
 

1. Introduction 

The scientific community is intensifying investigations into sus-

tainable fuel technologies, responding to mounting environmen-

tal challenges and the critical imperative of reducing anthropo-

genic greenhouse gas contributions [1]. Emerging biofuel stud-

ies are utilising complex mathematical modelling and optimisa-

tion techniques – specifically Taguchi methods, genetic algo-

rithm, response surface methodology (RSM), and integrated al-

gorithmic frameworks like RF-NSGA III-TOPSIS – to system-

atically investigate and optimise combustion efficiency, engine 

performance, and emission characteristics [2]. Prosopis juli-

flora-based diesel biofuel represents a compelling technological 

solution, demonstrating remarkable capabilities in addressing 

critical environmental challenges through reduced greenhouse 

gas generation, enhanced air quality and decreased fossil fuel 

consumption [3]. The complex challenges of oil market volatil-

ity are catalysing transformative approaches to energy produc-

tion, with Prosopis juliflora biomass-derived biofuels represent-

ing a technologically sophisticated strategy for reducing reliance 

on traditional fossil fuel resources [4]. Prosopis juliflora is pro-

duced  from  the  seed  of  the  Prosopis  juliflora  tree, commonly  
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Abstract 

Machine learning, a division of artificial intelligence (AI), empowers systems to gain knowledge from information and 
refine their capabilities over time. It uses algorithms to identify patterns and make prophecies or decisions. Prosopis juliflora 
is becoming gradually notorious as an optimistic substitute in biofuel inquiry. The mixing of Prosopis juliflora with diesel 
for use in combustion engines has been the subject of growing study in recent years. However, limited research has explored 
the impact of Prosopis juliflora on the compression ignition (CI) engine exhaust employing data-driven optimisation high-
lighting the need for new inquiries to address this shortfall. We aim to explore the cutting-edge and proficient machine 
learning driven weighted superposition attraction algorithm to optimise the efficiency and exhaust of CI engines powered 
with Prosopis juliflora biodiesel – diesel blends. Regression modelling is employed to define the relationships between 
factors such as the blend percentage and brake mean effective pressure (bar), and responses like the brake thermal efficiency 
(%), brake specific fuel consumption (g/kWh), smoke opacity (%), NOx (g/kWh), CO (g/kWh), and HC (g/kWh). The data-
driven weighted superposition attraction algorithm is subsequently employed to determine the best factor levels. Validation 
of the results demonstrates that the brake thermal efficiency is enhanced, while the other response variables are effectively 
reduced, showcasing the effectiveness of this methodology. 
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Nomenclature 

dij(t)– the ith solution movement direction in the jth dimension 

sl(t)– step size  

xij(t)– value for the ith solution in the jth dimension 

X – feature  

Y – outcome variable  

 

Greek symbols 

β – coefficient  

ε – residual error term  

 

Abbrevation and Acronyms 

BMEP– brake mean effective pressure  

BTE – brake thermal efficiency 

CI – compression ignition 

HC – hydrocarbon 

NOx – nitrogen oxides 

RSM – response surface methodology 

WSA – weighted superposition attraction 

known as mesquite. The improved energy efficiency of engines 

powered by Prosopis juliflora mineral diesel renewable fuel has 

drawn significant interest from the freight industry, which is 

striving to reduce fuel usage and cut operating costs [5]. 

Prosopis juliflora mineral diesel renewable fuel holds signif-

icant potential as a sustainable energy solution for the future. Its 

properties closely align with those of standard diesel, making it 

a viable substitute for fossil fuels. Additionally, its ability to 

function seamlessly in mineral diesel or compression ignition 

(CI) engines excluding major adjustments has further fuelled re-

search into its application [6]. These benefits support the posi-

tion of Prosopis juliflora diesel biofuel as a promising alterna-

tive for complying with increasingly strict vehicle emission  

regulations. Several studies have shown that biofuel delivers  

a power output comparable to traditional diesel. The strong com-

patibility of Prosopis juliflora with diesel fuel provides a pro-

spect to formulate a refined diesel – Prosopis juliflora blend with 

characteristics akin to pure diesel while effectively resolving 

phase separation issues [7]. Researchers have utilised both ex-

perimental methods and numerical simulations to probe the ap-

plication of Prosopis juliflora in CI engines. The research exam-

ines the performance and emission traits of Prosopis juliflora bi-

odiesel in diesel engines, emphasising key insights. The B25 

blend demonstrated the most favourable results, offering ther-

mal efficiency comparable to diesel while reducing emissions. 

