
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 58, No. 1, 2010

DOI: 10.2478/v10175-010-0008-4

Extending scientific computing system

with structural quantum programming capabilities

P. GAWRON∗, J. KLAMKA, J.A. MISZCZAK, and R. WINIARCZYK

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Bałtycka St., 44-100 Gliwice, Poland

Abstract. We present the basic high-level structures used for developing quantum programming languages. The presented structures are

commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming

language to describe them.

We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in

the implementation are available as a package quantum-octave providing library of functions, which facilitates the simulation of quantum

computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As

such it connects features unique for higl-level quantum programming languages, with the full palette of efficient computational routines

commonly available in modern scientific computing systems.

To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show

how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible

thanks to the ability to operate on density matrices implemented in quantum-octave.

Key words: quantum information, quantum programming, models of quantum computation.

1. Introduction

Quantum information theory main to harness the quantum na-

ture of information carriers in order to develop more efficient

algorithms and more secure communication protocols [1–4].

Unfortunately counterintuitive laws of quantum mechanics

make the development of new quantum information process-

ing procedures highly non-trivial task. This can be seen as

one of the reasons why only few truly quantum algorithms

were proposed [5, 6].

As the laws of quantum mechanics are in many cases very

different from those we know from the classical world. That

is why one needs to seek for the novel methods for describing

information processing which involves quantum elements. To

this day several formal models were proposed for the descrip-

tion of quantum computation process [7–12].

The most popular of them is the quantum circuit mod-

el [7], which is tightly connected to the physical operations

implemented in laboratory. It allows to operate with the ba-

sic ingredients of quantum information processing – namely

qubits, unitary evolution operators and measurements. How-

ever, it does not provide too much flexibility concerning op-

erations on more sophisticated elements required to develop

scalable algorithms and protocols eg. quantum registers or

classical controlling operations.

Another model widely used in the study of theoretical as-

pects of quantum information processing is the quantum Tur-

ing machine [7]. This model is mainly used in the analysis of

quantum complexity problems [13]. Its main advantage it that

it provides method of comparing efficiency of classical and

quantum algorithms. Unfortunately quantum Turing machine,

in analogy to its classical counterpart, operates on very basic

data and thus it cannot be easily used to construct quantum

algorithms.

Both quantum circuit model and quantum Turing machine

share some serious drawback concerning lack of support for

high-level programming and very limited flexibility. These

problems were addressed to be the recent research in the area

of quantum programming languages [14–16].

Quantum programming languages are based on the Quan-

tum Random Access Machine (QRAM) model. QRAM is

equivalent, with respect to its computational power, to the

quantum circuit model or quantum Turing machine. However,

it has strictly distinguished two parts: quantum and classical.

The quantum part is responsible for performing parts of a

algorithm which cannot be computed efficient by a classical

machine. The classical part, which is used to control quantum

computation. This model is used as a basis for most quantum

programming languages [14].

Among high-level programming languages designed for

quantum computers we can distinguish imperative and func-

tional languages. The later are seen by many research as the

means of providing robust and scalable methods for devel-

oping quantum algorithms [17]. However, we focus on the

imperative paradigm as it provides more efficient way of im-

plementing high-level quantum programming concepts.

This paper is organized as follows. In Sec. 2 we briefly de-

scribe the QRAM model of quantum computer and introduce

the quantum pseudocode, which was designed to describe this

model. In Sec. 3 we introduce high-level programming struc-

tures used in quantum programming languages. These struc-

∗e-mail: gawron@iitis.pl

77

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

ture are based on the QRAM model of quantum computer.

In Sec. 4 the implementation of presented concepts is de-

scribed and quantum-octave package is presented. In Sec. 5

implementation of quantum algorithms using quantum-octa-

ve package is presented. Also the analysis of quantum errors

is provided in the case of quantum search algorithm, Finally

Sec. 6 summarizes the presented work and provides reader

with some concluding remarks.

2. QRAM model of quantum computation

Quantum random access machine is interesting for us since it

provides convenient model for developing quantum program-

ming languages. However, these languages and basic concepts

used to develop them are our main area of interest. For this

reason here we provide only the very basic introduction to

the QRAM model. Detailed description of this model is giv-

en in [18] and [19] together with the description of hybrid

architecture used in quantum programming.

2.1. Classical RAM model. As in many situations in quan-

tum information science, the QRAM models is based on

the concepts developed to describe classical computational

process – in this case on the Random Access Machine (RAM)

model. The classical model of random access machine (RAM)

is the example of more general register machines [20–22].

The Random Access Machine consists of an unbounded

sequence of memory registers and finite number of arithmetic

registers. Each register may hold an arbitrary integer number.

The programme for the RAM is a finite sequence of instruc-

tions Π = (π1, . . . , πn). At each step of execution register i
holds an integer ri and the machine executes instruction πκ,

where κ is the value of the programme counter. Arithmetic

operations are allowed to compute the address of a memory

register.

Despite the difference in the construction between Turing

machine and RAM, it can be easily shown that Turing ma-

chine can simulate any RAM machine with polynomial slow-

down only [21]. The main advantage of the RAM models is

its resemblance with the real-world computers.

2.2. Quantum RAM model and quantum pseudocode.

Quantum Random Access Machine (QRAM) model is build

as an extension of the classical RAM model. Its main goal

is to provide the ability to exploit quantum resources. More-

over, it can be used to perform any kind of classical compu-

tation. The QRAM allows us to control operations performed

on quantum registers and provides the set of instructions for

defining them. Schematic presentation of such architecture is

provided in Fig. 1.

