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Abstract. Model-driven software engineering is a well investigated and heavily used technique for software development. Within automation

engineering we want to benefit from these ideas and concepts by adopting them to systems engineering. Parallel processes in systems

engineering demand high synchronization effort between different disciplines, their engineers, and processes. Unfortunately, these processes

are concurrently established, but do only support sequential engineering. With model-driven systems engineering we want to enable systems

engineers to model their domain knowledge and tooling on a more abstract level. Thus, engineers may benefit in increasing efficiency and

quality for the resulting products from existing integration approaches of engineering artifacts and tools. By means of an integration approach

we are able to synchronize and check consistency of model data that evolved parallel in different tools. In this contribution, we present a

new classification scheme for integration scenarios and explain our modeling and integration approach together with a proof-of-concept use

case and prototype, located in automation engineering.
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1. Introduction

The development of automation systems for machines and

plants depends on information from an increasing number of

engineering tools like mechanical CAD, automation device

configuration or control logic engineering. Automation engi-

neering of programmable logic controllers (PLC) requires for

example information about the devices used for machine au-

tomation, their characteristics, and their interaction with other

machine modules from other engineering tools like electrical

engineering or mechanical engineering.

Since information exchange between these tools and de-

sign models is mostly based on design documents and meet-

ings, there is a strong requirement for a tighter integration of

PLC engineering models to raise design efficiency. Automa-

tion system providers like machine builders drive the integra-

tion of PLC engineering by the establishment of mechatron-

ic development processes which shall integrate mechanical

engineering, electrical engineering and automation engineer-

ing [1]. Automation system users like automotive companies

work at the realization of the digital factory [2] with engineer-

ing models available for design, commissioning and operation

of production sites.

Concurrent Model Driven Automation Engineering

(CMDAE) addresses the requirement for the integration of

PLC engineering with other disciplines and establishes a bidi-

rectional data synchronization between the design models

used for the development of automation systems. In this paper,

the term PLC refers to both hardware and software technology

and not only to a special hardware architecture (e.g. in contrast

to PC-based soft logic controllers). The software technology

of PLC controllers is defined by the standard IEC 61131 [3].

This paper reports on the current status and findings of

our prototype implementation for the integration of the

location-oriented machine structure defined in electrical engi-

neering with the hardware configuration of a PLC defined

in Simatic Step7. Section 2 describes the application sce-

nario that we used to understand the requirements for the

model-driven tool integration. The engineering workflow be-

hind the engineering tool integration is described with re-

spect to the data synchronization between electrical engi-

neering and automation engineering. Section 3 presents the

CMDAE classification scheme, which helps tool integration

developers in the communication about the requirements and

domain models of the tool users. Based on the positioning

of the integration task in the CMDAE classification scheme,

the integration developer can select the adequate integra-

tion technology. The implementation technologies used by

CMDAE – metamodeling and triple graph grammar – in com-

bination with the implementation of the integration of the

electrical engineering tool Comos ET and the automation

engineering tool Simatic Step7 are introduced in Sec. 4.

Section 5 demonstrates the application of the tool integra-

tion environment developed in Sec. 4 according to the exam-

ple workflow in Sec. 2. Finally, Sec. 6 and 7 conclude this

paper with references to related work, summary and open

challenges.

2. Application scenario: integration of electrical

engineering and PLC engineering

Machine development is based on an established develop-

ment process of machine builders in an existing tool envi-

ronment. Therefore, the introduction of an environment with
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model exchange between these engineering tools is usually an

a-posteriori integration of existing tools and tool interfaces.

Our application scenario demonstrates the workflow be-

tween electrical engineering (based on Comos ET [4]) and

automation engineering (based on Simatic Step7 [5]), the ap-

plication of concurrent model-driven engineering (CMDAE).

As an automation application example, we look at the automa-

tion of a storage and retrieval machine of a high-bay ware-

house system. The storage and retrieval machine runs within

a warehouse aisle (see Fig. 1 right-hand side) and picks or

places goods from the storage shelve.

Fig. 1. High-bay warehouse application example

The overview of automation devices in Fig. 2 shows the

automation devices used in this high-bay warehouse sys-

tem example: a Siemens Simatic CPU 317T-2 DP controller

with integrated motion control functions, distributed I/O (in-

put/output) modules with Siemens Simatic ET 200S and mo-

tor control by a Siemens Sinamics drive system. Complex

components like data matrix systems (e.g. for identification

of goods at the commissioning, Fig. 1 left-hand side) or han-

dling robots are connected by fieldbus communication.