Higher biodiesel percentages led to increased CO, HC and 

smoke emissions, but NOₓ emissions dropped by 17.71%. Bio-

diesel was produced via transesterification using methanol and 

alkaline catalysts, showcasing its potential as an eco-friendly 

fuel alternative. The research identified B20 and B25 blends as 

optimal for achieving a balance between engine performance 

and emission control [8]. Additionally, an experimental study 

investigated the impact of adding diethyl ether (DEE) to Pro-

sopis juliflora biodiesel blends on engine efficiency and pollu-

tants. While the brake thermal efficiency (BTE) of biodiesel 

mixtures was slightly lower than that of pure diesel oil, the ad-

dition of DEE improved combustion efficiency. For instance, 

the B20DEE10 blend (20% biodiesel with 10% DEE) achieved 

BTE of 31.4% at 50% load compared to diesel's 36.7%. Moreo-

ver, the DEE additives reduced emissions such as CO₂, HC and 

CO, along with a decrease in NOₓ emissions, attributed to DEE’s 

elevated cetane grade and heat of vaporisation [9]. The investi-

gation examines the efficiency of juliflora oil biodiesel in a com-

pression ignition engine, showing a 5−7% increase in BTE and 

a 15–20% cutback in CO and HC exhausts compared to diesel. 

NOx emissions were slightly higher by 10–12%, a common 

trade-off with biodiesel. Overall, the findings highlight juliflora 

biodiesel's potential for cleaner energy, with further optimisa-

tion needed for emission control [10]. 

This comprehensive research explores the adaptation of juli-

flora biodiesel and its variants as clean fuels in CI engines 

through a combination of simulation and experimental ap-

proaches. Studies demonstrate that juliflora biodiesel offers 

comparable engine performance with reduced emissions, estab-

lishing its viability as a sustainable fuel option [11]. Further in-

vestigation into H2 boosting with Prosopis juliflora biofuel high-

lights performance and emission improvements using modern 

optimisation practices like RSM and artificial neural networks 

(ANN) [12]. Additionally, research on Prosopis juliflora methyl 

ester emphasises the role of transesterification in enhancing fuel 

properties, such as viscosity, to improve engine compatibility 

and efficiency [13]. Machine learning in engine research applies 

artificial intelligence (AI) practices to analyse data and past ex-

periences in the domain of biofuels and engines. Through the 

application of algorithms and computational frameworks, it ex-

amines experimental or simulated data concerning engine effi-

ciency, exhaust characteristics and Prosopis juliflora fuel prop-

erties. This methodology uncovers trends, enables forecasting 

and provides critical insights, aiding researchers in activities like 

determining ideal biofuel mixtures, forecasting engine behav-

iour and refining butanol production techniques. The rising sig-

nificance of data-driven ANN has noticeably enhanced forecast-

ing and optimisation initiatives. Extensive investigations have 

been conducted on biofuel applications in CI engines. Recent 

efforts have particularly examined the potential of Prosopis juli-

flora in diesel engines, leveraging machine learning techniques 

to determine optimal outcomes. 

This research applies regression modelling for quantitative 

analysis and utilises the weighted superposition attraction 

(WSA) for optimising multiple objectives. The WSA technique 

is used to identify the optimal concentrations of Prosopis  

juliflora (vol. %) and brake mean effective pressure (BMEP) 

(bar) for multiple performance factors, such as BTE (%), brake  

specific fuel consumption (BSFC) (g/kWh), NOx (g/kWh),  

HC (g/kWh), CO (g/kWh) and smoke opacity (%). The concur-

rent optimisation of these parameters using WSA is an innova-

tive feature of this research, which seeks to integrate the WSA 

approach into biofuel studies within the context of CI engines.  

