
 

1. Introduction 

The increasing complexity of fuel supply chains and the pres-

sure for resilience, efficiency and environmental sustainability 

mean that artificial intelligence and machine learning (ML) 

methods are rapidly being adopted in logistics (including mili-

tary). In the literature of recent years, there has been a clear shift 

from classic optimisation problems to predictive analytics, inte-

gration of heterogeneous data, and models supporting short-term 

operational decisions. This is particularly important in the con-

text of the military fuel distribution system, where the com-

mander's decisions are burdened by demand uncertainty, infra-

structure constraints, and spatio-temporal dynamics. The con-

cept of a modular Logistic Decision Support System (LDSS) 

adopted in this paper, based on multilayer neural networks and 

the selection of learning algorithms such as Bayesian regulari-

sation, Levenberg-Marquardt (LM), Broyden-Fletcher-Gold-

farb-Shanno  (BFGS)  quasi-Newton,  or  resilient  backpropaga- 
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Abstract 

Providing energy to troops requires maintaining optimal fuel levels across all management stages, especially within Garrison 
Support Units and Regional Logistic Bases. The article examines the fuel distribution system supported by a program that 
predicts commanders’ actions using input data from subordinate units. To aid decision-making, Garrison Support Units im-
plemented neural network variants to model logistical activities, training, peacetime operations, or combat, and segment fuel 
supply accordingly. The Neural Network Toolbox from MATLAB (MathWorks) was used for computations. The study pre-
sents the Garrison Support Units operational assumptions, the role of commanders as agents, and factors affecting fuel distri-
bution. It also outlines the development of the Logistic Decision Support System dashboard, which enables entering decision 
variables, neural network coefficients, and weights to forecast fuel consumption and plan future operations based on environ-
mental and operational data. The article includes MATLAB simulation results, analysing neural network algorithms and 
neuron counts per layer to determine the most effective configuration for decision-making optimisation. Results show that 
the Bayesian regularisation algorithm achieved the lowest mean square error across all data sets and the highest prediction 
accuracy measured by the root mean squared error. The regression coefficient confirmed a strong correlation between pre-
dicted and actual outcomes, demonstrating the Bayesian regularisation algorithm’s effectiveness in supporting logistical fuel 
management decisions. 
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Nomenclature 

BR ‒ Bayesian regularisation 

GSU ‒ Garrison Support Unit 

LDSS ‒ Logistic Decision Support System 

MATLAB– Matrix Laboratory 

ML ‒ machine learning 

MSE – mean square error  

R ‒ regression coefficient 

RLB – Regional Logistic Base 

RMSE – root mean squared error  

tion (RP), remains consistent with the directions observed in re-

search from practical implementations of short-term prediction 

to critical reviews of data quality, standardisation and model re-

liability. 

The article aims to research the application of an artificial 

intelligence algorithm to support decision-making processes in 

the management of fuel resources, based on the adopted model 

of elements of the military logistics system. When starting the 

research, previous publications [1−4] characterised the logistics 

space within a selected scope. The need to develop solutions 

supporting the decision-making process of the commander (de-

cision-maker) based on machine learning algorithms was indi-

cated, including Broyden–Fletcher–Goldfarb–Shanno quasi-

Newton, Levenberg-Marquardt, Bayesian regularisation and the 

resilient backpropagation algorithm.  

The innovative nature of the article is manifested, among 

other things, by the fact that variables that have not been col-

lected in the IT logistics system so far are indicated, as well as 

the method of developing the architecture of the LDSS program 

for implementation. The author indicated a number of dependent 

variables that he detected while working with the data that were 

analysed, namely the indicated fuel level in the Garrison Support 

Unit (GSU), the intensity of operations, field data, meteorologi-

cal data or variables illustrating the capabilities of GSU. 

The proposed model of support for the decision-making pro-

cess in the fuel distribution system is based on a neural network, 

for which the basic input parameters and initial states of the sys-

tem have been indicated, limited only to fuel distribution. The 

model of the modular multi-layered one-way neural network 

(MNN) seems to be the solution with a small and acceptable er-

ror to provide courses of action for the management staff in the 

indicated positions of the military logistics system. Neverthe-

less, in order for the indicated information technology (IT) so-

lution to be effective, the artificial intelligence (AI) system must 

be taught through the experience of decision-makers and histor-

ical data, in order to present several optimal variants of fuel re-

source management. Finally, the thesis in which the reinforce-

ment learning (RL) model improves the quality and accelerates 

the process of developing an appropriate variant of the decision-

maker's action was analysed. 

Bibliometric studies of logistics in Saudi Arabia [5] syntheti-

cally show the global shift towards sustainable logistics, ma-

chine learning, and the integration of technology (AI, block-

chain) into traditional supply chain paradigms. The authors, ana-

lysing over 7.6 thousand publications, identify the growing im-

portance of chain resilience and international cooperation as an 

accelerator of innovation. These conclusions are relevant for 

military logistics: the development of predictive and decision-

making capabilities in the fuel system requires combining clas-

sic procedures with machine learning (ML) models and connect-

ing multi-domain data (operational, environmental, infrastruc-

tural), which directly corresponds to the concept adopted in this 

paper of extending the input vectors of the network to include 

meteorological, terrain and operational factors. 