The quantum part of QRAM model is used to generate

probability distribution. This is achieved by performing mea-

surement on quantum registers. The obtained probability dis-

tribution has to be analysed using classical computer.

Quantum algorithms are, in most of the cases, described

using the mixture of quantum gates, mathematical formulas

and classical algorithms. The first attempt to provide a uni-

form method of describing quantum algorithms was made

in [23], where the author introduces a high-level notation

based on the notation known from computer science text-

books [24, 25].

Fig. 1. The model of classically controlled quantum machine [19].

Classical computer is responsible for performing unitary operations

on quantum memory. The results of quantum computation are re-

ceived in the form of measurement results

In [18] Knill introduced the first formalized language for

description of quantum algorithms. Moreover, it was tightly

connected with the model of Quantum Random Access Ma-

chine.

Quantum pseudocode proposed by Knill [18] is based on

conventions for classical pseudocode proposed in [24, Chapter

1]. Classical pseudocode was designed to be readable by pro-

fessional programmers, as well as people who had done a little

programming. Quantum pseudocode introduces operations on

quantum registers. It also allows to distinguish between clas-

sical and quantum registers. In quantum pseudocode quantum

registers are distinguished with an underline. They can be in-

troduced by applying quantum operations to classical registers

or by calling a subroutine which returns a quantum state. In

order to convert a quantum register into a classical register

measurement operation has to be performed.

The example of quantum pseudocode is presented in List-

ing 1. It shows the main advantage of QRAM model over

quantum circuits model – the ability to incorporate classical

control into the description of quantum algorithm.

Fig. 2. Quantum circuit representing quantum Fourier transform for

three qubits. Elementary gates used in this circuit are described in

Ref. 1

Procedure: FOURIER (a, d)

Input: A quantum register a with d qubits. Qubits are num-

bered form 0 to d− 1.

Output: The amplitudes of a are Fourier transformed over

Z2d .

78 Bull. Pol. Ac.: Tech. 58(1) 2010

Extending scientific computing system with structural quantum programming capabilities

Listing 1: Quantum pseudoceode for quantum Fourier trans-

form on d qubits. Quantum circuit for this operation with

d = 3 is presented in Fig. 2.

Operation H(ai) executes a quantum Hadamard gate on a

quantum register ai and SWAP(ai, aj) performs SWAP gate

between ai and aj . OperationRφ(ai) executes a quantum gate

R(φ) is defined as

R(φ) =

(

1 0

0 eiφ

)

, (1)

on the quantum register ai. Using conditional construction

if aj then Rφ(ai)

it is easy to define controlled phase shift gate. Similar con-

struction exists in QCL quantum programming language [19].

In Sec. 4 we describe implementation of this construction in

quantum-octave.

The measurement of a quantum register can be indicated

using an assignment

aj ← aj .

2.3. Requirements for quantum programming language.

Taking into account QRAM model we can formulate basic

requirements which have to be fulfilled by any quantum pro-

gramming language [9, 15, 26].

• Completeness: Language must allow to express any quan-

tum circuit and thus enable the programmer to code every

valid quantum programme written as a quantum circuit.

• Extensibility: Language must include, as its subset, the

language implementing some high level classical comput-

ing paradigm. This is important since some parts of quan-

tum algorithms (for example Shor’s algorithm) require non-

trivial classical computation.

• Separability: Quantum and classical parts of the language

should be separated. This allows to execute any classical

computation on purely classical machine without using any

quantum resources.

• Expressivity: Language has to provide high level elements

for facilitating the quantum algorithms coding.

• Independence: The language must be independent from

any particular physical implementation of a quantum ma-

chine. It should be possible to compile a given programme

for different architectures without introducing any changes

in its source code.

3. High-level programming structures

3.1. Quantum memory. Quantum memory is a set of qubits

indexed by integer numbers. Quantum register is a set of

indices pointing to distinct qubits. We will denote those reg-

isters as r1, r2, . . . or in case of single qubits as q1, q2,
The state of quantum memory is a quantum state of size

equal to the number of qubits. In case of quantum-octave

we operate on density matrices (although some operations

on state vectors are allowed). We will denote the state of the

quantum memory by ρ.

Following operations on quantum memory are allowed:

• Allocation of new register of size n:

ρt+1 = ρt ⊗ |0 . . . 0︸ ︷︷ ︸

n

〉〈0 . . . 0
︸ ︷︷ ︸

n

|, (2)

where ⊗ denotes tensor product, |·〉 the column vector and

〈·| the dual vector.

• Deallocation of a register indexed by register r:

ρt+1 = Trr (ρt) , (3)

where Trr (ρ) denotes partial trace of ρ with regard to the

subsystem indexed by r.
• Unitary evolution U of the quantum memory:

ρt+1 = UρtU
†. (4)

• Application of quantum channel Ki on the quantum mem-

ory:

ρt+1 =
∑

i

KiρtKi
†. (5)

• Measurement in computational basis:

ρt+1 =
∑

i

|i〉〈i|ρt|i〉〈i|, (6)

P (i) = Tr (|i〉〈i|ρt) , (7)

where i enumerates the states of computational basis.

For a solid introduction to quantum computation the read-

er may refer to book by Nielsen and Chuang [1], where all

the needed notions are explained in detail.

In quantum computation, construction of the unitary gate

is the essential part of quantum algorithm (program) design

process. It is a difficult task to write a quantum program using

only elementary set of gates ie. CNot and one qubit rotations.