2. Juliflora performance optimisation 

The experimental approach described provides a structured 

method for studying how Prosopis juliflora biofuel blends per-

form in a diesel engine. The study involves adjusting the fuel 
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blend and engine settings, and using cutting edge techniques like 

the weighted sum approach to analyse the results. The experi-

mental setup and process are shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The study used different blends of Prosopis juliflora biofuel 

mixed with diesel as the trial fuels. The distinct proportions and 

readiness techniques for these blends are outlined in earlier re-

search. Typically, the biofuels are made by combining pure 

Prosopis juliflora with conventional diesel at varying levels.  

The blends tested in the study include pure diesel, JB10 (10% 

Prosopis juliflora, 90% diesel), JB20 (20% juliflora, 80% die-

sel), JB30 (30% juliflora, 70% diesel), and JB40 (40% juliflora, 

60% diesel), with their properties summarised in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Each fuel blend was carefully mixed and tested to ensure 

uniformity before being utilised in the trials. Subsequently, var-

ious operational conditions were applied to assess the engine's 

performance with each fuel blend. The key stages of the evalu-

ation process are as follows: 

(a) Primary setup. 

The engine was heated to ensure consistent working tem-

peratures throughout all the tests, and reference measure-

ments were obtained using conventional diesel fuel to set 

a benchmark for comparison. 

(b) Stable working conditions. 

The engine was evaluated under different stable working 

conditions by adjusting BMEP. Typically, tests were per-

formed at several load points, including 1.35, 2.70, 4.8 and 

5.8 bar. 

(c) Gathering data. 

Essential engine metrics like BSFC, BTE and exhaust 

emissions were measured, alongside burning factors such 

as the heat release rate and in-cylinder pressure using sen-

sors. 

(d) Consistency and validation. 

Each trial was conducted multiple times to confirm reliable 

and precise data. 

The trial data were evaluated to determine the effects of var-

ious Prosopis juliflora diesel mixtures on engine efficiency and 

exhausts. The WSA approach was enforced to optimise the 

blends, granting the detection of the most potent mixture for el-

evating fuel efficiency and minimising emissions. Factors such 

as fuel blend ratio, engine load and speed were considered in the 

optimisation procedure. The results for the Prosopis juliflora 

blends were compared to the reference diesel fuel characteris-

tics. The inquiry centred on detecting patterns in efficiency and 

exhausts, assessing the burning characteristics of Prosopis juli-

flora blends, and exploring the potential of Prosopis juliflora as 

a clean alternative to diesel fuel. 

2.1. Test setup 

The tests were carried out using a mono-cylinder CI engine, with 

the configurations and setup provided in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. WSA approach  

The WSA algorithm is a modern optimisation method rooted in 

the broader field of metaheuristic algorithms and multi-objec-

tive optimisation. It extends the traditional weighted sum ap-

proach, which consolidates several objectives into one scalar 

value through a process of weighted summation. The emergence 

of WSA was driven by the increasing complexity of engineering 

problems, particularly in fields like energy systems, material sci-

ences and automotive research, where advanced optimisation 

tools were needed. Recent developments have refined WSA to 

improve its efficiency and adaptability, making it suitable for 

 

Fig. 1. Experimental methodology. 

Table 1. Properties of mineral diesel and biofuel.  

