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Abstract

Machine learning, a division of artificial intelligence (Al), empowers systems to gain knowledge from information and
refine their capabilities over time. It uses algorithms to identify patterns and make prophecies or decisions. Prosopis juliflora
is becoming gradually notorious as an optimistic substitute in biofuel inquiry. The mixing of Prosopis juliflora with diesel
for use in combustion engines has been the subject of growing study in recent years. However, limited research has explored
the impact of Prosopis juliflora on the compression ignition (Cl) engine exhaust employing data-driven optimisation high-
lighting the need for new inquiries to address this shortfall. We aim to explore the cutting-edge and proficient machine
learning driven weighted superposition attraction algorithm to optimise the efficiency and exhaust of CI engines powered
with Prosopis juliflora biodiesel — diesel blends. Regression modelling is employed to define the relationships between
factors such as the blend percentage and brake mean effective pressure (bar), and responses like the brake thermal efficiency
(%), brake specific fuel consumption (g/kWh), smoke opacity (%), NOx (g/kwh), CO (g/kwh), and HC (g/kWh). The data-
driven weighted superposition attraction algorithm is subsequently employed to determine the best factor levels. Validation
of the results demonstrates that the brake thermal efficiency is enhanced, while the other response variables are effectively
reduced, showcasing the effectiveness of this methodology.
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1. Introduction

The scientific community is intensifying investigations into sus-
tainable fuel technologies, responding to mounting environmen-
tal challenges and the critical imperative of reducing anthropo-
genic greenhouse gas contributions [1]. Emerging biofuel stud-
ies are utilising complex mathematical modelling and optimisa-
tion techniques — specifically Taguchi methods, genetic algo-
rithm, response surface methodology (RSM), and integrated al-
gorithmic frameworks like RF-NSGA [11-TOPSIS — to system-
atically investigate and optimise combustion efficiency, engine

performance, and emission characteristics [2]. Prosopis juli-
flora-based diesel biofuel represents a compelling technological
solution, demonstrating remarkable capabilities in addressing
critical environmental challenges through reduced greenhouse
gas generation, enhanced air quality and decreased fossil fuel
consumption [3]. The complex challenges of oil market volatil-
ity are catalysing transformative approaches to energy produc-
tion, with Prosopis juliflora biomass-derived biofuels represent-
ing a technologically sophisticated strategy for reducing reliance
on traditional fossil fuel resources [4]. Prosopis juliflora is pro-
duced from the seed of the Prosopis juliflora tree, commonly
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Nomenclature