Therefore it is desirable to introduce some techniques that fa-

cilitate the process of composition of complex quantum gates.

Some of those techniques are presented below. We will refer to

implementation of those techniques in quantum-octave which

is described in details in Sec. 4.

3.2. Composed and controlled gates Composed gate. Giv-

en one-qubit unitary gate G, quantum register r, and size of

the gate s we can construct composed gate Us
r according to

the formula:

Us
r =

s⊗

i=1

Xi, where Xi =

{

G if i ∈ r,
I if i /∈ r

. (8)

Bull. Pol. Ac.: Tech. 58(1) 2010 79

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

Controlled gate with multiple controls. Given one-qubit uni-

tary gate G, quantum register rc we call control, and quantum

register rt we call target, and size of the gate s we can con-

struct controlled gate Us
rt|rc

according to the formula:

Us
rt|rc

=
⊗s

i=1Xi +
⊗s

i=1 Yi, where

Xi =

{

|0〉〈0| if i ∈ rc,
I if i /∈ rc,

Yi =

G if i ∈ rt,
|1〉〈1| if i ∈ rc,

I if i /∈ rc ∪ rt

. (9)

We assume that rt∩rc = ∅. Sometimes we will omit the size

parameter s.

3.3. Conditionals. One of high-level technique used in quan-

tum programming are quantum conditions [27]. The main idea

behind quantum conditions is construction of quantum gates

controlled by predicates on control registers.

Condition on quantum variable. The if-then-else structure

controlled by a quantum variable and acting on a quantum

variable was introduced in QCL [19, 28].

In Fig. 3 the realisation of this concept is presented. If

qubit q0 is in the state |1〉 the G1 gate is applied to qubit q1,

otherwise the gate G2 is applied.

We may write this circuit in the following way:

IFq0
(G1q1)ELSE(G2q1) = Notq0

G2q1|q0
Notq0

G1q1|q0
.
(10)

Fig. 3. Example of simple quantum if-then-else structure

For a given control register rc, target register rt and two

quantum gates G1 and G2, we may define define quantum

condition in the more general way,

IFrc
(G1rt)ELSE(G2rt) =

=
∏

i∈P(rt)\{∅}

(
NotiG2rt|rc

Noti
)
G1rt|rc

, (11)

where P(·) denotes the power set.

Condition on mixture of classical and quantum variables.

One may consider relation between state of the quantum reg-

ister and value of the classical variable. In our notation by

[[x]]r we will denote numerical value of ordered in ascending

order elements of the register x in regard to register r, for

example the value of [[{4, 9}]]{2,4,7,9} is 10. By [r] we will

denote the value of the register in order to use it as argument

for arithmetic comparison. For example [r] < 4 means: “all

those values of r that are less than four.”

Code and circuit in Fig. 4 show the idea and implemen-

tation of conditional operation controlled by expression ‘less

than’ operating on classical constant and quantum register.

Fig. 4. Example of quantum conditional operation with inequality

In the general case, gate implementing any relation

(marked as ⊛) can be constructed in the following way:

IF[rc]⊛N(G1rt)ELSE(G2rt) =

=
∏

i∈F

(
NotiG2rt|rc

Noti
) ∏

i∈T

(
NotiG1rt|rc

Noti
)
,

(12)

where sets T and F are defined as follows:

T = P(rc) \ {x|x ∈ P(rc) ∧ [[x]]rc
⊛N}, (13)

F = P(rc) \ {x|x ∈ P(rc) ∧ ¬([[x]]rc
⊛N)}. (14)

Note that T ∪ F = P(rc).

In quantum-octave standard arithmetic relations =, 6=, <,

>, ≤, ≥ are implemented.

3.4. Expressions. We may consider more complicated ex-

pression on quantum registers. In example logical operators

and quantum pointers. Logical operators allow to apply an

controlled operation to the target register only if a given logi-

cal expression on control registers is true. A quantum pointer

allows to apply controlled gate on the target register selected

by the state of the control register.

Logical expressions on quantum variables. The gate that

implements logical expression (denoted here by ⋄) is con-

structed according to the following equation:

IF[rc1
]⊛1N1⋄[rc2

]⊛2N2
(G1rt)ELSE(G2rt) =

=
∏

i∈F

(
NotiG2rt|rc

Noti
)∏

i∈T

(
NotiG1rt|rc

Noti
)
,

(15)

where sets T and F are defined as follows:

80 Bull. Pol. Ac.: Tech. 58(1) 2010

Extending scientific computing system with structural quantum programming capabilities

T = P(rc) \ {x1 ∪ x2|x1 ⊆ rc1
, x2 ⊆ rc2

∧

∧
(
[[x1]]rc1

⊛1 N1 ⋄ [[x2]]rc2
⊛2 N2

)
},

(16)

F = P(rc) \ {x1 ∪ x2|x1 ⊆ rc1
, x2 ⊆ rc2

∧

∧¬
(
[[x1]]rc1

⊛1 N1 ⋄ [[x2]]rc2
⊛2 N2

)
}

(17)

and rc = rc1
∪ rc2

.

An example of quantum conditional gate controlled by

logical expression defined on quantum registers is presented

in Figs. 5 and 6.

Fig. 5. Example of quantum conditional operation with “and” oper-

ator

Fig. 6. Example of quantum conditional operation with “or” operator

Quantum pointers. In analogy to concept of pointers and

indirect addressing in classical programming, one may intro-

duce quantum pointers. The idea is to use control register to

control on which of the target registers an operation should

be applied.