Fig. 2. Example of the automation structure of a storage and retrieval

machine

2.1. Integration requirements. In the development process

of such a high-bay warehouse system, the configuration of

the Simatic I/O modules, shown in the automation structure

in Fig. 2, changes if an electrical engineer changes the wiring

of the devices built in electrical cabinets. In the opposite direc-

tion, changes of I/O modules due to automation programming

requirements must be reflected within the electrical engineer-

ing tool. This engineering workflow is a basic use case of

CMDAE: Propagate changes from an engineering discipline

like electrical engineering to another engineering discipline

like automation engineering. Usually this is an incremental

propagation of some changed elements between two existing

models as describe above for Simatic I/O modules. In the spe-

cial case of a completely new project started in one discipline

or code generation scenarios, the model of the other discipline

can be created from scratch.

Depending on the responsibilities in an engineering orga-

nization, automatic change propagation might not be desired.

Instead notifications about inconsistencies between the engi-

neering models should be generated. The resolution of these

inconsistencies remains the responsibility of the engineer of

each discipline. The implementation of consistency checks is

usually easier than change propagation, since the actions re-

quired for reconciliation need no implementation.

Both change propagation and consistency checks use

traceability links between related elements of different en-

gineering models internally in the CMDAE implementation.

Besides the usage for change propagation, traceability is also

an important use case for automation engineers to follow re-

lated elements, e.g. to find out the machine function a specific

I/O module is used for.

As a non-functional requirement the tool integration en-

vironment with the features described above must integrate

the existing engineering tools of machine builders and not

presume the introduction of new engineering tools. Usual-

ly machine builders have an existing environment of tools

for mechanical, electrical and automation engineering as de-

scribed in Sec. 1 but with manual data exchange between

these engineering tools or hand-crafted uni-directional batch

data exchange solutions. Therefore, a tool integration envi-

ronment must adapt to the existing engineering tools and not

vice versa since most engineering tool providers will not adapt

their tools to a common integration environment.

The target users of model-driven automation engineering

are software engineers working at the IT department of the

machine builder, or at a service provider, as well as the engi-

neers working in the engineering disciplines of machine devel-

opment like electrical engineering or automation engineering.

Model-driven automation engineering helps the software en-

gineers with the development of the integration environment

and the domain engineers with the communication about the

definition of the engineering models and with the implemen-

tation of data synchronization workflows between engineering

tools. Model-driven automation engineering helps both kinds

of users to keep control of the data workflow between in-

tegrated engineering tools for specific machine development

projects.

2.2. Change propagation workflow example. The detailed

integration workflow used in our application scenario is shown

in Fig. 3. The initial location-oriented structure of a new ma-
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chine is created in the electrical engineering tool Comos ET.

For simplification, this location-oriented structure consists in

our example of a single PLC with I/O modules. The location-

oriented structure is propagated by the CMDAE tool integra-

tion environment to Simatic Step7 (Step 1 in Fig. 3). For this

propagation step the model of the location-oriented structure

is the source model of the data propagation. The data prop-

agation is also referred to as a translation, since information

in the source model has to be translated into adequate infor-

mation of the target model, the Step7 engineering project for

this data propagation. The source model is in the sense of

a translation the sender of information, the target model is

the receiver of information. Since no Step7 project exists yet,

an initial Step7 project is created with the single PLC visible

in the hardware configuration. With that project at hand, the

automation engineer starts developing the PLC program. In

our application scenario, the automation engineer realizes that

he requires an additional I/O module due to some specifics of

the drives used. Therefore, he adds this additional I/O mod-

ule to the hardware configuration of Step7 (Step 2 in Fig. 3).

The next time the electrical engineer decides to update the

ECAD project in Comos ET with information from automa-

tion engineering, the CMDAE tool integration environment

propagates the I/O module added by the automation engineer

to the ECAD project (Step 3 in Fig. 3). In this data prop-

agation, the roles of source and target model have changed:

the automation engineering model is the source model of the

data propagation, the model of the location-oriented structure

is the target model. � ��
������	�
� ���	����	�� 
����
�	�� ���	����	��

Fig. 3. Integration workflow between Comos ET (left) and Step7

(right)

This engineering workflow is used in the following to

demonstrate the CMDAE concepts.