dij(t)— the it solution movement direction in the j" dimension
sl(t)— step size

xij(t)— value for the it solution in the j™ dimension

X —feature

Y —outcome variable

Greek symbols
S — coefficient

known as mesquite. The improved energy efficiency of engines
powered by Prosopis juliflora mineral diesel renewable fuel has
drawn significant interest from the freight industry, which is
striving to reduce fuel usage and cut operating costs [5].
Prosopis juliflora mineral diesel renewable fuel holds signif-
icant potential as a sustainable energy solution for the future. Its
properties closely align with those of standard diesel, making it
a viable substitute for fossil fuels. Additionally, its ability to
function seamlessly in mineral diesel or compression ignition
(C1) engines excluding major adjustments has further fuelled re-
search into its application [6]. These benefits support the posi-
tion of Prosopis juliflora diesel biofuel as a promising alterna-
tive for complying with increasingly strict vehicle emission
regulations. Several studies have shown that biofuel delivers
a power output comparable to traditional diesel. The strong com-
patibility of Prosopis juliflora with diesel fuel provides a pro-
spect to formulate a refined diesel — Prosopis juliflora blend with
characteristics akin to pure diesel while effectively resolving
phase separation issues [7]. Researchers have utilised both ex-
perimental methods and numerical simulations to probe the ap-
plication of Prosopis juliflora in ClI engines. The research exam-
ines the performance and emission traits of Prosopis juliflora bi-
odiesel in diesel engines, emphasising key insights. The B25
blend demonstrated the most favourable results, offering ther-
mal efficiency comparable to diesel while reducing emissions.
Higher biodiesel percentages led to increased CO, HC and
smoke emissions, but NO, emissions dropped by 17.71%. Bio-
diesel was produced via transesterification using methanol and
alkaline catalysts, showcasing its potential as an eco-friendly
fuel alternative. The research identified B20 and B25 blends as
optimal for achieving a balance between engine performance
and emission control [8]. Additionally, an experimental study
investigated the impact of adding diethyl ether (DEE) to Pro-
sopis juliflora biodiesel blends on engine efficiency and pollu-
tants. While the brake thermal efficiency (BTE) of biodiesel
mixtures was slightly lower than that of pure diesel oil, the ad-
dition of DEE improved combustion efficiency. For instance,
the B20DEE10 blend (20% biodiesel with 10% DEE) achieved
BTE of 31.4% at 50% load compared to diesel's 36.7%. Moreo-
ver, the DEE additives reduced emissions such as CO2, HC and
CO, along with a decrease in NOy emissions, attributed to DEE’s
elevated cetane grade and heat of vaporisation [9]. The investi-
gation examines the efficiency of juliflora oil biodiesel in a com-
pression ignition engine, showing a 5—7% increase in BTE and
a 15-20% cutback in CO and HC exhausts compared to diesel.
NOy emissions were slightly higher by 10-12%, a common
trade-off with biodiesel. Overall, the findings highlight juliflora

I3 — residual error term

Abbrevation and Acronyms

BMEP- brake mean effective pressure
BTE - brake thermal efficiency

Cl - compression ignition

HC — hydrocarbon

NOx — nitrogen oxides

RSM - response surface methodology
WSA — weighted superposition attraction

biodiesel's potential for cleaner energy, with further optimisa-
tion needed for emission control [10].

This comprehensive research explores the adaptation of juli-
flora biodiesel and its variants as clean fuels in CI engines
through a combination of simulation and experimental ap-
proaches. Studies demonstrate that juliflora biodiesel offers
comparable engine performance with reduced emissions, estab-
lishing its viability as a sustainable fuel option [11]. Further in-
vestigation into H, boosting with Prosopis juliflora biofuel high-
lights performance and emission improvements using modern
optimisation practices like RSM and artificial neural networks
(ANN) [12]. Additionally, research on Prosopis juliflora methyl
ester emphasises the role of transesterification in enhancing fuel
properties, such as viscosity, to improve engine compatibility
and efficiency [13]. Machine learning in engine research applies
artificial intelligence (Al) practices to analyse data and past ex-
periences in the domain of biofuels and engines. Through the
application of algorithms and computational frameworks, it ex-
amines experimental or simulated data concerning engine effi-
ciency, exhaust characteristics and Prosopis juliflora fuel prop-
erties. This methodology uncovers trends, enables forecasting
and provides critical insights, aiding researchers in activities like
determining ideal biofuel mixtures, forecasting engine behav-
iour and refining butanol production techniques. The rising sig-
nificance of data-driven ANN has noticeably enhanced forecast-
ing and optimisation initiatives. Extensive investigations have
been conducted on biofuel applications in Cl engines. Recent
efforts have particularly examined the potential of Prosopis juli-
flora in diesel engines, leveraging machine learning techniques
to determine optimal outcomes.

This research applies regression modelling for guantitative
analysis and utilises the weighted superposition attraction
(WSA) for optimising multiple objectives. The WSA technique
is used to identify the optimal concentrations of Prosopis
juliflora (vol. %) and brake mean effective pressure (BMEP)
(bar) for multiple performance factors, such as BTE (%), brake
specific fuel consumption (BSFC) (g/kWh), NOx (g/kWh),
HC (g/kwh), CO (g/kwh) and smoke opacity (%). The concur-
rent optimisation of these parameters using WSA is an innova-
tive feature of this research, which seeks to integrate the WSA
approach into biofuel studies within the context of CI engines.