Assume one has the n-bit control register and set of 2n-bit

target registers. The control register stores the address of tar-

get register to which given unitary operation shall be applied.

In order to visualise the use of a quantum pointer an example

is shown in Fig. 7.

Fig. 7. Example of simple quantum conditional operation controlled

by quantum pointer

Formally, quantum pointer controlled by register rc with

target rt is constructed in the following way:

POINTrt
(G[rc]) =

∏

i∈P(rc)

(
Notrc\iG[[i]]rc

|rc
Notrc\i

)
.

(18)

4. Package quantum-octave

The package quantum-octave [29–31] provides a quantum

programming, simulation and analysis language implement-

ed as a library of functions for GNU Octave [32].

GNU Octave is computer algebra system (CAS) and high

level programming language designed primarily to perform

numerical calculations. The basic data structure in Octave is

the matrix (integer, real or complex), therefore it is natural

choice for the basis for implementation of quantum program-

ming language.

GNU Octave supports sparse matrices and distributed

computing in shared and distributed memory models. GNU

Octave is very flexible and easily extendible tool. It is also

free software and it can be used in a wide range of operating

systems.

Bull. Pol. Ac.: Tech. 58(1) 2010 81

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

4.1. Design choices. The main goal of the design of quan-

tum-octave is to provide a flexible and useful tool for simula-

tion of quantum information processing. Therefore it is based

on GNU Octave a high-level scientific programming language.

This allows for a seamless integration of very efficient ma-

trix operations and numerical procedures with the library of

specialized functions provided by quantum-octave. As GNU

Octave is to large extent compatible with Matlab, provided

functions can be also used to simulate and analyse quantum

algorithms in Matlab.

One of the unique features of quantum-octave is its ability

to operate on both pure and mixed quantum states. It allows to

perform unitary as well as non-unitary evolution represented

by quantum channels.

Quantum gates can be constructed by the user in various

ways: by calling provided subroutines, by building their own

subroutines, by using quantum control structures. Additional-

ly the user can build and use quantum channels or use those

already provided. Most of the quantum-octave functions oper-

ate on quantum registers and therefore the quantum operations

build with their use are re-allocable.

A good illustration of those features is presented in the fol-

lowing listing 2 that contains the implementation of Quantum

Fourier transform in quantum-octave. It can be compared to

pseudo code version of the same procedure listed in Listing 1.

Listing 2: Quantum Fourier transform in quantum-octave

Package quantum-octave can operate on sparse and full

matrices depending of users choice. Sparse matrices need

much less memory to store but operations on them may be

slower. Full matrices tend to consume huge memory space,

but operations on them are generally faster. In case of full

matrices it should be possible to operate on states of size up

to ten qubits on a contemporary workstation. Sparse matri-

ces should allow to simulate the quantum systems of up to

20 qubits.

Although quantum-octave is not, strictly speaking, a pro-

gramming language ready to program real quantum devices,

with some effort it can be transformed in such a way that it

would be able to compile high level programs to some sort

of quantum assembler. One should note that broad range of

functions allowing the analysis of states is implemented in

the package. Those function are described in the following

section.

4.2. Description. quantum-octave is designed to allow the

user to operate on different levels of abstraction. User can

prepare complex gates and quantum channels from basic prim-

itives such as single qubit rotations, controlled gates, single

qubit channels. Most of the functions that form this library

operate on quantum registers, which makes the preparation

of quantum gates and channels very “natural”. The library is

implemented in such a way that depending of user’s choice it

may operate on full or sparse matrices.

quantum-octave can work in two modes: as a library

or as programming language/simulator. Library mode is de-

fault. To move to language/simulator mode one has call

quantum octave init() function. In case of the second

mode quantum-octave allocates and manages an internal quan-

tum state and maintains the quantum registers. Such functions

as evolve(), applychannel(), measurecompbasis() op-

erate directly on the internal state. Listings of Deustch’s 3 and

Grover’s 4 algorithms show use of language/simulation mode.

Convention. Following conventions are used in quantum-

octave.

Quantum register is horizontal integer vector containing in-

dices of qubits starting from one.

Ket is vertical complex vector.

Bra is horizontal complex vector.

Density matrix is complex square matrix always of dimen-

sion n-th power of two by n-th power of two.

Binary string is 0,1-horizontal vector, that encodes a binary

number. Order of bits is from MSB to LSB.

Size of the gate or channel is always given in terms of num-

ber of qubits it acts on. If size is written in square brack-

ets it means that it can be omitted if the gate or chan-

nel acts on the whole system and quantum-octave was ini-

tialised.

Quantum gates.

Package quantum-octave supplies set of elementary gates

known in quantum computation.

– sx, sy, sz – return one-qubit Pauli operators sx – σx, sy

– σy , sz – σz .

– id(n) – returns identity matrix: In.

– roty(a), rotz(a), rotx(a) – return rotation matrix by

angle a around appropriate axis.

– qft(n) – returns quantum Fourier transform on n qubits.

– swap(size, qubits) – returns swap gate of a given size

that swaps qubits given as two-element vector.

– qubitpermutation(permutation) – returns unitary

gate that performs given permutation.

– h – returns one-qubit Hadamard gate.

– phase(p0,p1) – returns one-qubit phase gate, with p0, p1
phase parameters.

Basic functions. Following functions are essential to prepare

a quantum state and to implement a quantum algorithm, pro-

tocol or game.

