sz] D*w
+[n?Dp + ZVFRknDZp + k?B]Dw —
[pnzk2 (ZUFRkn + = + g- C) ksz] =0.

(26)

Here
h? 2 1
A=-— —( p)*,B = —Dp[(Dp)? — 2pD?p],
4mem1p 4’ mem; p
h? k?
- 4meml P ,0

The density of fluid is assumed to vary exponentially with
respect to z and depends on Lp— a length scale. Thus, the density
distribution at z = O is described as

p(2) = pexp (). (27)

Equation (26), using Eqg. (23), after algebraic simplification

yields
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2 2VFRrkn vkn ) 2] 2
[ = Lp (1+A)Lp n k Dw
2 , 2vprkn vkn 2]
+ [n? + R PR 4 e — n2ke?| Dw (28)
—kz[n 4 Zypeln | vl +——n2k]w—0
D (1+)Lp

2
represent the kinematic viscosity
2enmem;

and the quantum parameter accounting for quantum pressure.

The plasma fluid velocity diminishesat z = 0 and z = d, irre-
spective of the nature of the bounding surface. Therefore, the
solution of Eq. (24) is taken as

wherev = £andn2 =
p

w = w;sin (% z) exp(1z), (29)

where m, is a positive integer, 1 = % and w; is constant.
Using the solutions given in Eq. (29), Eq. (28) gives

vk
(1+A)Lp
4gk?d?Lp _
d2+amin2id+am2k213

2VFRrk

n? +(LD ) —nak?

(30)

Now introducing the non-dimensional variables

K2
= 52
4mem;Lpnye
_ VFR
2.2
Lpnpe

n

* 1

n =—,
Npe

«_ vV
_LG2 !

*2
q

v VFR -

(31)
d2
L%,’

d*2 —

*2 2 *
k*? = k%13, g m——e
Equation (30) (the asterisks are omitted for the sake of conven-
ience) transforms to

n? + (ZVFRk 4 ) n—ngk?
1+1
agkd? B (32)
d2+4am2n?+4d?k?

It is noteworthy from Eq. (32) that stability/instability of the
Rayleigh-Taylor configuration is modified in the presence of
FLR corrections, quantum pressure and Jeffrey parameter. Also,
it is observed that RTI remains uninfluenced due to the presence
of the magnetic field.

Substituting n = n,. + in; (n, and n; are real numbers) in
Eq. (32) and separating real and imaginary parts, we get

(n? —n?) — (ZVFRk + i) n; —nik?® +
1+
4gk?d? -0 (33)
d2+am2n? +4d2k?
and
annl (ZUFRk + 1+A) = 0
which implies that n,. = 0.
Putting n,, = 0 in Eq. (32), one gets
2 vk 27,2 _ 4gk?d? —
ni+ (ZVFRk + 1+/1) m; + ngk dZ+amin+4d?k? 0, (34)

which is the required relation between n and k to examine the
Rayleigh-Taylor instability in a stratified non-Newtonian plasma
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fluid with FLR corrections, quantum pressure and Jeffrey pa-
rameter.

3.1. Special cases

For non-viscous Newtonian fluid, i.e. v=0, 1 =0, Eq. (34)
condenses to

4gk?d?
dZ+4m3n2+4d2k?

nf + 2vegkn; + nik* — =0, (35)

which coincides with the earlier result of Tiwari et al. [23].

4. Numerical results and discussion

To investigate the influence of the Jeffrey parameter, FLR and
quantum pressure on both classical and non-classical cases of
stratified RTI, the growth rate frequency of the most unstable
mode has been numerically computed from the dispersion relation
given in Eq. (29), using Mathematica (version 12). The permissi-
ble experimental values of all the involved parameters used by
Tiwari et al. [23] and Dey [35], and many others, are taken as

Kopa=3.2 Ver =0.3
1.0+ -
Veg = 0.5
— Vg =07
f 0.8 kmax=3
-~ 0.6
[ l
0.4 4
0.2 4
0.0 T T T T T T
0 1 2 3 4 5 3]

Fig. 2. Impact of FLR correction (vgg) on the growth rate of RTI
(n;) against the wave number (k), with quantum pressure.

Kax=3-2 —— Veg = 0.3]
1.04 -
veg = 0.5
Ve = 0.7
‘ 0.8 4 kma)::s
& 06+
‘ 0.4 4
0.2 4
0.0 T T T T T T
0 1 2 3 4 5 6

Fig. 3. Impact of FLR correction (vgg) on the growth rate of RTI
(n;) against the wave number (k), with no quantum pressure.

vpr=0.5,n3=0.6,A=0.3,m;=1,d=1and g = 10, respectively.
The growth rate (n;) of RTI against wave number (k) is plotted
to analyse the effect of distinct values of FLR correction,
vpgr = 0.3, 0.5, 0.9 in Figs. 2 and 3 for both classical and quan-
tum cases, respectively. The plots in Figs. 2 and 3 clearly show
that increasing the FLR correction parameter leads to a notable
reduction in the growth rate of RTI in a stratified plasma fluid.
This suppression weakens the formation of Rayleigh-Taylor
structures and significantly dampens the instability dynamics,
particularly in dense plasma systems. Thus, the FLR correction
plays a stabilising role by effectively mitigating RTI in both
classical and non-classical regimes. Additionally, it is observed
that the cut-off wave number kmax corresponding to the maxi-
mum growth rate shifts to lower values under the influence of
quantum pressure, further contributing to the suppression of the
instability.