A strong practical trend is represented by the work of 

Eichenseer et al. [6], in which a data-driven ML model for 

a five-day forecast of the number of "delivery positions" for 

workforce planning in logistics was developed and validated. 

The model, tested in the company, exceeded both practical ex-

pert forecasts and auto ML systems, especially in the short term. 

The value of models tailored to the specifics of the process (cus-

tom ML) in relation to universal tools is a key here from the 

perspective of the military GSU. This approach reinforces the 

decision to use a specialised multilayer perceptron (MLP) archi-

tecture in LDSS and to select training algorithms for generalisa-

tion stability with limited samples and strong operational varia-

bility. A five working days forecast horizon (week) seems to be 

a natural "decision window" for fuel distribution planning and 

personnel dispatch. 

For this article, several literature items were analysed, 

where, among others, Nguyen et al. [7] present a critical review 

of ML models for estimating propulsion power and fuel con-

sumption of marine vessels, an area inherently related to fuel 

and energy (power) prediction (FEP) and exposed to environ-

mental disturbances. The authors emphasise the need for "data-

centric AI": standardisation of metrics (beyond mere accuracy), 

benchmarks, and policies for maintaining trustworthiness in 

models. For military applications, this means the need to:  

a) unambiguous definition of quality measures (root mean 

squared error/mean square error (RMSE/MSE), regression 

coefficient (R), but also resistance to regime changes and 

out-of-distribution),  

b) monitoring of procedures and re-training, 

c) documenting data and model decisions (auditability), 

which in this article is reflected in the adopted set of metrics 

and comparisons of BR/LM/BFGS/RP algorithms and the 

conclusion about the advantage of research and develop-

ment (R&D) in terms of generalisation. 

The cost and decision perspective in commercial logistics 

was developed by Yaiprasert and Hidayanto [8], who used en-

sembles of ML methods to explore cost strategies on simulated 

data. Despite the synthetic nature of the collection, the paper 

shows two lessons useful for LDSS: 

a) ensembles increase predictive resilience to data variance 

and heterogeneity in operational conditions, 

b) It is possible to use simulations to "seal" sparse regions of 

the state space, which is important when real data (e.g., in-

tensity of activities, procedural constraints) are not yet fully 

collected in departmental systems.  
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This approach can complement a trained MLP network with 

a simulation component or an MLP + ensemble hybrid for criti-

cal inventory thresholds.  

Zhou et al. [9], on the other hand, propose a three-stage 

geoinformation model, geospatial information system (GIS), 

multiple-criteria decision making / multiple-criteria decision 

analysis (MCDM), or social network analysis (SNA) network, 

for the selection of locations for urban green logistics centres. 

Despite the civilian context, the construction of the method 

(combining environmental, economic, technological, and social 

criteria with network analysis) is analogous to the needs of mil-

itary planning for the deployment of depots and GSU in opera-

tional space.  

Finally, a broad overview of sustainable aviation fuel (SAF) 

supply chains by Liang et al. [10] highlights that the energy tran-

sition in transportation requires a combination of mathematical 

programming, ML and multi-criteria optimisation. The identi-

fied barriers: cost, complexity of multi-stage production, insta-

bility of raw material supply and regulatory discrepancies, trans-

late into military implications: 

a) the need to take alternative fuels scenarios into account in 

planning (compatibility, availability, chain risk), 

b) expansion of the decision-making module with multi-crite-

ria functions (cost-risk-environmental footprint-operatio-

nal readiness), 

c) tracking policies and standards, which support the ap-

proach to building an LDSS decision-making dashboard 

with weights and ratios reflecting operational priorities. 

In conclusion, the literature confirms the three pillars 

adopted in this work. First, short-term prediction on operational 

data (Eichenseer et al. [6]) is a key component of resource plan-

ning and should be the core of the GSU commander's support 

module; the choice of training algorithms with good generalisa-

tion with limited samples (Bayesian regularisation) is methodo-

logically justified and, in our experiments brings the best com-

promise of accuracy/robustness, which has been demonstrated 

empirically. Secondly, the integration of spatial and multi-crite-

ria data (Zhou et al. [9]) indicates that the extension of LDSS to 

include the GIS/MCDM/SNA component will support decisions 

on inventory manoeuvre and supply priorities under conditions 

of infrastructural and environmental constraints. Third, the trend 

towards sustainability and resilience (Alasmari and Alzahrani 

[5], Liang et al. [10]) requires that decision-making tools take 

into account both performance metrics (RMSE, MSE, R) and 

chain risk and environmental impact criteria, while maintaining 

the principles of "data-centric AI" and model transparency 

(Nguyen et al. [7]). In this context, the LDSS module, which is 

being developed and is based on MLP and enriched with regu-

larisation, validation and monitoring mechanisms, is a way to 

authenticate operational recommendations for the GSU deci-

sion-maker, in accordance with the literature. 

2. Description of the research problem 

The research focused on mapping the logistics space with which 

agents can interact with the indication of states and transitions 

between individual layers of the network dedicated to the se-

lected GSU. The agent is the commander of the selected GSU 

(in our solution, we assume only one decision-making level for 

simplicity). He observes the changing situation of fuel security 

in a given area of responsibility, introducing GSU into the states 

through actions (decisions). The operational situation in a given 

area of responsibility complements the environment of opera-

tions. Actions that can be taken by the decision-maker are: re-

ceiving, dispensing, or withholding the dispensing of fuel.  