Features 
Juliflora 

oil 
JB10 JB20 JB30 JB40 Diesel 

Density (g/cm3) 0.811 0.872 0.876 0.879 0.846 0.830 

Kinematic viscosity 
(mm2/s) 

3.707 3.963 4.019 4.515 3.819 43.96 

Cetane number 61.97 59.72 54.15 50.21 59.10 46 - 55 

Sulphur content 
(mg/kg) 

59.344 58.11 84.30 111.79 65.93 6800 

Higher heating value 36.763 39,457 39.60 39.94 38.279 42,500 

Oxidation stability 

(110C) 
12.661 15.84 16.630 6.75 11.198   

Oxygen content 8.6 8.4 12.2 14.02 10.49  

 

 

Fig. 2. Diesel engine setup. 
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high-dimensional datasets and complex applications. In engine 

research, WSA has been applied to optimise multiple parame-

ters, such as performance metrics and emissions, addressing the 

dual challenge of enhancing efficiency while meeting environ-

mental standards. Its ability to balance multiple objectives sim-

ultaneously has made WSA a valuable tool for solving real-

world problems, with its adoption steadily growing in engineer-

ing and environmental studies. The WSA algorithm directs the 

keys at repetition t near their designated search paths using the 

equation: 

 𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) +  𝑠𝑙(𝑡)‧𝑑𝑖𝑗(𝑡) ∙ ‖𝑥𝑖𝑗(𝑡)‖. (1) 

In the WSA algorithm, xij(t) represents the value of the  

jth dimension for the ith solution, while sl(t) denotes the step size. 

The solution's movement direction is defined by dij(t) ∈ {1, 0, 

−1} for dimension j. The term ‖xij(t)‖ indicates the distance be-

tween the origin and the jth dimension of solution i at the tth iter-

ation. The algorithm updates the solution along its dimensions 

in the specified search directions using the second term, 

sl(t)‧dij(t)‧‖xij(t)‖ as indicated on the opposite side of Eq. (1) [16].  

3. Outcomes and analysis: diesel engine operated 

with juliflora biofuel and machine learning 

Twenty experimental trials were carried out according to the ex-

perimental design. The findings from these trials are illustrated 

in Fig. 3 and Fig. 4. Regression models were created for uncoded 

factor levels, utilising the outcomes such as NOx (g/kWh), 

Smoke Opacity (%), CO (g/kWh), HC (g/kWh), BSFC (g/kWh) 

and BTE (%). 

The graphs in Fig. 3 illustrate the performance of diesel 

(D100) and biodiesel blends (JB10, JB20, JB30, JB40) in terms 

of BTE (%) and BSFC (g/kWh) as functions of BMEP (bar).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BTE increases with BMEP for all fuels, peaking at approxi-

mately 38% at 5.04 bar. D100 consistently exhibits the highest 

BTE, while higher biodiesel blends show slightly reduced effi-

ciency due to their lower calorific value and higher viscosity. At 

1.35 bar, BTE ranges from 15–17%, with JB40 showing the 

most significant drop. By 4.05 bar, BTE rises to 30–33%, with 

JB10 and JB20 performing closest to D100, indicating that  

 

lower biodiesel blends maintain efficiency while incorporating 

renewable fuel. Conversely, BSFC decreases with increasing 

BMEP, from ~ 450–470 g/kWh at 1.35 bar to ~ 200–220 g/kWh 

at 5.04 bar. D100 achieves the lowest BSFC, reflecting its supe-

rior fuel efficiency. Biodiesel blends, particularly JB30 and 

JB40, show higher BSFC due to biodiesel's minimal energy den-

sity and elevated viscosity, which can affect combustion. How-

ever, JB10 and JB20 closely match the BSFC of D100, demon-

strating a favourable balance between efficiency and renewable 

fuel use. Improved in-cylinder conditions at higher BMEP re-

duce the performance gap between diesel and biodiesel blends, 

making JB10 and JB20 optimal choices for maintaining effi-

ciency while integrating biodiesel. 
The graphs in Fig. 4 illustrate the emission characteristics of 

diesel fuel (D100) and biodiesel blends (JB10, JB20, JB30, 

JB40) across various brake mean effective pressures (BMEP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NOₓ emissions increase steadily with BMEP for all fuels, 