2. Juliflora performance optimisation

The experimental approach described provides a structured
method for studying how Prosopis juliflora biofuel blends per-
form in a diesel engine. The study involves adjusting the fuel
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blend and engine settings, and using cutting edge techniques like
the weighted sum approach to analyse the results. The experi-

mental setup and process are shown in Fig. 1.

Fuel Preparation ¢ Rluliflora

« (Prosopis Juliflora oil) > ¢ Diesel
o Mix fuel

Initial setup
Steady operation
Data Collection
Repeatability

Regression
Validation
Optimization

Response surface
Optimum value

Fig. 1. Experimental methodology.

The study used different blends of Prosopis juliflora biofuel
mixed with diesel as the trial fuels. The distinct proportions and
readiness techniques for these blends are outlined in earlier re-
search. Typically, the biofuels are made by combining pure
Prosopis juliflora with conventional diesel at varying levels.
The blends tested in the study include pure diesel, JB10 (10%
Prosopis juliflora, 90% diesel), JB20 (20% juliflora, 80% die-
sel), JB30 (30% juliflora, 70% diesel), and JB40 (40% juliflora,
60% diesel), with their properties summarised in Table 1.

Table 1. Properties of mineral diesel and biofuel.

Features J“":'if"a JB10 | JB20 | JB30 | JB40 | Diesel
Density (g/cm?) 0.811 | 0.872 | 0.876 | 0.879 | 0.846 | 0.830
Kinematic viscosity | 5 547 | 3963 |4.019 | 4.515 | 3.819 | 43.96
(mm?/s)

Cetane number 61.97 | 59.72 | 54.15 | 50.21 | 59.10 |46 - 55
Sulphur content 59.344 | 58.11 | 84.30 |111.79] 65.93 | 6800
(mg/kg)

Higher heating value | 36.763 |39,457| 39.60 | 39.94 |38.279(42,500
Oxidation stability

110°0) 12.661 | 15.84 |16.630| 6.75 |11.198| —

Oxygen content 8.6 8.4 12.2 | 14.02 | 10.49 —

Each fuel blend was carefully mixed and tested to ensure
uniformity before being utilised in the trials. Subsequently, var-
ious operational conditions were applied to assess the engine's
performance with each fuel blend. The key stages of the evalu-
ation process are as follows:

(a) Primary setup.
The engine was heated to ensure consistent working tem-
peratures throughout all the tests, and reference measure-
ments were obtained using conventional diesel fuel to set
a benchmark for comparison.

(b) Stable working conditions.
The engine was evaluated under different stable working
conditions by adjusting BMEP. Typically, tests were per-
formed at several load points, including 1.35, 2.70, 4.8 and
5.8 bar.

(c) Gathering data.
Essential engine metrics like BSFC, BTE and exhaust
emissions were measured, alongside burning factors such
as the heat release rate and in-cylinder pressure using sen-
sors.

(d) Consistency and validation.
Each trial was conducted multiple times to confirm reliable
and precise data.

The trial data were evaluated to determine the effects of var-
ious Prosopis juliflora diesel mixtures on engine efficiency and
exhausts. The WSA approach was enforced to optimise the
blends, granting the detection of the most potent mixture for el-
evating fuel efficiency and minimising emissions. Factors such
as fuel blend ratio, engine load and speed were considered in the
optimisation procedure. The results for the Prosopis juliflora
blends were compared to the reference diesel fuel characteris-
tics. The inquiry centred on detecting patterns in efficiency and
exhausts, assessing the burning characteristics of Prosopis juli-
flora blends, and exploring the potential of Prosopis juliflora as
a clean alternative to diesel fuel.

2.1. Test setup

The tests were carried out using a mono-cylinder Cl engine, with
the configurations and setup provided in Fig. 2.
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Fig. 2. Diesel engine setup.