The decision-maker performs actions to maintain the fuel at 

the required level in the unit's tanks. The agent has limited trans-

portation resources, is constrained by the load capacity of the 

supplied units, and must also deliver fuel within the timeframe 

specified in the demand of a given military unit. The time in the 

proposed model is discrete, and a training set based on data from 

five years of GSU operation was used for prediction. Then, 70% 

of the data was used for training the network; 15% of all data 

was used to validate the network for generalisation and to stop 

the training process before overfitting occurred, and a further 

15% was used as a test set to independently assess the network's 

ability to generalise. 

The time is discrete, and one week of fuel management in 

the GSU has been taken as the time step. The prediction of fuel 

distribution and decision-maker actions was set ten months 

ahead. The purpose of the program in the MATLAB environ-

ment is to train the neural network in such a way that it is able 

to reduce the mean square error of the deviation of real values 

from those predicted in the network training process as much as 

possible. For the purpose of studying the degree of mapping of 

the prediction results of the GSU input variables, the parameters 

of the neural network were introduced, such as the number of 

neurons in the network layers and the function according to 

which the training was conducted. As a parameter that was pre-

dicted, it was a series of fuel level data in the GSU. In subse-

quent tests for the LDSS commander's desktop, the number of 

predicted parameters (e.g. intensity of operations, number of 

available personnel, availability of equipment, etc.) should be 

increased simultaneously on the basis of the input data. The neu-

ral network learning process involves appropriately adjusting 

the weights between neuronal connections in the network layers 

to minimise errors and improve the quality of predictions. Re-

ducing prediction errors can be achieved by using a feedback 

loop (Fig. 1) backpropagation, i.e. comparison of the obtained 

results with the desired values. The error calculated in this way 

leads to a weight correction to minimise this error in subsequent 

steps (iterations). These processes take place in the so-called 

epochs, and each epoch is a single passage through the entire set 

of learning data. The most important steps in the network train-

ing process are: initialisation of weights, feed forward, error cal-

culation, backpropagation, updating of weights, and repeating 

the process in steps from 2 to 5 over many epochs. Thanks to 

these measures, the network becomes more and more accurate 

("learns"), and its predictions are closer to the actual results. Fi-

nally, there is a process of completing learning after reaching 

a certain criterion, e.g. after reaching a satisfactory level of ac-

curacy, in our case of mapping the prediction results, the param-

eters of the neural network were changed, such as: internal de- 

lays, feedback delay, number of epochs, the function according 

to which the training was carried out, and the size of hidden lay- 
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ers. Below is a brief description of four algorithms used in the 

study. 

2.1. Bayesian regularisation  

A modification of a classical algorithm with feedback propaga-

tion that optimises both model fit and complexity by regularis-

ing weights. In this algorithm, the error function has two com-

ponents – a matching error (MSE) and a penalty for heavy 

weights. The weights and regularisation parameter are estimated 

using Bayesian methods. It is known for high resistance to over-

fitting and excellent generalisation, especially with a large num-

ber of neurons, without needing separate cross-validation. How-

ever, it requires longer training times than non-regularised meth-

ods. This approach is chosen as a benchmark for the quality of 

generalisation. It is particularly effective when using many neu-

rons and dealing with the risk of overtraining, which is important 

in studies with a network of 50 neurons in the hidden layer. It 

offers automatic selection of the regularisation parameter and 

reduces manual hyperparameter tuning [11].  

2.2. Levenberg–Marquardt  

An optimisation algorithm that is a hybrid of the Gauss–Newton 

method and gradient fall adjusts the learning step by switching 

seamlessly between the fast Gauss–Newtonian confluence (near 

the minimum) and the stability of the gradient method (far from 

the minimum). Its advantages are very fast convergence for 

small and medium-sized networks and high accuracy with 

a small number of neurons. High memory requirements. For 

large networks, it can become unstable or very slow. Widely 

recognised as the fastest algorithm for training small and me-

dium-sized MLP networks. It handles regression problems and 

achieves low error in a small number of epochs very well. Ideal 

for comparison with BR in terms of trade-off of learning time 

vs. accuracy [12]. 

2.3. BFGS quasi–Newton 

An advanced optimisation algorithm that approximates the in-

verse Hessian matrix (second-order derivatives) without fully 

calculating it. Updates the Hessian approximation in each itera- 

tion, using gradient and weight changes. Its advantages include 

faster convergence than a pure straight gradient and good results 

for medium-sized networks and well-conditioned problems. 

However, it may lose efficiency with very large networks. High 

memory requirements. It was chosen as a classic, robust optimi-

sation algorithm, allowing us to assess how it performs against 

newer and more adaptive methods [13]. 

2.4. Resilient backpropagation  

A variation of backpropagation that ignores the size of a gradient 

based only on its character. A very stable algorithm in conditions 

where the gradient is scaled badly. Good for problems with large 

differences in input values. It does not use the gradient size in-

formation, so it can reach very low error values more slowly. 

A simple but effective gradient sign method. It is in contrast to 

methods that require calculations of the Hessian matrix or regu-

larisation. In studies, it acts as a benchmark of stability at differ-

ent numbers of neurons [14]. 