peaking at 0.18–0.2 g/kWh at 5.04 bar. Biodiesel blends, partic-

ularly JB30 and JB40, exhibit higher NOₓ emissions than D100 

owing to their higher oxygen presence, which improves com-

bustion but raises in-cylinder temperatures, promoting NOₓ for-

mation. At low load (1.35 bar), NOₓ exhausts range from 

0.05−0.1 g/kWh, with D100 showing the lowest levels due to 

the absence of oxygen and lower combustion temperatures. Hy-

drocarbon (HC) emissions are lowest at 1.35 bar, with biodiesel 

blends emitting less than D100, reflecting better combustion. At 

2.7 bar, emissions increase slightly, with JB40 reaching about 

0.1 g/kWh. At higher loads (4.05 and 5.04 bar), HC emissions 

rise significantly, peaking at 0.3 g/kWh for JB40 due to poor 

atomisation and reduced volatility in higher biodiesel blends. 

JB10 and JB20 demonstrate lower HC emissions, indicating bet-

 

Fig. 3. History of BTE (%) and BSFC (g/kWh) vs. BMEP (bar). 

 

Fig. 4. History of Exhaust of (a) NOx, (b) HC, (c) CO, and (d) Smoke 

opacity vs. BMEP (bar). 
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ter combustion efficiency. Carbon monoxide (CO) emissions re-

main minimal at 1.35 and 2.7 bar, staying below 1 g/kWh for all 

blends, showing efficient combustion at low loads. At 4.05 bar, 

CO emissions increase, with JB40 emitting approximately 

3 g/kWh. At 5.04 bar, CO emissions peak, with JB40 reaching 

5.5 g/kWh, highlighting incomplete combustion and lower oxi-

dation efficiency. D100 and JB10 perform better, keeping CO 

emissions below 5 g/kWh. Smoke opacity is minimal at 1.35 bar 

(<10%) for all fuels, indicating clean combustion. It increases 

slightly at 2.7 bar, with JB40 reaching 15%. At 4.05 bar, opacity 

rises significantly, with JB30 and JB40 reaching ~45%. At 

5.04 bar, smoke opacity peaks at 70% for JB40 owing to ele-

vated viscosity and inferior atomisation, which hinder burning. 

D100 consistently outperforms biodiesel blends across all pa-

rameters due to its higher volatility and better combustion char-

acteristics. 

In this study, WSA is used for optimisation. The optimisa-

tion process consists of three stages: (i) performing the trials,  

(ii) developing models for regression, and (iii) executing the op-

timisation of WSA. The factor points are provided in Table 2. 

The experimental process involves 20 trials, as outlined in 

Table 3, utilising the specified factor values. In the second 

phase, regression equations are formulated for uncoded factor 

levels. Coded models are essential for the optimisation phase, 

while the uncoded models (original models) are also constructed 

to illustrate the true mathematical relationships for the readers. 

Consequently, the data provided in Table 4 are applied in the 

second phase for model development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Equation (2) illustrates the full quadratic model used for the 

regression analysis: 

 𝑌 = 𝛽0+𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽12𝑋1𝑋2 + 𝜀. (2) 

In this expression, Y signifies the outcome variable, X repre-

sents the features, β stands for the coefficients, and ε denotes the 

residual error term [14,15]. Following several preliminary ef-

forts, the model is established using linear terms for Y and com- 

Table 2. Engine specifications.  

Narrative Standard 

Model Kirloskar, 4- stroke 

Cooling  Water 

Bore × stroke 78 mm × 62 mm 

Displacement 325 cm3 

No. of cylinders Mono 

CR 18.5 

Maximum speed 2600 rpm 

Maximum power 4.1 kw 

Fuel IT 14 ±1 bTDC 

Fuel IP 19.6 MPa 

 

Table 3. Level of factors. 

Features  Notation 
Levels 

L1 L2 L3 L4 

Biodiesel 
blends (vol. %) 

X1 B10 B20 B30 B40 

BMEP (bar) X2 1.35 2.7 4.05 5.04 

 

Table 4. Experimental runs.  