Figures 4 and 5 illustrate the impact of distinct values of the
non-dimensional quantum parameter accounting for quantum
pressure, ng = 0.3, 0.5, 0.7, on the growth rate of RTI versus
wave number, with and without FLR corrections, respectively.
The curves indicate a decrease in the frequency and growth rate
of RTI with increasing quantum pressure. Consequently, both

1.0 K

3.5

ax—

0.8

Kom=2.8
0.6 4

041 Kpo=2.1

0.2 4

0.0 T T T T

Fig. 4. Impact of the quantum pressure on the growth rate of RTI (n;)
against the wave number (k), with FLR correction.

——n,=03
ng = 0.5
——n,=0.7

2.0

0.5

0.0 T T T T

Fig. 5. Impact of the quantum pressure on the growth rate of RTI (n;)
against the wave number (k), with no FLR correction.
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12 Kpa=4-8 n= 0.1
=04
=07

1.0 4

A
084
-

064

04+

024

0.0 T ‘ ‘ T T T

1] 2 4 6 8 10 12

Fig. 6. Impact of the Jeffrey parameter (1) on the growth rate of RTI
(n;) against the wave number (k), with no quantum pressure (classical

case).
0.7
=01
06 Kax=2.5 =04
A=07
4 0.5
044
-
0.3 A
0.2
0.1
0.0 . : r T
0 1 2 3 4

Fig. 7. Impact of the Jeffrey parameter (1) on the growth rate of RTI
(n;) against the wave number (k), with quantum pressure.

*=0A1
=04
=07

0.6

0.4 4

0.2 4

0.0 T T T T

Fig. 8. Impact of the Jeffrey parameter on the growth rate (n;) of RTI
against the wave number (k), with quantum pressure
and no FLR corrections.

quantum pressure and FLR corrections demonstrate a stabilising
influence by effectively suppressing the growth of instability in
non-Newtonian stratified plasma fluids. It is noticed from Fig. 3
that the growth rate starts to decrease for k > kmaxand complete

stability occurs at ke = 6.0 in lieu of both quantum pressure and
FLR corrections.

In Figs. 6 and 7, the influence of various values of the Jeffrey
parameter, 2 = 0.1, 0.4, 07, on the growth rate of Rayleigh-Tay-
lor instability for both quantum and classical cases, is displayed.
The curves illustrate that the growth rate of RTI increases with
the rise in the Jeffrey parameter. Hence, the Jeffrey parameter
tends to promote the onset of RTI in stratified plasma fluid for
both cases. However, it is visualised from the curves in Figs. 7
and 8 that the value of kmax gets decreased in the simultaneous
presence of quantum pressure and FLR corrections.

Figure 8 illustrates the effect of the Jeffrey parameter on the
growth rate of RTI in the presence of quantum pressure and the
absence of FLR correction. The curves indicate that an increase
in the Jeffrey parameter results in a higher amplitude of the RTI
growth rate under the influence of quantum pressure. It is note-
worthy to observe from the curves that kmax is not attained in the
absence of FLR corrections.

Figures 9 and 10 depict the influence of kinematic viscosity
on the growth rate of RTI, with and without the inclusion of the
Jeffrey parameter, respectively. The plots reveal that kinematic
viscosity reduces the instability region in both cases. However,
kmax is higher for a non-Newtonian fluid than for a Newtonian
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Fig. 9. Impact of kinematic viscosity (v) on the growth rate of RTI (n;)
against wave number (k), with Jeffrey parameter.
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Fig. 10. Impact of the kinematic viscosity (v) on the growth rate of RTI
(n;) against the wave number (k) in the absence of Jeffrey parameter.
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fluid in the present case. These results are in strong agreement
with the findings reported by various authors [18—23].

5. Conclusions

The combined effects of quantum pressure and FLR corrections
on the RTI in a laminar Jeffrey model plasma fluid are investi-
gated. An explicit dispersion relation for the RTI growth rate is
derived, highlighting its dependence on various physical param-
eters.

e The classical Rayleigh-Taylor instability undergoes signif-
icant modification with the inclusion of finite Larmor ra-
dius corrections and quantum pressure, resulting in en-
hanced stability and effective suppression of Rayleigh-
Taylor instability in the plasma fluid system.

e The Jeffrey parameter has a destabilising effect on the Ray-
leigh-Taylor instability of stratified plasma fluid.

e The viscosity of the plasma fluid enhances the stabilisation
of the Rayleigh-Taylor instability configuration under the
influence of finite Larmor radius corrections and quantum
pressure, regardless of the presence of the Jeffrey parameter.

e An important facet of the present study is the demonstra-
tion that quantum pressure and finite Larmor radius correc-
tions play a crucial role in various non-Newtonian astro-
physical systems, particularly in inertial confinement fu-
sion capsules and white dwarfs.

e The findings offer valuable insights into the non-Newto-
nian behaviour of astrophysical systems characterised by
low temperatures and high densities, enhancing our under-
standing of their underlying dynamics.

Examining the effects of compressibility, magnetic shear and
temperature gradients on the role of finite Larmor radius in the
onset of Rayleigh-Taylor instability in stratified magnetised Jef-
frey plasma could offer a deeper understanding of the interplay
between kinetic effects and macroscopic plasma parameters,
thereby improving stability predictions in both astrophysical and
laboratory settings.
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