An important gap highlighted by the review authors (Nguyen 

et al. [7]) is the insufficient standardisation of data and bench-

marks, and the lack of widely accepted measures of model con-

fidence. In military conditions, this gap is reinforced by the lim-

ited availability of structured data on the intensity of operations, 

procedural constraints, or environmental parameters, which has 

also been identified in this study, and directly motivates the ex-

pansion of the range of collected input variables (21+ features) 

and the procedure for dividing the sets into training/valida-

tion/test. In addition, the literature indicates the potential for re-

inforcement learning (RL) for problems in which decisions and 

rewards are spaced over time; combined with an MLP network 

trained on historical data, RL can support fuel dispensing/halt-

ing/receiving tactics, balancing exploration and exploitation in 

a dynamic environment, a direction that has been outlined as the 

next stage in LDSS development.  

In light of the above, the GSU commander's decision support 

model proposed in the paper using the MLP architecture, 

BR/LM/BFGS/RP algorithms, an extended set of input features, 

and a dashboard module with weights and coefficients is in line 

 

Fig. 1. Neural network model to predict fuel consumption for the selected GSU. The function according to which the network was trained was:  

Bayesian regularisation, Levenberg-Marquardt, BFGS quasi-Newton and resilient backpropagation. 
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with the best practices identified in the literature, and responds 

to the key challenges:  

a) short-term prediction of demand and inventory levels,  

b) integration of multi-domain data (operational, environmen-

tal, infrastructural),  

c) transparency and standardisation of model evaluation,  

d) possibility of further hybridisation with RL and ensemble 

methods for resistance to data variability.  

The states of the GSU logistics system were determined on 

the basis of historical observations from 2019−2023. It was as-

sumed that the logistics system worked optimally and the agents 

acted in accordance with the adopted strategy. The number of 

times GSU was in a situation where the fuel level for GSU was 

adequate (Fig. 2) and was counted week by week. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the collected historical data, it is possible to analyse 

changes in fuel levels for a selected fuel composition, GSU de-

pot or a single storage facility. Changes in fuel levels reflect 

many factors, such as the number and size of units supplied in 

a given area, their operational and training activity, or the ability 

to maintain and restore stocks. Therefore, the detailed infor-

mation contained in the database of the Integrated Multi-Level 

IT System of the Ministry of National Defence (ZWSI RON – 

”Zintegrowany Wieloszczeblowy System Informatyczny Re-

sortu Obrony Narodowej”) on the change in the level of fuel 

stocks in the actual area and time for specific military units 

(MU) may constitute sensitive military data. While maintaining 

the overt nature of the study for analytical research, an "artifi-

cial" model was adopted, built from existing elements of the sys-

tem, but in fact coming from various unrelated fuel supply re-

gions. This model consists of a superior fuel depot in the Re-

gional Logistic Base (RLB), GSU and three supplied MUs of 

different sizes: brigade, regiment and battalion (Fig. 3). 

The task of GSU is to dispense fuel to MU in the amount and 

time in accordance with the demand. Of course, there are many 

factors affecting the quality and certainty of this task [1]. How-

ever, the basic element determining success or failure from the 

perspective of GSU is maintaining an appropriate level of fuel 

in the warehouses. Taking into account the specificity of peace-

time military logistics, going below a certain minimum level 

should be considered a failure, even if this resource could still 

secure the reported needs of MU. This is related to the opera-

tional need to maintain the necessary reserves. Due to the need 

to manoeuvre the fuel resource between the internal GSU stor-

age facilities, it is advisable not to exceed the specified maxi-

mum level of fuel storage capacity. Exceeding this level should 

be considered a failure, even if the storage capacity has not been 

fully used. We consider all activities leading to maintaining the 

state between the minimum and the maximum as a success.  

To sum up, the neural network is designed to learn from his-

torical data, taking into account the input data entered by the 

decision-maker in LDSS for the assumed number of weeks, how 

the GSU processes are carried out, and to present a prediction of 

the unit behaviour in terms of fuel distribution based on the de-

cisions that the decision-maker will make for a given period of 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Historical data on the state of diesel fuel levels  

and activity (fuel receiving/dispensing) in GSU in 2019−2023,  

every week (260 weeks – as of the first day of the week). 

 

Fig. 3. The process of dispensing and receiving fuel by GSU. 
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The analysis covered data from selected MUs and GSU 

warehouses, which have been artificially linked by logistical re-

lationships, but are a reliable model of the fuel supply system 

for research purposes. The probability of the initial state ob-

tained thanks to the aggregation of historical data guarantees 

that, for the last five years, day by day, the tasks of supplying 

fuel have been performed in accordance with the adopted logis-

tics policy of the troops. The operating environment affected the 

logistics system and caused successes and failures in procure-

ment. The Logistics Decision Support System (LDSS) is a pre-

dictive module that, based on historical data and operational as-

sumptions, e.g. exercises and policy, will allow for predicting 

the level of GSU fuel through the prism of the actions assumed 

at a given time and the operational situation. The system, based 

on the assumed coefficients, is to show how the decision-maker 

will lead GSU in the future.  

The minimum and maximum level of maintaining fuel 

stocks was adopted, which made it possible to assess fuel inven-

tory levels and determine the probability of the logistics system 

for a given week. The behaviour of the GSU decision-maker is 

influenced by logistical space-time – a complex concept that is 

superimposed by many factors, including the dynamics of ac-

tions, manoeuvres of forces, surprise and dispersion. Military 

logistics must keep up with the changes in this environment, and 

the commanders of logistics subunits must make decisions in 

a short time by analysing large amounts of data.  