Run  

Uncoded factors Responses 

Biodiesel blend 
(vol. %) 

BMEP (bar) BTE (%) BSFC (g/kWh) NOx (g/kWh) HC (g/kWh)` CO (g/kWh) Smoke (%) 

1 0 1.35 18.75 441 0.13 0.04 0.8 8.12 

2 10 1.35 18.9 446 0.12 0.05 0.82 7.95 

3 20 1.35 19.12 450 0.11 0.07 0.78 7.92 

4 30 1.35 19.26 452 0.1 0.08 0.76 6.5 

5 40 1.35 19.55 454 0.07 0.06 0.74 5.5 

6 0 2.7 26.35 322 0.19 0.04 0.9 19.21 

7 10 2.7 26.56 329 0.18 0.05 0.8 18.45 

8 20 2.7 26.75 332 0.17 0.09 0.6 15.1 

9 30 2.7 26.9 338 0.165 0.11 0.5 9.94 

10 40 2.7 27.1 345 0.155 0.145 0.4 6.2 

11 0 4.05 32.1 276 0.19 0.06 2.9 55 

12 10 4.05 32.36 284 0.185 0.1 2.7 45 

13 20 4.05 32.42 288 0.18 0.14 2.5 34 

14 30 4.05 33.1 292 0.179 0.17 2.3 20.12 

15 40 4.05 33.69 297 0.175 0.19 2.1 9.45 

16 0 5.04 34.1 245 0.19 0.1 5.7 75 

17 10 5.04 34.48 249 0.18 0.15 5.5 70 

18 20 5.04 34.59 251 0.17 0.175 5.1 60 

19 30 5.04 34.78 257 0.16 0.225 4.3 55 

20 40 5.04 34.89 259 0.159 0.271 3.5 45 
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plete quadratic models for Y. Regression analysis and review of 

the model are conducted using Minitab, a commonly used ana-

lytical tool. The models related to both base factor levels and 

base outcomes are presented in Table 5. Figure 5 illustrates the 

surface plots for the outcomes, providing a clear sight of the pa-

rameter spaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Level of factors.  

BTE, % 7.617 + 9.205 BMEP (bar) + 0.0125 Blend % − 0.7931 BMEP (bar) ‧ BMEP (bar) + 0.000171 Blend % ‧ Blend % + 0.00136 BMEP (bar) ‧ Blend % 

BSFC, 
g/kWh 

580.7 - 121.40 BMEP (bar) + 0.494 Blend % + 11.001 BMEP (bar) ‧ BMEP (bar) − 0.0020 Blend % ‧ Blend % + 0.0052 BMEP (bar) ‧ Blend % 

NOx, 
g/kWh 

0.0390 + 0.08241 BMEP (bar) − 0.001336 Blend % − 0.010425 BMEP (bar) ‧ BMEP (bar) − 0.000002 Blend % ‧ Blend %  
+ 0.000165 BMEP (bar) ‧ Blend % 

HC, 
g/kWh 

0.0410 − 0.00871 BMEP (bar) + 0.000486 Blend % + 0.00346 BMEP (bar) ‧ BMEP (bar) − 0.000013 Blend % ‧ Blend %  
+ 0.000816 BMEP (bar) ‧ Blend % 

CO, 
g/kWh 

1.315 − 0.991 BMEP (bar) + 0.0308 Blend % + 0.3374 BMEP (bar) ‧ BMEP (bar) − 0.000279 Blend % ‧ Blend % − 0.01256 BMEP (bar) ‧ Blend % 

Smoke, 
% 

7.29 − 2.50 BMEP (bar) + 0.279 Blend % + 2.977 BMEP (bar) ‧ BMEP (bar) − 0.00358 Blend % ‧ Blend % − 0.2121 BMEP (bar) ‧ Blend % 

 

(a)        (b)  

(c)        (d)  

(e)        (f)  