– ket(binvec) – returns ket for given binary string.

– ketn(int,size) – returns a ket of size 2size for given

integer number.

82 Bull. Pol. Ac.: Tech. 58(1) 2010

Extending scientific computing system with structural quantum programming capabilities

– state(pure state) – returns density matrix for a given

ket.

– mixstates(a1,mixed state1,[a2,mixed state2,...])

– returns convex combination of density matrices with co-

efficients a1, a2,

– productgate(gate,targetreg[,size]) – returns

a controlled gate of a given size that applies given gate

on target register. See Eq. 8.

– controlledgate(gate,controlreg,targetreg

[,size]) – returns a controlled gate of given size that

applies gate on specified target register and is con-

trolled by control register. See Eq. 9.

Quantum conditional operations. The functions listed below

implement quantum conditional operations, quantum expres-

sions and pointers. They are useful to simplify the implemen-

tation.

– qif(expression,ifpart,elsepart,size) – returns

quantum gate of given size, controlled by expression

that applies ifpart if expression is true and elsepart if

expression is false. ifpart and elsepart are cellarrays

in the form: {gate, target register}. See Eq. (11).

– qreq(register,integer) – returns expression:

[register] equals integer. See Eq. (12).

– qrne(register,integer) – returns expression:

[register] not equal integer.

– qrge(register,integer) – returns expression:

[register] is greater or equal to integer.

– qrgt(register,integer) – returns expression:

[register] is greater than integer.

– qrle(register,integer) – returns expression:

[register] is lesser or equal to integer.

– qrlt(register,integer) – returns expression:

[register] is lesser than integer.

– qrin(register,set) – returns expression: [register]
is in set.

– qror(expr1,expr2) – returns logical or on expressions

expr1 and expr2. See Eq. (15).

– qrand(expr1,expr2) – returns logical and on expres-

sions expr1 and expr2.

– qpointer(gate,contrregister,targteregister

[,size]) – returns quantum gate of given size, con-

trolled by controll register that applies gate on

target register. See Eq. (18).

Evolution, channels and measurement. The following group

of functions allows to control the evolution of quantum states,

and introduces the application of channels and measurement.

– evolve(evolution[,state]) – applies unitary evolu-

tion to the state, returns the result of the evolution. See

Eq. (4).

– channel(name,p) – returns Kraus operators act-

ing on one qubit, parametrised by p allowed na-

mes are: "depolarizing", "amplitudedamping",

"phasedamping", "bitflip", "phaseflip" and

"bitphaseflip".

– localchannel(kraus, targetreg[, chsize]) – re-

turns a channel being the extension of defined by kraus

operators channel, acting on target register.

– applychannel(elements[,state]) – applies on the

state non unitary evolution defined by set of Kraus oper-

ators (elements), returns the result of the evolution. See

Eq. (5).

– ptrace(state, targetreg) – returns reduced density

matrix for the state with target register traced out.

See Eq. (3).

– circuit(gate[, gate]) – returns circuit composed of

the sequence of gates.

– measurecompbasis([state]) – returns the probability

distribution of the σz measurement on the given state.

– isunitary(gate) – returns true if the gate is unitary,

otherwise returns false.

– ischannel(operators) – returns true if the ope-

rators form valid quantum channel, otherwise returns

false.

– collapse(distribution) – chooses and returns a basis

state at random according to distribution.

Computation and control. Following functions allows to

control the quantum heap and configure the behaviour of the

library.

– quantum octave init() – initialises the simulated sys-

tem, creates quantum state with zero qubits allocated and

empty list of registers.

– set quantum octave sparse([true | false]) – swit-

ches on or off use of sparse matrices by all quantum-octave

functions.

– newregister(size)– creates new register of given size,

allocates qubits on quantum heap, returns register id.

– clearregister(regid) – removes regid register from

quantum heap. Traces out appropriate qubits from the in-

ternal state.

– qureg(regid) – returns quantum register to which regid

points.

– getstate() – returns the internal quantum state.

Well known states. Some of the states commonly used in

quantum algorithms are implemented in the library as sepa-

rate functions.

– ghz(n) – returns Greenberger-Horne-Zeilinger state for n

qubits:
1√
2
(|0〉⊗n + |1〉)⊗n.

– phip – returns Bell |Φ+〉 state:
1√
2
(|00〉+ |11〉).

– phim – returns Bell |Φ−〉 state:
1√
2
(|00〉 − |11〉).

– psip – returns Bell |Ψ+〉 state:
1√
2
(|01〉+ |10〉).

– psim – returns Bell |Ψ−〉 state:
1√
2
(|01〉 − |10〉).

– maximallymixed(n) – return density matrix maximally

mixed state:
1

n
In.

Bull. Pol. Ac.: Tech. 58(1) 2010 83

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

– wernersinglet(a) – returns 2-qubit Werner state:

a(|00〉 − |11〉)(〈00| − 〈11|) + (1− a) I

4
.

Analysis. Package quantum-octave provides standard func-

tions for analysis of quantum states, widely used in quantum

information literature. Among them the most important are:

– negativity(state, qubits) – computes negativity of

the state in respect to qubits.

– entropy(state) – computes Von Neuman entropy of the

state.

– concurrence(state) – computes concurrence of the

state.

– fidelity(rho, sigma) – computes fidelity between

density matrices rho and sigma.

– fidelitypuremixed(psi, rho) – computes fidelity be-

tween ket psi and density matrix sigma.