Providing fuel in the theatre of military operations is only 

one of the elements of the military logistics system. For the pur-

poses of creating a decision-making model, we assume that se-

curing the fuel needs of the operating MU requires several lo-

gistics processes based on the resources available in the opera-

tional space over time (based on GSU's resources as well as al-

lied and civilian resources). According to this, it is necessary to 

overcome the logistic space-time [15] to ensure the appropriate 

level of fuels in time (T) in the indicated locations (X) with input 

data such as: 

a) Environmental: 

 temperature, 

 humidity, 

 the amount of rainfall in a given area, 

 characteristics of the terrain, 

 season, 

 altitude. 

b) Structural: 

 accessibility of land, sea, and airspace with landing 

strips, 

 transmission line capacity (fuel tonnage over time), 

 storage capability: equipment parameters, tonnage, dis-

pensing capacity, and filling and distribution time. 

c) Operational (space, time, resources, and information):  

 duration of the operation, 

 the number of main equipment, infrastructure, and sol-

diers in the area of responsibility, 

 the dynamics of activities, 

 loss factor [1]. 

Based on the area of the logistics operation, we can dis- 

tinguish the general function of the space-time of the opera- 

tion [15].  

There are several phases of the decision-making process. At 

the outset, it is necessary to identify the decision-making situa-

tion, which should be characterised by all factors that affect the 

decision-maker's verdict. Then, we will formulate the decision-

making problem that the decision-maker faces. We must include 

a definition of: a decision-maker; decision options; factors lim-

iting the decision-making space, and the reasons shaping the as-

sessment of decision-making options. The first phases of a deci-

sion problem are mainly descriptive and are based on the coef-

ficients and weights of the input variables of the neural network.  

With the help of network inputs, you can determine the ele-

ments of a set of acceptable decision options, as well as indicate 

optimal options. Finally, you need to determine different subsets 

of the set of options: acceptable, satisfactory and optimal, and 

make a decision on this basis. The determination of different 

subsets of the set of options is based on the use of, among others, 

single- and multi-criteria optimisation methods. The Logistics 

Decision Support System – LDSS is to be a computerised sys-

tem that supports decision-making in the area of logistics at the 

appropriate decision-making level of the military logistics sys-

tem. 

3. Neural network selection and the learning pro-

cess 

For the purpose of predicting the actions to be carried out by the 

decision-maker, a model of energy consumption prediction 

based on neural networks was used. The MATLAB software 

was used for this purpose. It includes, among other things, the 

Neural Network Toolbox library, which enables the construction 

and use of neural networks for forecasting. For this purpose, you 

can use ready-made tools, or use the basic command line.  

To build a neural network, you need to follow these steps:  

 collect data, 

 create a network, 

 configure the network, 

 initialise scales, 

 test the network, 

 use the network for prediction. 

We assume that the artificial neural network will generate 

the GSU fuel level signal taking into account the above condi-

tions, with 260 lines of historical data set containing 21 input 

variables such as time, intensity of activities in the GSU operat-

ing area, including the number of fuel acceptance/dispensing op-

erations, availability of equipment, number of personnel in the 

GSU system, variable specifying procedural restrictions (regu-

lations, instructions), type of terrain, meteorological data (wind 

speed, temperature, humidity, variable that determines who is 

the recipient (size of the unit, e.g. brigade, regiment, battalion), 

time of fuel dispensation, execution of the movement of the 

GSU fuel resource, state of the GSU warehouse.  

The prediction assumes the determination of 10 consecutive 

values of fuel levels in the GSU for the decision-maker or other 
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data (intensity of activities, dispensing or suspension of fuel dis-

pensing, etc.) necessary to decide for the next 10 weeks of GSU 

action planning. 

An array of input and output data containing 21 input varia-

bles and n-waveforms of output parameters necessary to predict 

the operation of GSU, which in the MATLAB environment will 

be used for prediction using a multilayer one-way network (mul-

tilayer perceptron). 

The supervised learning method was used in the research, in 

which the network parameters are selected on the basis of a com-

parison of the values at the network output with the set values 

for the recorded, actual level of fuel dispensed in GSU. Training 

in this case consists of minimising the error function depending 

on the differences between the set values and the actual network 

output for training data. 

A variant of the network with one layer of hidden neurons 

for different numbers of neurons was studied. It was assumed 

that there would be 10, 20 and 50 neurons in the hidden layer. 

Four learning algorithms were adopted for the task, includ-

ing three second-order algorithms: 

 BFGS quasi-Newton (BFG), 

 Levenberg-Marquardt (LM), 

 Bayesian regularisation (BR), 

 resilient backpropagation algorithm (RP). 

Sigmoid neuronal activation functions in the latent layer 

were used.  

The program randomly divided the data into three sets: 

 70%  a training set, 

 15%  a set used to validate a network in terms of its ability 

to generalise and stop the learning process before the phe-

nomenon of overtraining occurs, 

 15%  a test set to perform an independent test of the net-

work's ability to generalise. 

The results were evaluated using: 

 regression coefficient (R2) measuring the correlation be-

tween the exit signal and the given target (the closer the 

value to 1, the better the result); 

 MSE determining the quality of processing for all sets used 

in the study; 

 RMSE mean squared error, indicating the accuracy of the 

forecast in a given model. 