Fig. 5. Surface plots for responses (a) BTE, (b) BSFC, (c) NOx, (d) HC, (e) CO (g/kWh) and (f) smoke opacity (%) vs. BMEP (bar). 
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The series of 3D surface plots provides a comprehensive 

analysis of the effects of BMEP and biodiesel blend percentage 

on various efficiency and exhaust features. BTE increases with 

BMEP, peaking at around 35% for moderate biodiesel blends 

(20–30%) at 5 bar, but remains below 25% at light loads (below 

2 bar) due to inefficient combustion. Higher blends (above 40%) 

slightly reduce BTE due to lower calorific value, while D100 

peaks at 33%, and JB30 achieves a maximum of 35%, showcas-

ing the efficiency advantage of moderate blending. The brake 

specific fuel consumption (BSFC) decreases with increa- 

sing BMEP, dropping from 450 g/kWh at 1.5 bar to around  

240 g/kWh at 5 bar, but increases with higher biodiesel blends 

due to lower calorific value, with JB40 showing 10–15% higher 

BSFC than D100 at all BMEP levels. NOₓ emissions rise with 

both BMEP and blend percentage, peaking at 0.2 g/kWh for 

JB40 at 5 bar due to higher in-cylinder temperatures, while mod-

erate blends like JB20 offer a balanced performance, producing 

0.15–0.18 g/kWh at higher loads, and D100 shows the lowest 

NOₓ emissions, particularly at light loads. Hydrocarbon (HC) 

emissions increase with BMEP, and are the lowest for the 0% 

blend, reaching around 0.05 g/kWh at 2 bar but rising with 

higher loads and blends. Carbon monoxide (CO) emissions also 

increase with BMEP, exceeding 6 g/kWh for higher blends at  

5 bar, while remaining negligible at low BMEP for minimal 

blends. Similarly, smoke emissions intensify with rising BMEP 

and blend percentage, surpassing 50% at 4 bar and peaking near 

75% for a 45% blend, emphasising the compounding impact of 

engine load and biodiesel blending on particulate formation and 

burning features. 

Table 6 presents the R² values for these models. To be suita-

ble for optimisation, the R² values should approach 1 (100%). In 

this case, it is concluded that the factors included in the model 

sufficiently explain the variation in the response. 

 

 

 

 

 

 

 

 

 

Table 6 presents the computed coefficients of determination 

(R², adjusted R², and predicted R²) obtained using Minitab. To 

ensure the models' validity, their significance must be evaluated. 

This is achieved through ANOVA (analysis of variance), a sta-

tistical method that uses the F-test to assess the consequence of 

regression models. As shown in Table 7, the p-values for all 

models are 0.000, confirming the statistical significance of the 

regression models. Table 8 provides the tuning factors of the 

WSA approach along with their description [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Computed values for the coefficient of determination.  

Determination of coefficient 
Outcomes 

BTE (%) BSFC (g/kWh) NOx (g/kWh) HC (g/kWh) CO (g/kWh) Smoke (%) 

R2 (%) 99.71 99.17 96.23 98.24 98.43 97.34 

R2 (%) predicted 99.41 98.49 89.48 95.53 96.29 93.37 

R2 (%) adjusted 99.61 98.87 94.88 97.61 97.87 96.39 

 

Table 7. Regression models for all responses.  

 BTE (%) BSFC (g/kWh) 
F-value p-value 

Cause F-value p-value 

Model 978.80 0.000 332.97 0.000 

Linear 2306.71 0.000 771.34 0.000 

BMEP (bar) 4597.96 0.000 1531.31 0.000 

Blend % 15.46 0.002 11.37 0.002 

Square 140.24 0.000 61.08 0.000 

BMEP (bar) × BMEP (bar) 280.37 0.000 122.13 0.000 

Blend (%) × Blend (%) 0.11 0.745 0.03 0.859 

2 way interaction 0.11 0.741 0.00 0.952 

BMEP (bar) × Blend % 0.11 0.741 0.00 0.952 

 

 NOx (g/kWh) HC(g/kWh) CO(g/kWh) Smoke (%) 