2.2. WSA approach

The WSA algorithm is a modern optimisation method rooted in
the broader field of metaheuristic algorithms and multi-objec-
tive optimisation. It extends the traditional weighted sum ap-
proach, which consolidates several objectives into one scalar
value through a process of weighted summation. The emergence
of WSA was driven by the increasing complexity of engineering
problems, particularly in fields like energy systems, material sci-
ences and automotive research, where advanced optimisation
tools were needed. Recent developments have refined WSA to
improve its efficiency and adaptability, making it suitable for
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high-dimensional datasets and complex applications. In engine
research, WSA has been applied to optimise multiple parame-
ters, such as performance metrics and emissions, addressing the
dual challenge of enhancing efficiency while meeting environ-
mental standards. Its ability to balance multiple objectives sim-
ultaneously has made WSA a valuable tool for solving real-
world problems, with its adoption steadily growing in engineer-
ing and environmental studies. The WSA algorithm directs the
keys at repetition t near their designated search paths using the
equation:

x;(t+1) = x;5;(t) + sl(t)d;(t)- ”xij(t)”- 1)

In the WSA algorithm, xij(t) represents the value of the
j™" dimension for the i™ solution, while sl(t) denotes the step size.
The solution's movement direction is defined by d(t) € {1, 0,
—1} for dimension j. The term Ix;(t)l indicates the distance be-
tween the origin and the j™ dimension of solution i at the t™ iter-
ation. The algorithm updates the solution along its dimensions
in the specified search directions using the second term,
sl(t)-dij(t)-Ixij(t)! as indicated on the opposite side of Eq. (1) [16].

3. Outcomes and analysis: diesel engine operated
with juliflora biofuel and machine learning

Twenty experimental trials were carried out according to the ex-
perimental design. The findings from these trials are illustrated
in Fig. 3 and Fig. 4. Regression models were created for uncoded
factor levels, utilising the outcomes such as NOx (g/kwh),
Smoke Opacity (%), CO (g/kWh), HC (g/kwh), BSFC (g/kwh)
and BTE (%).

The graphs in Fig. 3 illustrate the performance of diesel
(D100) and biodiesel blends (JB10, JB20, JB30, JB40) in terms
of BTE (%) and BSFC (g/kWh) as functions of BMEP (bar).

#D100 =JB10 ~JB20 mJB30 wJB40 #D100 ®JB10 ~JB20 mJB30 wJB40

40 500
35 450
400
. = 350
gr % 300
220 351<o
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5 50
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BMEP (bar) mﬂzr(bar)

Fig. 3. History of BTE (%) and BSFC (g/kWh) vs. BMEP (bar).

BTE increases with BMEP for all fuels, peaking at approxi-
mately 38% at 5.04 bar. D100 consistently exhibits the highest
BTE, while higher biodiesel blends show slightly reduced effi-
ciency due to their lower calorific value and higher viscosity. At
1.35 bar, BTE ranges from 15-17%, with JB40 showing the
most significant drop. By 4.05 bar, BTE rises to 30—33%, with
JB10 and JB20 performing closest to D100, indicating that

lower biodiesel blends maintain efficiency while incorporating
renewable fuel. Conversely, BSFC decreases with increasing
BMEP, from ~ 450-470 g/kWh at 1.35 bar to ~ 200—220 g/kWh
at 5.04 bar. D100 achieves the lowest BSFC, reflecting its supe-
rior fuel efficiency. Biodiesel blends, particularly JB30 and
JB40, show higher BSFC due to biodiesel's minimal energy den-
sity and elevated viscosity, which can affect combustion. How-
ever, JB10 and JB20 closely match the BSFC of D100, demon-
strating a favourable balance between efficiency and renewable
fuel use. Improved in-cylinder conditions at higher BMEP re-
duce the performance gap between diesel and biodiesel blends,
making JB10 and JB20 optimal choices for maintaining effi-
ciency while integrating biodiesel.