The terms dispensing or adoption cover specific decision-

making processes leading to such "final" actions. 

We assume that an artificial neural network model based on 

the algorithm of a neural network of learning with a teacher 

(Fig. 1) is designed to indicate, based on historical data, whether 

the decision-maker should perform one of three types of actions: 

dispense fuel, suspend dispensing fuel, or accept fuel. At the in-

put of the neural network, to predict the decision-maker's ac-

tions, we need to collect specific data in IT systems, which are 

elements of the input vector of the model [1]. 

To train the neural network to predict fuel level changes at 

GSU, a group of environmental, operational and infrastructural 

variables were used. According to the assumptions of the LDSS 

system, it should be assumed that the decision-maker will intro-

duce indicated groups of variables into the program, which will 

be used to create a matrix of validation data in order to predict 

how the fuel level parameter in GSU will behave. An artificial 

intelligence algorithm will indicate a different distribution of 

GSU fuel levels based on historical data and the relationship be-

tween the layers of the network. The decision-maker, thanks to 

the illustration as in Fig. 4 or thanks to the indicators of differ-

ences between the levels assessed by the decision-maker and the 

one indicated by the network, will allow the decision-maker to 

react or take action on refuelling in a given week. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar analysis can be carried out for other GSU parame-

ters, such as the number of personnel (200−300 people), the in-

tensity of activities, which consequently translates into changes 

in the fuel level in GSU. There are dependencies between the 

variables, thanks to which we can determine dependent var- 

 

Fig. 4. Comparison of the fit plots of the simulated and measured results 

and the mean squared error for the study using a multilayer unidirectional 

network with 50 neurons using the BFG, BR, LM and RP algorithms. 
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iables, such as the time of fuel dispensing from the GSU, which 

depends on the intensity of activities (the number of fuel trading 

operations per week was 0−127), the number of available per-

sonnel (accepted in the study in the range of 200−300 people) 

and the amount of fuel dispensed (historical data). In this case, 

the decision-maker will receive information whether his calcu-

lations are correct. In addition, it will be possible to determine 

from historical data whether an increased intensity of activities 

should be expected in a given week beyond that assumed by the 

decision-maker. 

Figure 4 should be interpreted in such  a way  as  to  look  for  

differences between the indications of the GSU parameter from 

the prediction and the validation set. The regression error in this 

case will indicate whether these values differ so significantly 

that the network is trained to provide the right variants of action 

for the decision-maker. 

Below, the results of research using the BFG, BR, LM and 

RP algorithms for a multilayer neural network with one hidden 

layer and 50 neurons are presented in the form of graphs in  

Figs. 5−8. Similar data analyses were carried out for networks 

with 10 and 20 neurons, but in this configuration, the differences 

in results for individual algorithms are most representative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the results obtained, the BR algorithm obtained the best 

parameters mainly due to the specificity of its operation: 

1. Regularisation mechanism minimises overlearning: 

 BR modifies the error function to simultaneously mini-

mise the matching error and the complexity of the net-

work scales. 

 This way, the network does not learn training data "by 

heart", but generalises better to test and validation data. 

 effect: the highest R coefficient (0.999) and the lowest 

MSE in validation. 

2. Learning stability with a large number of neurons: 

a)           b)  

c)           d)  

Fig. 5. Regression error plots for individual versions of networks with BFG (a), BR (b), LM (c) and RP (d) learning algorithms with 50 neurons. 
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 In the configuration (50 neurons, 1 layer), the network 

has a very large number of weights → a high risk of 

overtraining with classical methods. 

 BR copes with this better than BFG, LM or RP, because 

it automatically adjusts the degree of regularisation 

based on the data. 

3. Data noise immunity: 

 Because there is a "penalty" component for too high 

weights in the target function, the BR-trained network 

does not over-adjust to single outliers. In practice, this 

translates into the highest number of zero-error hits in 

the test. 

4. Better fit in regression problems:  

 BR is particularly effective in continuous regression be-

cause it not only optimises the MSE error, but also im-

proves the input-output correlation. 

 The results show that the differences between LM, BFG 

and BR are the largest in the validation MSE, suggest-

ing that BR is better at predicting values for data that 

the network has not seen before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Evaluation of the quality of validation for a multilayer neural network with one hidden layer and 50 neurons,  

using the BFG, BR, LM and RP algorithms. 

 

Fig. 7. Comparison of the fit plots of the simulated and measured results and the mean squared error for the study using  

a multilayer unidirectional network with 50 neurons, using the BFG, BR, LM and RP algorithms. 
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4. Summary 

BR performed best for the network with 50 neurons, as its built-

in regularisation mechanism reduced overtraining and increased 

generalisation. This is especially important with large numbers 

of neurons and potentially complex inputs. 

The results obtained for different neural network structures 

and learning algorithms are summarised in Table 1. Based on 

the conducted research, Fig. 9 depicts formulated trend conclu-

sions from data for 10, 20 and 50 neurons in BFGS, BR, LM and 

RP algorithms: 

1. Accuracy of fit (R): 

 Highest R (1.0), 

 BR and LM with 10 neurons (perfect match), 

 LM maintains R = 1.0 also with 20 neurons, 

 BR with 50 neurons still R ≈ 1.0, 

 BFGS – stable around 0.98 with 10 and 20 neurons, 

a slight drop to 0.96 with 50 neurons, 

 RP – a marked decrease with the number of neurons: 

0.97 → 0.92 → 0.87. 