3. Classification scheme

The a-posteriori integration of engineering tools as described

in Sec. 2 is a software engineering task that consists of the

analysis and formal description of the engineering models

used and the implementation of the data exchange based on

existing tool interfaces and data repositories. For the classifi-

cation of these software engineering artifacts and the related

development processes, we developed the CMDAE (concur-

rent model-driven automation engineering) hypercube shown

in Fig. 4. The CMDAE hypercube is used for the conceptual

description of the models and information used for integra-

tion, “their relationships to each other, and to the environment,

and the principles guiding its design and evolution” [6].

The CMDAE hypercube consists of the following five di-

mensions:

• Concurrent engineering disciplines (C) define the relation-

ship of elements in different engineering disciplines.

• Metamodeling (M) is used to define a metadata architecture

for the models used in the tool integration scenario.

• Domain Customization (D) enables company and user spe-

cific adaptation of the integration environment.

• Abstraction (A) supports modularization, reuse, and sup-

port of different implementation platforms within the inte-

gration model.

• Evolution (E) covers the administration of different ver-

sions of integration artifacts, which change with the evolu-

tion of metamodels and engineering tool releases in busi-

ness organizations.

The five dimensions of the CMDAE hypercube are visu-

alized by a star chart in Fig. 4. Each dimension represents

a set of exclusive characteristics for that dimension, e.g. the

different engineering disciplines for the dimension C (Concur-

rent Engineering). A software engineer can use this star chart

to analyze and compare different engineering tools. Figure 4

shows the analysis of the integration of the ECAD tool (dashed

line) and of Simatic Step7 (dotted line). It is noticeable in

the star chart that the tools in our scenario share the same

characteristics on each dimension of the CMDAE hypercube

except for the dimension C, which is the integration of the

engineering disciplines electrical engineering and automation

engineering. Therefore, the implementation of the integration

environment can focus on that aspect and, for example, needs

not to deal with different versions of the metamodels involved

in dimension E. ������������
 ������� !!��� "�� ����!���
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Fig. 4. Classification of the application scenario within the CMDAE

hypercube

Bull. Pol. Ac.: Tech. 58(3) 2010 411



M. Lauder, M. Schlereth, S. Rose, and A. Schürr

In the following, we will use the integration scenario for

the engineering of the automation system of the high-bay

warehouse system, introduced in Sec. 2, to explore in more de-

tail the dimensions metamodeling layers (M) and concurrent

engineering disciplines (C) which are part of our prototype

implementation.

3.1. Metamodeling layers (M). Metamodeling is about mod-

els that describe other models. In our application scenario,

a model is for example the hardware model of the automation

devices used in our high-bay warehouse automation system

shown in Fig. 2. This model includes specific devices used in

this project like the Siemens Simatic CPU 317T-2 DP with its

I/O modules. The metamodel of this hardware configuration

model describes the common structure and the common at-

tributes of hardware configuration models in general, i.e. the

characteristics of all valid hardware configuration models. For

example, the automation engineering model might include the

mentioned item ”Siemens Simatic CPU 317T-2 DP, Infeed”

while the metamodel defines that the hardware configuration

model includes elements of type CPU with attributes like ven-

dor identification (Simatic CPU 317T-2 DP in our example)

and symbolic name (Infeed in our example). This concept of

metamodeling layers is adopted without modification from the

Meta Object Facility (MOF) Specification [7] with its four lay-

er metadata architecture. The four layers are called layer M0

up to layer M3, with layer M0 being the most concrete and

M3 the most abstract layer (see Fig. 5).

ECAD

Diagrams

PLC

Hardware

Configuration

Warehouse

Wiring
Warehouse

I/O Devices

M2 layer

metamodels

M1 layer

models

Fig. 5. Metadata architecture according to ISO/IEC 19502 [7]

In our example above, the “Siemens Simatic CPU 317T-2

DP, Infeed” is part of M1 layer, that describes the model of the

automation system used for our specific high-bay warehouse

system implementation (Warehouse I/O Devices on layer M1

in Fig. 5) while the M2 layer defines that the automation en-

gineering tool (Simatic Step7 [5]) includes CPU modules to

describe the hardware configuration (PLC Hardware Config-

uration on layer M2 in Fig. 5). In the next section we will

use these two layers, M1 and M2, along the dimension M of

the CMDAE hypercube together with the hypercube dimen-

sion C (Concurrent Engineering Disciplines) to describe the

usage of the classification scheme. Layer M0 (the information

layer) and layer M3 (the meta-metamodel layer) are discussed

in detail in [7] but not considered in the sequel. In addition to

the short introduction in this section, more information about

metamodeling can be found in [8] and [9].