The graphs in Fig. 4 illustrate the emission characteristics of
diesel fuel (D100) and biodiesel blends (JB10, JB20, JB30,
JB40) across various brake mean effective pressures (BMEP).
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Fig. 4. History of Exhaust of (a) NOy, (b) HC, (c) CO, and (d) Smoke
opacity vs. BMEP (bar).

NOx emissions increase steadily with BMEP for all fuels,
peaking at 0.18-0.2 g/kWh at 5.04 bar. Biodiesel blends, partic-
ularly JB30 and JB40, exhibit higher NO emissions than D100
owing to their higher oxygen presence, which improves com-
bustion but raises in-cylinder temperatures, promoting NOx for-
mation. At low load (1.35 bar), NOy exhausts range from
0.05-0.1 g/kWh, with D100 showing the lowest levels due to
the absence of oxygen and lower combustion temperatures. Hy-
drocarbon (HC) emissions are lowest at 1.35 bar, with biodiesel
blends emitting less than D100, reflecting better combustion. At
2.7 bar, emissions increase slightly, with JB40 reaching about
0.1 g/kWh. At higher loads (4.05 and 5.04 bar), HC emissions
rise significantly, peaking at 0.3 g/kwh for JB40 due to poor
atomisation and reduced volatility in higher biodiesel blends.
JB10 and JB20 demonstrate lower HC emissions, indicating bet-
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ter combustion efficiency. Carbon monoxide (CO) emissions re-
main minimal at 1.35 and 2.7 bar, staying below 1 g/kWh for all
blends, showing efficient combustion at low loads. At 4.05 bar,
CO emissions increase, with JB40 emitting approximately
3 g/kWh. At 5.04 bar, CO emissions peak, with JB40 reaching
5.5 g/kWh, highlighting incomplete combustion and lower oxi-
dation efficiency. D100 and JB10 perform better, keeping CO
emissions below 5 g/kWh. Smoke opacity is minimal at 1.35 bar
(<10%) for all fuels, indicating clean combustion. It increases

Consequently, the data provided in Table 4 are applied in the

second phase for model development.

Table 2. Engine specifications.

Narrative Standard
Model Kirloskar, 4- stroke
Cooling Water

Bore x stroke

78 mm x 62 mm

slightly at 2.7 bar, with JB40 reaching 15%. At 4.05 bar, opacity Displacement 325 cm?
rises significantly, with JB30 and JB40 reaching ~45%. At No. of cylinders Mono
5.04 bar, smoke opacity peaks at 70% for JB40 owing to ele- CR 18.5
vated viscosity and inferior atomisation, which hinder burning. Maximum speed 2600 rpm
D100 consistently outperforms biodiesel blends across all pa- Maximum power 4.1 kw
rameters due to its higher volatility and better combustion char- Fuel IT 14 +1° bTDC
acteristics. Fuel IP 19.6 MPa
In this study, WSA is used for optimisation. The optimisa-
tion process consists of three stages: (i) performing the trials,
(i) developing models for regression, and (iii) executing the op- Table 3. Level of factors.
timisation of WSA. The factor points are provided in Table 2.
. . . . . X Levels
The experimental process involves 20 trials, as outlined in Features Notation
o o L1 L2 L3 L4
Table 3, utilising the specified factor values. In the second p——
phase, regression equations are formulated for uncoded factor blends (vol. %) X1 B10 B20 B30 B40
levels. Coded models are essential for the optimisation phase,
. L BMEP (bar) X2 135 2.7 4.05 5.04
while the uncoded models (original models) are also constructed
to illustrate the true mathematical relationships for the readers.
Table 4. Experimental runs.
Uncoded factors Responses
Run Bi°°:ive;|e'n/':)'e"d BMEP (bar) | BTE(%) | BSFC(g/kWh) | NO.(g/kWh) | HC (g/kWh) €O (g/kWh) | Smoke (%)
1 0 1.35 18.75 441 0.13 0.04 0.8 8.12
2 10 1.35 18.9 446 0.12 0.05 0.82 7.95
3 20 1.35 19.12 450 0.11 0.07 0.78 7.92
4 30 135 19.26 452 0.1 0.08 0.76 6.5
5 40 135 19.55 454 0.07 0.06 0.74 5.5
6 0 2.7 26.35 322 0.19 0.04 0.9 19.21
7 10 2.7 26.56 329 0.18 0.05 0.8 18.45
8 20 2.7 26.75 332 0.17 0.09 0.6 15.1
9 30 2.7 26.9 338 0.165 0.11 0.5 9.94
10 40 2.7 27.1 345 0.155 0.145 0.4 6.2
11 0 4.05 32.1 276 0.19 0.06 2.9 55
12 10 4.05 32.36 284 0.185 0.1 2.7 45
13 20 4.05 32.42 288 0.18 0.14 2.5 34
14 30 4.05 33.1 292 0.179 0.17 2.3 20.12
15 40 4.05 33.69 297 0.175 0.19 2.1 9.45
16 0 5.04 34.1 245 0.19 0.1 5.7 75
17 10 5.04 34.48 249 0.18 0.15 5.5 70
18 20 5.04 34.59 251 0.17 0.175 5.1 60
19 30 5.04 34.78 257 0.16 0.225 4.3 55
20 40 5.04 34.89 259 0.159 0.271 3.5 45