– tracenorm(state) – computes trace norm of the state.

– partialtranspose(state, targetreg) – returns ma-

trix being partial transposition of state matrix in regard

to target register.

The next section presents the applications of quantum-

octave and various programming techniques for solutions of

quantum programming problems.

5. Examples and applications

In what follows the applications of quantum-octave and var-

ious high-level programming techniques are discussed. It is

shown how quantum processes, such as algorithms may be

implemented, simulated and analysed with this tool.

5.1. Deutsch’s problem. One of the simplest quantum algo-

rithms is Deutsch’s algorithm. Although it may seem trivial,

this algorithm shows two very important features of quan-

tum computation. First, by taking advantage of superposition

one can compute any binary function for all its arguments

in one step and second, that it is only possible to retrieve

an information about property of a function and not on its

values.

Let’s assume that we have a black box that is usually called

the oracle. This box computes a function f : {0, 1} → {0, 1}.
We do not know if that function is constant f(0) = f(1) or

injective f(0) = f(1). In classical case we have to ask the

oracle twice to check which kind the function f is. But in

quantum case it is possible to solve this problem asking the

oracle only once.

The algorithm goes as follows:

1. Prepare the state: |Ψ〉 = |0〉 ⊗ |1〉,.
2. Apply the Hadamard H⊗2 gate on the state |Ψ〉, you will

get

|Ψ1〉 =
|0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2
. (19)

3. Apply the gate Uf : |x〉 ⊗ |y〉 → |x〉 ⊗ |f(x)⊕ y〉 on the

state |Ψ1〉; you will get:

|Ψ2〉 =

±|0〉+ |1〉√
2
⊗ |0〉 − |1〉√

2
for constant f,

±|0〉 − |1〉√
2
⊗ |0〉 − |1〉√

2
for injective f.

(20)

4. Apply H ⊗ I on the state |Ψ2〉; you will get:

|Ψ3〉 =

±|0〉 ⊗ |0〉 − |1〉√
2

for constant f,

±|1〉 ⊗ |0〉 − |1〉√
2

for injective f.

(21)

5. Measure state of the first qubit, you will get |0〉 in case of

constant function, |1〉 for injective function.

Quantum circuit representation of Deutsch’s algorithm is

presented in Fig. 8. The Uf gate provide a reversible imple-

mentation of function f and the symbol denotes a mea-

surement.

Fig. 8. Deutsch’s algorithm

The implementation of Deutsch’s algorithm presented in

listing 3 is an introductory example of application of quantum-

octave for simulation of a quantum algorithm with all basic

steps of computation: initialization of the quantum computer,

unitary evolution and measurement.

Below we have the description of simulation steps (com-

pare with circuit in Fig. 8):

line 5 : initialisation of the simulator,

lines 7, 8 : allocation of registers,

lines 10 to 17 : definition of all four possible oracles,

line 19 : application of Not on second qubit,

line 20 : application of H ⊗H ,

line 21 : application of the oracle,

line 22 : application of H ⊗ I,

line 24 : tracing out of second register,

line 26 : return the probability distribution of the measure-

ment outcome.

84 Bull. Pol. Ac.: Tech. 58(1) 2010

Extending scientific computing system with structural quantum programming capabilities

Listening 3: Deutsch algorithm in quantum-octave

5.2. Grover’s algorithm. To illustrate more advanced usage

of the presented concepts we use the quantum algorithm for

searching a unordered database. The algorithms was proposed

by Grover [33–35] and its detailed description and analysis

can be found in [36, 37]. Here we present implementation of

Grover’s algorithm which presents the features of quantum-

octave related to the observation of quantum errors. We show

the propagation of initial errors during the execution of the

algorithm.

Grover’s search algorithm is one of the most important

quantum algorithms. This especially true since many algorith-

mic problems can be reduced to exhaustive search. However,

like in the case of any quantum procedure, the efficiency of

the algorithm depends on the ability to avoid errors during the

procedure. Thus, it is important how quantum errors affect the

executions of the algorithm.

Statement of the problem. Let X be a set and let f : X →
{0, 1}, such that

f(x) =

{

1⇔ x = x0

0⇔ x 6= x0

, x ∈ X, (22)

for some marked x0 ∈ X .

For the simplicity we assume that X is a set of binary

strings of length n. Therefore

|X | = 2n

and

f : {0, 1}n → {0, 1}.

We can map the set X to the set of states over H⊗n in

the natural way as

x↔ |x〉. (23)

The goal of the algorithm is to find the marked element.

This is achieved by the amplification of the apropriate ampli-

tude [36, 37].

The algorithm. The Grover’s algorithm is composed of two

main procedures: the oracle and the diffusion.

Oracle. By oracle we understand a function that marks one

defined element. In the case of this algorithm, the marking of

the element is done by negation of the amplitude of the state

that we search for.

With the use of elementary quantum gates the oracle can

be constructed using ancilla |q〉 in the following way:

O|x〉|q〉 = |x〉|q ⊗ f(x)〉. (24)

If the register |q〉 is prepared in the state:

|q〉 = H |1〉 = |0〉 − |1〉√
2

, (25)

then by substitution, Eq. (24) is re-transformed to:

O|x〉 |0〉 − |1〉√
2

= (−1)f(x)|x〉 |0〉 − |1〉√
2

, (26)

and by tracing out the ancilla we get:

O|x〉 = −(−1)f(x)|x〉. (27)

Thus the oracle marks a given state by inverting its amplitude.