Conclusion: BR and LM are very accurate on small and 

medium-sized networks; with larger networks, BR main-

tains an advantage over LM and other algorithms. 

2. Mean squared error (RMSE and MSE): 

 BR – extremely low MSE in each case (in the order 

of 10⁻⁴ – 10⁻⁶), which suggests high stability and 

lack of overlearning, 

 LM – with 10 and 20 neurons, low RMSE (1.65 and 

0.36), but with 50 neurons, a significant increase in 

RMSE (2.1·10³) and MSE (1.3·10⁸), which may 

suggest a problem with fitting or overlearning, 

 BFGS – increasing RMSE and MSE with the num-

ber of neurons, 

 RP – high RMSE and MSE in any scenario, deteri-

orates with larger networks. 

Conclusion: BR has a definite qualitative advantage, LM is 

good for smaller networks, and BFGS and RP lose accu-

racy as neurons grow. 

3. Influence of the number of neurons:  

 BR – virtually independent of the number of neu-

rons in terms of fit quality (R ≈ 1.0, low MSE), 

 LM – great up to 20 neurons, but at 50 neurons, 

there is a degradation in quality, 

 BFGS – moderately stable up to 20 neurons, later 

larger errors, 

 RP – quality decreases significantly as neurons 

grow, which may indicate a problem with weight 

propagation in large networks. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Regression error histograms for consecutive neural networks with 50 neurons using the BFG, BR, LM and RP algorithms. 

Table 1. Results for three networks and four learning algorithms (the best fit data for the BR algorithm is marked in green). 

Algorithm BFGS quasi_Newton Bayesian regularisation Levenberg-Marquardt Resilient backpropagation 

Indicator RMSE MSE R RMSE MSE R RMSE MSE R RMSE MSE R 

10 neurons 2,14‧103 6,14‧106 0,98 0,21 1,13‧104 1 1,65 7,03 1 2,84‧103 1,9‧107 0,97 

20 neurons 2,4‧103 1,18‧107 0,98 27,5 2,6‧106 0,99 0,36 0,38 1 5,58‧103 8,12‧107 0,92 

50 neurons 5,11‧103 6,76‧107 0,96 11,04 1,3‧106 1 2,1‧103 1,3‧108 0,99 1,02‧104 1,6‧108 0,87 
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The main consumer of fuel in the adopted model of the sup-

ply region by GSU are vehicles and devices based on the opera- 

tion of internal combustion engines. An analysis of the available 

scientific literature [16−18] in recent years indicates a signifi-

cant influence of air temperature and humidity on the fuel con-

sumption of internal combustion engines. This relationship was 

the reason for including these parameters in the database to be 

studied. The research analyses the collected data in terms of the 

impact of temperature and humidity on fuel consumption in 

GSU. In order to determine the relationship between fuel con-

sumption in a logistics unit and weather conditions, a correlation 

and regression analysis was performed, using variables: ambient 

temperature, relative humidity and intensity of activities meas-

ured as the number of fuel extraction operations (Fig. 10). The 

direct relationship was assessed using the Pearson correlation 

coefficient and the linear regression model. 

The results clearly indicate that fuel consumption strongly 

depends on the intensity of operations of military units in the 

area of responsibility of GSU, which is confirmed by a positive 

correlation (y ≈ 0.51). This means that an increase in the number 

of fuel withdrawal operations is significantly linked to an in-

crease in fuel consumption. 

On the other hand, the correlations between fuel consump-

tion and temperature (r ≈ −0.05) and humidity (r ≈ 0.03) are 

close to zero, indicating that there is no direct linear relationship 

between the variables in question. Adding temperature and hu-

midity to the regression model did not increase its explanatory 

power (R² ≈ 0.26), and the coefficients assigned to them turned 

out to be statistically insignificant (p > 0.5). This means that the 

impact of meteorological parameters on fuel consumption is not 

due to direct impact, but may be a secondary effect depending 

on planning and seasonality of activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Change in R and RMSE for the studied algorithms  

depending on the number of neurons. 

 

Fig. 10. Influence of air temperature and humidity on the fuel consumption in GSU 
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Fuel consumption in the tested model unit does not directly 

depend on air temperature or humidity, but is strongly correlated 

with the intensity of logistics activities. Weather conditions may 

indirectly affect consumption by modifying training activities, 

but they are not an independent factor determining fuel con-

sumption. Even the use of the non-linear random forest model 

did not allow for a satisfactory quality forecast of fuel consump-

tion based on meteorological data. The most important predictor 

remains the intensity of fuel withdrawal operations, which indi-

cates that the demand for fuel is determined mainly by training 

and operational activities. Weather factors, on the other hand, 

can play an indirect role – they affect the planning of exercises 

and military operations, but they are not an independent deter-

minant of the level of consumption. 