Equation (2) illustrates the full quadratic model used for the
regression analysis:

Y = :80+:81X1 + :82X2 + ﬂllxlz + ﬂZZ)(Z2 + 1812X1X2 + 8(2)

In this expression, Y signifies the outcome variable, X repre-
sents the features, S stands for the coefficients, and ¢ denotes the
residual error term [14,15]. Following several preliminary ef-
forts, the model is established using linear terms for Y and com-
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plete quadratic models for Y. Regression analysis and review of ~ base outcomes are presented in Table 5. Figure 5 illustrates the
the model are conducted using Minitab, a commonly used ana-  surface plots for the outcomes, providing a clear sight of the pa-
Iytical tool. The models related to both base factor levels and  rameter spaces.

Table 5. Level of factors.

BTE, % 7.617 +9.205 BMEP (bar) + 0.0125 Blend % — 0.7931 BMEP (bar) - BMEP (bar) + 0.000171 Blend % - Blend % + 0.00136 BMEP (bar) - Blend %
BSFC,

&/kWh 580.7 - 121.40 BMEP (bar) + 0.494 Blend % + 11.001 BMEP (bar) - BMEP (bar) — 0.0020 Blend % - Blend % + 0.0052 BMEP (bar) - Blend %
NO,, 0.0390 + 0.08241 BMEP (bar) — 0.001336 Blend % — 0.010425 BMEP (bar) - BMEP (bar) — 0.000002 Blend % - Blend %
g/kWh +0.000165 BMEP (bar) - Blend %
HC, 0.0410 — 0.00871 BMEP (bar) + 0.000486 Blend % + 0.00346 BMEP (bar) - BMEP (bar) — 0.000013 Blend % - Blend %
g/kWh +0.000816 BMEP (bar) - Blend %
(g:?k'wh 1.315 — 0.991 BMEP (bar) + 0.0308 Blend % + 0.3374 BMEP (bar) - BMEP (bar) — 0.000279 Blend % - Blend % — 0.01256 BMEP (bar) - Blend %
f/m°ke’ 7.29 — 2.50 BMEP (bar) + 0.279 Blend % + 2.977 BMEP (bar) - BMEP (bar) — 0.00358 Blend % - Blend % — 0.2121 BMEP (bar) - Blend %
0
/
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Fig. 5. Surface plots for responses (a) BTE, (b) BSFC, (c) NOy, (d) HC, (e) CO (g/kWh) and (f) smoke opacity (%) vs. BMEP (bar).
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The series of 3D surface plots provides a comprehensive
analysis of the effects of BMEP and biodiesel blend percentage
on various efficiency and exhaust features. BTE increases with
BMEP, peaking at around 35% for moderate biodiesel blends
(20-30%) at 5 bar, but remains below 25% at light loads (below
2 bar) due to inefficient combustion. Higher blends (above 40%)
slightly reduce BTE due to lower calorific value, while D100
peaks at 33%, and JB30 achieves a maximum of 35%, showcas-
ing the efficiency advantage of moderate blending. The brake
specific fuel consumption (BSFC) decreases with increa-
sing BMEP, dropping from 450 g/kWh at 1.5 bar to around
240 g/kWh at 5 bar, but increases with higher biodiesel blends
due to lower calorific value, with JB40 showing 10-15% higher
BSFC than D100 at all BMEP levels. NOx emissions rise with
both BMEP and blend percentage, peaking at 0.2 g/kwh for
JB40 at 5 bar due to higher in-cylinder temperatures, while mod-
erate blends like JB20 offer a balanced performance, producing