Diffusion. The operator D rotates any state around the state

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉, (28)

D may written in the following form:

D = −H⊗n(2|0〉〈0| − I)H⊗n = 2|ψ〉〈ψ| − I. (29)

Grover iteration. The first step of the algorithm is to apply

Hadamard gate H⊗n on all the qubits. Then we apply gate

G = DO several times.

Number of iterations. Application of diffusion operator on

the base state |n〉 gives

−H⊗nI0H
⊗n|n〉 = −|x0〉+

2

N

∑

y

|y〉. (30)

Application of this operator on any state gives

D|x〉 =
∑

x

αx(−|x〉+ 2

N
y
∑

y

|y〉)

=
∑

x

(−αx + 2s)|x〉,

where

s =
1

N

∑

x

αx (31)

is arithmetic mean of coefficients αx, x = 0, . . . , 2n − 1.

k-fold application of Grover’s iteration G on initial state |s〉
leads to [36]:

Bull. Pol. Ac.: Tech. 58(1) 2010 85

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

Gk|s〉 = αk

∑

x 6=x0

|x〉 + βk|x0〉, (32)

with real coefficients:

αk =
1√
N − 1

cos (2k + 1) θ,

βk = sin (2k + 1) θ,

(33)

where θ is an angle that fulfils the relation:

sin(θ) =
1√
N
. (34)

Therefore the coefficients αk, βk are periodic functions of k.

After several iteration amplitude of βk rises and the others

drop. The influence of the marked state |x0〉 on the state of

the register is that initial state |s〉 evolves towards the marked

state.

The βk attains its maximum after approximately
π

4

√
N

steps. Then it begins to fall.

The number of steps needed to transfer the initial state

towards the marked state is of O(
√
n). In the classical case

the number of steps is of O(n).

Measurement. The last step of the Grover’s algorithm is the

measurement. Probability of obtaining of the proper result is

|βk|2.

Fig. 9. The circuit for Grover’s algorithm

Graphical interpretation. There exists a very nice graphical

interpretation of Grover’s algorithm.

Let |α〉 denotes the sum of states orthogonal to the state

we are searching for |x0〉

|α〉 =
1√

2n − 1

∑

x 6=x0

|x〉, (35)

and for consistence we will write |β〉 = |x0〉. Then, on the

plane spanned by |α〉 and |β〉, we can observe of evolution of

the state vector.

By putting values from Eq. (33) into Eq. (32) we get fol-

lowing relation:

Gk|s〉 = cos((2k + 1)θ)|α〉+ sin((2k + 1)θ)|β〉. (36)

Exemplar behavior of this equation for 23 states is presented

in Fig. 10.

Fig. 10. Visualisation of Grover’s algorithm after Ref. 1. Projection

on plane spanned by |α〉 and |β〉. Vector |ψ〉 is flat superposition of

all the possible states

Implementation. Listing 4 presents the implementation of

function grover. We will apply quantum noise at the end of

each Grover iteration and observe its influence on its efficien-

cy.

To simulate this behavior we will insert the code from

Listing 5 after line 21 of the implementation.

Listening 4: Grover’s algorithm in quantum-octave

86 Bull. Pol. Ac.: Tech. 58(1) 2010

Extending scientific computing system with structural quantum programming capabilities

Listening 5: Adding noise to Grover’s algorithm

Simulation results. The results of the simulation of noisy

Grover’s algorithm acting on system of size from three to six

qubits when system is affected by noise modelled with depo-

larizing channel are shown in Fig. 11. One may observe that

rate of successful application of the algorithm drops quickly

with raising amount of noise. This effect is more significant

for larger systems. This result clearly indicates that it is not

possible to successfully implement Grover’s algorithm in pres-

ence of large amounts of noise if no error correction scheme

is applied.

Fig. 11. Influence of depolarizing channel parametrized by single re-

al number α on probability of successful finding of sought element

in Grover’s algorithm implemented with 3, 4, 5 and 6 qubits

6. Summary

We have introduced an original solution to the problem of

simulation of quantum processes. This solution is provided

by quantum-octave a library that is build upon GNU Octave

high level programming language, which provides high-level

quantum programming structures.

Although, strictly speaking, quantum-octave is not a pro-

gramming language but a library, together with GNU Octave,

it is very convenient and flexible tool. Programs written in

quantum programming languages, such as QCL, can be eas-

ily rewritten using this library, thanks to the use of quan-

tum memory, registers and routines. Scalable programs can

be easily implemented in quantum-octave so the program-

mer does not have to think about details of the implementa-

tion.

Acknowledgements. We acknowledge the financial support

by the Polish Ministry of Science and Higher Education un-

der the grant number N519 012 31/1957 and by the Polish

research network LFPPI. The numerical calculations present-

ed in this work were performed on the Leming server of The

Institute of Theoretical and Applied Informatics of the Polish

Academy of Sciences.

Package quantum-octave is distributed as free software

and it can be downloaded from the project web-page [38].

REFERENCES

[1] M.A. Nielsen and I.L. Chuang, Quantum Computation and

Quantum Information, Cambridge University Press, Cam-

bridge, 2000.

[2] M. Hirvensalo, Quantum Computing, Springer, Berlin, 2001.

[3] S. Bugajski, J. Klamka, and S. Wegrzyn, “Foudations of quan-

tum computing, Part I”, Archives of Theoretical and Applied

Informatics 13 (1), 97–142 (2001), (in Polish).