5. Conclusions 

In order to create software supporting the decision of the GSU 

decision-maker in the future, neural networks based on the most 

commonly used algorithms were trained. The Levenberg-Mar-

quardt and Bayesian regularisation algorithms within the frame-

work of approximation tasks are considered to be the best in ob-

taining MSE from all the algorithms used [16]. It should be 

noted that the Levenberg-Marquardt algorithm, which in many 

studies shows its advantage over other algorithms, turned out to 

be less useful in this case. LM is considered the fastest, not too 

complex, and is used almost exclusively for training a medium-

sized unidirectional network with a single neuron at the output 

layer. Unfortunately, the amount of data collected for the pur-

pose of training the network to predict activities in GSU was 

small, mainly because so far the ZWSI RON system (Integrated 

Multi-Level IT System of the Ministry of National Defense) has 

not collected data such as the intensity of activities in the area of 

the GSU's operation, the type of terrain, the availability of equip-

ment, the variable that determines the limitations related to pro-

cedures (regulations), meteorological data (wind speed, temper-

ature, humidity) probability of moving the GSU fuel resource. 

The scale of the amount of data that must be implemented into 

the military logistics information system is significant; however, 

the presented article is intended to indicate the need to take ac-

tions that will lead to the expansion of the number of collected 

parameters of the military logistics system. In this case, proba-

bly too small a dataset to train and a decidedly small network 

size did not allow for fully showing the advantages of this algo-

rithm, including its speed. 

The use of the Bayesian regularisation algorithm turned out 

to be the most effective method in terms of prediction ability, 

much better than the Levenberg-Marquardt algorithm, which is 

slightly inferior to this algorithm. Such a favourable result for 

R&D was influenced by, among others, greater resistance to 

learning, less cross-validation [17], and better flexibility and 

quality of generalisation [18]. 

In the case of BFGS algorithms, the quasi-Newton algorithm 

is considered to be a more complex algorithm, but its properties 

are perfect for small networks, due to the complexity of the cal-

culations it performs. The results confirmed this by placing the 

algorithm in third place in the study. 

The resilient RP backpropagation algorithm, despite the ad-

vantage of eliminating errors in the training set, did not guaran-

tee good results in the obtained prediction. 

It turned out that the quality of learning using this algorithm, 

given the relatively small size of the network used for the re-

search, gives worse results than other methods. 

To sum up, it should be stated that a multilayer unidirectional 

perceptron with a sigmoid function of neuronal activation in the 

hidden layer and with the use of the Bayesian regularisation 

learning algorithm can be successfully used to predict fuel man-

agement in GSU. 

Proper construction of a database for GSU and entering ge-

olocation and meteorological data into the ZWSI RON system 

will significantly improve the ability of the neural network to 

generalise, and thus fit into the decision-making model in GSU 

by creating tools for the development of a logistic decision sup-

port system – LDSS. 

Regardless of the above, during the study of the problem of 

optimisation of prediction using machine learning algorithms, it 

can be noted that the next step in optimising this type of soft-

ware, mainly in terms of the quality and speed of prediction, are 

reinforcement learning (RL) algorithms. Based on research con-

ducted on RL algorithms in, e.g. the game "Tetris" [19,20], the 

key factor in reinforcement learning is the time delay between 

the action and the reward. Based on the literature on the use of 

RL algorithms in computer games, it should be stated that the 

worst performance is achieved by networks trained to predict 

actions several dozen steps away from the next reward. It can be 

said that the longer the interval between the action and the re-

ward, the game requires a much more deliberate strategy, and 

the shorter the pause, the more the game is reactive to the chang-

ing situation of the operating environment. RL-based learning 

occurs much faster [21] in reflex-based games than in games that 

require a lot of strategy, which makes sense and is in line with 

the author's research. The results show that using AI to combine 

an agent neural network trained on historical GSU data and a 

strategy-based RL algorithm is a very beneficial approach in 

terms of improving decision-making efficiency. Reinforcement 

learning differs from supervised learning in that it does not re-

quire the presentation of labelled input/output pairs and does not 

require direct correction of suboptimal actions. Instead, we fo-

cus on finding a balance between exploring unknown solutions 

and the decision-maker's experience to maximise the  

long-term reward, whose feedback may be incomplete or de-

layed [22]. 

Taking into account the above, the use of a neural network 

to predict activities in a business branch turned out to be very 

useful and allows decision-makers to make decisions for the 

next weeks of GSU's operation with the indication of variables 

to be predicted. On the other hand, supplementing the analysis 

with RL algorithms in the future will allow us to further optimise 

this process and significantly speed it up. The use of the pro-

posed machine learning methods is aimed at developing a logis-

tics decision support system – LDSS in the future, which will be 

designed to support decision-making processes in the area of lo-

gistics at the appropriate decision-making level of the Armed 

Forces logistics system. 
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The method of predicting fuel consumption of the logistics 

system in GSU described in the article can be successfully used 

to determine other thermodynamic parameters, such as the pres-

sure at the inlet to the turbine of a jet engine, the distribution of 

air flow on the steam turbine blade depending on the parameters 

of the external environment, as well as to predict fuel consump-

tion in power plants or other energy generation systems. Thanks 

to the use of backpropagation, and comparison of the obtained 

results with the desired values and continuous calculation of the 

error, the network leads to weight correction to minimise error 

in subsequent steps (iterations). These processes take place in 

the so-called epochs, and each epoch is a single passage through 

the entire set of learning data. The method described in the arti-

cle can be used by readers for their own research and lead to 

many interesting solutions to research problems in the field of 

thermodynamics.  
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