Table 6. Computed values for the coefficient of determination.

Determination of coefficient

BTE (%) BSFC (g/kWh)
R? (%) 99.71 99.17
R?(%) predicted 99.41 98.49
R?(%) adjusted 99.61 98.87

Table 6 presents the computed coefficients of determination
(R?, adjusted R?, and predicted R?) obtained using Minitab. To
ensure the models' validity, their significance must be evaluated.
This is achieved through ANOVA (analysis of variance), a sta-
tistical method that uses the F-test to assess the consequence of

Table 7. Regression models for all responses.

0.15-0.18 g/kWh at higher loads, and D100 shows the lowest
NOx emissions, particularly at light loads. Hydrocarbon (HC)
emissions increase with BMEP, and are the lowest for the 0%
blend, reaching around 0.05 g/kWh at 2 bar but rising with
higher loads and blends. Carbon monoxide (CO) emissions also
increase with BMEP, exceeding 6 g/kwh for higher blends at
5 bar, while remaining negligible at low BMEP for minimal
blends. Similarly, smoke emissions intensify with rising BMEP
and blend percentage, surpassing 50% at 4 bar and peaking near
75% for a 45% blend, emphasising the compounding impact of
engine load and biodiesel blending on particulate formation and
burning features.

Table 6 presents the R? values for these models. To be suita-
ble for optimisation, the R? values should approach 1 (100%). In
this case, it is concluded that the factors included in the model
sufficiently explain the variation in the response.

Outcomes
NOx (g/kWh) HC (g/kWh) CO (g/kWh) Smoke (%)
96.23 98.24 98.43 97.34
89.48 95.53 96.29 93.37
94.88 97.61 97.87 96.39

regression models. As shown in Table 7, the p-values for all
models are 0.000, confirming the statistical significance of the
regression models. Table 8 provides the tuning factors of the
WSA approach along with their description [15].

BTE (%) BSFC (g/kWh)
F-value p-value
Cause F-value p-value
Model 978.80 0.000 332.97 0.000
Linear 2306.71 0.000 771.34 0.000
BMEP (bar) 4597.96 0.000 1531.31 0.000
Blend % 15.46 0.002 11.37 0.002
Square 140.24 0.000 61.08 0.000
BMEP (bar) x BMEP (bar) 280.37 0.000 122.13 0.000
Blend (%) x Blend (%) 0.11 0.745 0.03 0.859
2 way interaction 0.11 0.741 0.00 0.952
BMEP (bar) x Blend % 0.11 0.741 0.00 0.952
NOx (g/kWh) HC(g/kWh) CO(g/kWh) Smoke (%)
Cause F-value p- value F- value p- value F-value p- value F- value p- value
Model 71.43 0.000 156.10 0.000 175.99 0.000 102.39 0.000
Linear 115.49 0.000 356.37 0.000 73.61 0.000 231.41 0.000
BMEP (bar) 181.30 0.000 424.88 0.000 716.97 0.000 397.00 0.000
Blend % 49.68 0.002 287.87 0.002 30.25 0.000 65.82 0.000
Square 61.00 0.000 4.33 0.000 55.82 0.000 14.55 0.000
BMEP (bar) x BMEP (bar) 121.96 0.000 7.74 0.000 111.00 0.438 28.75 0.000
Blend (%) x Blend (%) 0.04 0.745 0.93 0.859 0.64 0.000 0.35 0.563
2 way interaction 4.20 0.741 59.07 0.952 21.10 0.000 20.02 0.001
BMEP (bar) x Blend % 4.20 0.741 59.07 0.952 21.10 20.02 0.001
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Table 8. Control parameters of WSA algorithm.