[4] S. Bugajski, J. Klamka, and S. Wegrzyn, “Foudations of quan-

tum computing. Part II”, Archives of Theoretical and Applied

Informatics 13 (1), 137–149 (2001), (in Polish).

[5] P.W. Shor, “Why haven’t more quantum algorithms been

found?”, ACM 50 (1), 87–90 (2003).

[6] P.W. Shor, “Progress in quantum algorithms”, Quantum Infor-

mation Processing 3, 1–5 (2004).

[7] D. Deutsch, “Quantum theory, the Church-Turing principle and

the universal quantum computer”, Proc. Roy. Soc. Lond. A 400,

97 (1985).

[8] D. Deutsch, “Quantum computational networks”, Proc. Roy.

Soc. Lond. A 425, 73 (1989).

[9] S. Bettelli, L. Serafini, and T. Calarco, “Toward an architecture

for quantum programming”, Eur. Phys. J. D 25 (2), 181–200

(2003).

[10] S. Gudder, “Quantum computational logic”, Int. J. Theoretical

Physics 1 (42), 39–47 (2003).

[11] A. van Tonder, “A lambda calculus for quantum computation”,

SIAM J.COMPUT. 33, 1109 (2004).

[12] C. Moore and J.P. Crutchfield, “Quantum automata and quan-

tum grammars”, Theoretical Computer Science 237 (1–2),

275–306 (2000).

[13] E. Bernstein and U. Vazirani, “Quantum complexity theory”,

SIAM J. on Computing 26 (5), 1411–1473 (1997).

[14] S. Gay, “Quantum programming languages: Survey and bib-

liography”, Bull. Eur. Association for Theoretical Computer

Science 1, CD-ROM (2005).

[15] J.A. Miszczak, Probabilistic Aspects of Quantum Programming

Languages, PhD Thesis, The Institute of Theoretical and Ap-

plied Informatics PAS, Warsaw, 2008.

[16] S. Gay, Bibliography on Quantum Programming Languages,

web-page http://www.dcs.gla.ac.uk/˜simon/quantum/, 2007.

[17] T. Altenkirch and J. Grattage, “A functional quantum program-

ming language”, Proc. Annual IEEE Symposium on Logic in

Computer Science 1, 249–258 (2005).

[18] E. Knill, “Conventions for quantum pseudocode”, Technical

Report LAUR-96-2724 1, CD-ROM (1996).

[19] B. Oeme, Structured Quantum Programming, PhD Thesis,

Technical University of Vienna, Vienna, 2003.

[20] S.A. Cook and R.A. Reckhow, “Time-bounded random access

machines”, Proc. forth Annual ACM Symposium on Theory of

Computing 1, 73–80 (1973).

[21] C.H. Papadimitriou, Computational Complexity, Addison-

Wesley Publishing Company, New York, 1994.

[22] J.C. Shepherdson and H.E. Strugis, “Computability of recur-

sive functions”, J. ACM 10 (2), 217–255 1963.

Bull. Pol. Ac.: Tech. 58(1) 2010 87

P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk

[23] R. Cleve and D.P. DiVincenzo, “Schumacher’s quantum data

compression as a quantum computation”, Phys. Rev. A 54 (4),

2636–2650 (1996).

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Intro-

duction to Algorithms, The MIT Press, London, 2001.

[25] J.E. Hopcroft and J.D. Ullman, Introduction to the Theory of

Automata, Language, PWN Scientific Publishing House, War-

saw, 2003, (in Polish).

[26] S. Bettelli, Toward an Architecture for Quantum Programming,

PhD Thesis, Università di Trento, Trento, 2002.

[27] P. Gawron, High Level Programming in Quantum Computer

Science, PhD Thesis, The Institute of Theoretical and Applied

Informatics PAS, Warsaw, 2008.

[28] B. Oemer, Quantum Programming in QCL, Master Thesis, TU

Viena, Vienna, 2000.

[29] P. Gawron and J.A. Miszczak, “Didactic tools for teaching

quantum informatics”, Annales UMCS Informatica AI 1 (2),

77–79 (2004).

[30] P. Gawron and J.A. Miszczak, “Simulations of quantum sys-

tems evolution with quantum-octave package”, Annales UMCS

Informatica AI 1 (2), 52–63 (2004).

[31] P. Gawron and J.A. Miszczak, “Numerical simulations of

mixed states quantum computation”, Int. J. Quan. Inf. 3 (1),

195–199 (2005).

[32] J.W. Eaton, GNU Octave Manual, Network Theory Limited,

New York, 2002.

[33] L. Grover, “A fast quantum mechanical algorithm for database

search”, Proc. 28th Annual ACM Symposium on the Theory of

Computation 1, 212–219 (1996).

[34] L.K. Grover, “Quantum mechanics helps in searching for a

needle in a haystack”, Phys. Rev. Lett. 79, 325 (1997).

[35] L.K. Grover, “A framework for fast quantum mechanical al-

gorithms”, Proc. 30th Annual ACM Symposium on Theory of

Computing (STOC) 1, 53–62 (1998).

[36] S. Bugajski, “Quantum search”, Archives of Theoretical and

Applied Informatics 13 (2), 143–150 (2001).

[37] S.J. Lomonaco, “Grover’s quantum search algorithm”, Proc.

Symposia in Applied Mathematics 58, 181–192 (2002).

[38] Project quantum-octave, http://quantum-octave.sf.net/, 2007.

88 Bull. Pol. Ac.: Tech. 58(1) 2010