Cause F-value p- value F- value p- value F- value p- value F- value p- value 

Model 71.43 0.000 156.10 0.000 175.99 0.000 102.39 0.000 

Linear 115.49 0.000 356.37 0.000 73.61 0.000 231.41 0.000 

BMEP (bar) 181.30 0.000 424.88 0.000 716.97 0.000 397.00 0.000 

Blend % 49.68 0.002 287.87 0.002 30.25 0.000 65.82 0.000 

Square 61.00 0.000 4.33 0.000 55.82 0.000 14.55 0.000 

BMEP (bar) × BMEP (bar) 121.96 0.000 7.74 0.000 111.00 0.438 28.75 0.000 

Blend (%) × Blend (%) 0.04 0.745 0.93 0.859 0.64 0.000 0.35 0.563 

2 way interaction 4.20 0.741 59.07 0.952 21.10 0.000 20.02 0.001 

BMEP (bar) × Blend % 4.20 0.741 59.07 0.952 21.10  20.02 0.001 
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The WSA approach determined the tuned variable levels to 

be X1 = 40 (unscaled variable level: 1) and X2 = 1.648056 (un-

scaled variable level: 0.944899). However, since X2 = 1.648056 

is not practical, it has been adjusted to 1.6 (unscaled variable  

 

level: 0.96) by rounding to the nearest suitable value. 

The given dataset in Table 9 represents optimal engine set-

tings due to its balanced performance and emissions character-

istics. 

 

 

 

 

 
A BMEP of 2.74 bar reflects a moderate torque output, en-

suring sufficient engine performance without overstressing 

components or increasing fuel consumption excessively. The 

brake thermal efficiency (BTE) of 27.81% indicates effective 

energy conversion, striking a good balance between the fuel ef-

ficiency and power output. While BSFC of 347.72 g/kWh sug-

gests relatively high fuel consumption, it reflects a compromise 

necessary to maintain lower emissions and engine reliability. 

The low NOx emissions (0.148 g/kWh) highlight effective con-

trol of combustion temperatures, reducing harmful pollutants  

to meet environmental standards. Similarly, moderate HC  

(0.1311 g/kWh) and CO (0.5448 g/kWh) levels demonstrate rea-

sonably complete combustion while preserving engine effi-

ciency. Finally, the low smoke percentage of 4.98% indicates 

minimal particulate emissions, ensuring compliance with air 

quality standards. 

4. Conclusions 

 Diesel (D100) achieves the ultimate BTE of 38% at  

5.04 bar, with BSFC around 200 g/kWh, while biodiesel 

blends like JB10 and JB20 follow closely with BTE values 

of 37−38% and BSFC of 210–220 g/kWh. At a lower 

BMEP (1.35 bar), BTE for all fuels ranges between  

15–17%, with biodiesel blends like JB40 showing the larg-

est drop and higher BSFC (450–470 g/kWh).  

 NOₓ and HC emissions rise with BMEP and biodiesel con-

tent, with biodiesel blends (especially JB30 and JB40) 

showing higher NOₓ emissions due to increased combus-

tion temperatures. 

 CO emissions and smoke opacity increase significantly at 

a higher BMEP, with JB40 peaking at 5.5 g/kWh for CO 

and 70% for smoke opacity, indicating incomplete combus-

tion in higher biodiesel blends.  

 The optimal engine settings with a balanced performance 

profile achieve a moderate torque (BMEP of 2.74 bar) and 

effective energy conversion (BTE of 27.81%).  

 The relatively high BSFC (347.72 g/kWh) is balanced by 

low emissions of CO (0.5448 g/kWh), NOₓ (0.148 g/kWh, 

and smoke opacity (4.98%), ensuring both efficiency and 

environmental compliance. These settings optimise engine 

performance while adhering to emissions standards. 

 The WSA algorithm was applied to determine the optimal 

factor levels based on the regression models. Subsequent 

confirmation tests validated these optimised settings, 

showing that BTE was maximised while emissions and 

other response parameters were effectively minimised. 
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