Elements Description Standard
Maxtler Max. iteration number 40,000
Ns Solutions generated in each cycle 40

T Adjustable elements 0.7

D Adjustable elements 0.0001
A Adjustable elements 0.755
Sh Primary step size 0.001

The WSA approach determined the tuned variable levels to
be X1 = 40 (unscaled variable level: 1) and X, = 1.648056 (un-
scaled variable level: 0.944899). However, since X, = 1.648056
is not practical, it has been adjusted to 1.6 (unscaled variable

Table 9. Validation of response optimisation.

level: 0.96) by rounding to the nearest suitable value.

The given dataset in Table 9 represents optimal engine set-
tings due to its balanced performance and emissions character-
istics.

Blend (%) BMEP (bar) BTE % BSFC g/kWh

NOx g/kWh HC g/kWh CO g/kWh Smoke (%)

40 2.74091 27.812 347.72

0.1480 0.1311 0.5448 4.9815

A BMEP of 2.74 bar reflects a moderate torque output, en-
suring sufficient engine performance without overstressing
components or increasing fuel consumption excessively. The
brake thermal efficiency (BTE) of 27.81% indicates effective
energy conversion, striking a good balance between the fuel ef-
ficiency and power output. While BSFC of 347.72 g/kWh sug-
gests relatively high fuel consumption, it reflects a compromise
necessary to maintain lower emissions and engine reliability.
The low NOy emissions (0.148 g/kwh) highlight effective con-
trol of combustion temperatures, reducing harmful pollutants
to meet environmental standards. Similarly, moderate HC
(0.1311 g/kWh) and CO (0.5448 g/kwh) levels demonstrate rea-
sonably complete combustion while preserving engine effi-
ciency. Finally, the low smoke percentage of 4.98% indicates
minimal particulate emissions, ensuring compliance with air
quality standards.

4. Conclusions

e Diesel (D100) achieves the ultimate BTE of 38% at
5.04 bar, with BSFC around 200 g/kWh, while biodiesel
blends like JB10 and JB20 follow closely with BTE values
of 37-38% and BSFC of 210-220 g/kWh. At a lower
BMEP (1.35 bar), BTE for all fuels ranges between
15-17%, with biodiesel blends like JB40 showing the larg-
est drop and higher BSFC (450470 g/kwWh).

e NOy and HC emissions rise with BMEP and biodiesel con-
tent, with biodiesel blends (especially JB30 and JB40)
showing higher NOy emissions due to increased combus-
tion temperatures.

e CO emissions and smoke opacity increase significantly at
a higher BMEP, with JB40 peaking at 5.5 g/kWh for CO
and 70% for smoke opacity, indicating incomplete combus-
tion in higher biodiesel blends.

e The optimal engine settings with a balanced performance
profile achieve a moderate torque (BMEP of 2.74 bar) and
effective energy conversion (BTE of 27.81%).

e The relatively high BSFC (347.72 g/kWh) is balanced by
low emissions of CO (0.5448 g/kWh), NOx (0.148 g/kWh,
and smoke opacity (4.98%), ensuring both efficiency and
environmental compliance. These settings optimise engine
performance while adhering to emissions standards.

e The WSA algorithm was applied to determine the optimal
factor levels based on the regression models. Subsequent
confirmation tests validated these optimised settings,
showing that BTE was maximised while emissions and
other response parameters were effectively minimised.
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