3.2. Concurrent engineering disciplines (C). The concur-

rent development of mechanical engineering, electrical engi-

neering, and automation engineering requires data exchange

about the devices used for machine automation, their char-

acteristics, and their interaction with other machine modules.

Within our application example, PLC programming is inte-

grated with the concurrently running engineering activities of

electrical engineering. Information of the PLC engineering

project like hardware configuration, I/O addresses, and sym-

bols is exchanged with the ECAD system. The integration of

these concurrent engineering disciplines is described on the

metamodeling layer (M2 layer according to Subsec. 3.1) in

order to generate a tool integration environment for general

use. This tool integration environment operates on the model

layer (M1 layer according to Subsec. 3.1) to synchronize the

engineering information (between ECAD and PLC engineer-

ing in our example, see Fig. 6) of the high-bay warehouse

system engineering project.

Fig. 6. Integration of electrical engineering and automation engineer-

ing as concurrent engineering disciplines

The metamodeling layer of the integration of concurrent

disciplines (M2 layer) describes the relationships of elements

in ECAD and PLC engineering. The electrical engineering

of a machine like the high-bay warehouse automation system

covers, for example, the control logic, power supplies, and

safety devices. These functions are defined in the ECAD sys-

tem by circuit diagrams with elements like terminals or PLC

I/O modules [10]. Beside the logical interconnection of ele-

ments (defined by the wiring diagram), the location-oriented

structure, shown in Fig. 6 at the left-hand side, reflects the

physical placement of these elements e.g. in electrical cabi-

nets or on specific mounting racks.

From a PLC engineering point of view, the location-

oriented structure defines the relationship of the PLC pro-

gram to the external system (the physical elements of the ma-

chine). In PLC engineering, the I/O modules and terminals

are defined in the context of the hardware configuration of

the PLC [11], shown in Fig. 6 at the right-hand side. There-

fore, the integration between these concurrent disciplines must

keep the information about the hardware configuration of au-

tomation engineering and the location-oriented structure of

electrical engineering synchronized. For example, during the

development of a new machine, changes of an I/O terminal
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in electrical engineering must be propagated to automation

engineering or changes of an I/O module must be propagated

back to electrical engineering. This scenario is the operation

of the integration environment on M1 layer, the engineering

model of a specific machine (the high-bay warehouse system

in our application scenario). The definition of the elements

in each system, the I/O terminals and modules and their rela-

tionship is part of the metamodeling M2 layer. Beside change

propagation, the definition of relationships between elements

is also used for navigation and traceability purposes between

the integrated systems.

4. Meta-modeling a tool integration

In Sec. 3, the new CMDAE hypercube classification scheme,

which allows for the classification of complex integration sce-

narios, was introduced. Additionally, the separation of differ-

ent dimensions was shown and where this scheme can be

applied. In this section we will review the integration process

for dimension C (concurrent) on layer M2 (metamodeling).

We will discuss an approach, called Tool-integration Environ-

ment (TiE) that enables us to model complex data, to (semi-)

automatically create source code for tool adapters that allow

for processing specific tool data, and run bidirectional inte-

grations on actual model instances.

Our goal is to integrate different modeling languages (M2

layer) and their instances, rooted in layer M1. This demand

is derived from the requirement to edit different models si-

multaneously and exchange information in a bidirectional and

incremental manner. A metamodel is used to represent the

common scheme for all possible metamodel instances (i.e.

models). Bidirectional data exchange between models can be

achieved by different approaches. (Nearly) all concepts deal

with integration by linking elements of at least two models.

An example for such a model transformation approach is the

specification Query View Transformation (QVT) [12] that

is implemented by different techniques [12], e.g. by Triple

Graph Grammars (TGGs) [13]. For a more detailed review

of different model transformation approaches the reader is

referred to [14].

During our research cooperation with Siemens AG, we

decided to integrate two typical tools involved in automation

engineering, electrical engineering with Comos ET [4] and

PLC engineering with Simatic Step7 [5] (c.f. Sec. 2). Tool-

integration enables engineers to exchange data between tools

in a fast, reliable, and traceable manner. Furthermore, main-

taining consistency is a major point for managing projects,

where different models are developed concurrently. If infor-

mation changes in one model, all other models have to be

updated accordingly. Often it becomes hard to recognize con-

flicts or resulting points of change. Tool-integration also aims

at helping engineers to cope with this difficult job. Thus, ele-

ments with mappable information in both tools have to be

identified. These elements will become anchors in a tool-

integration, where synchronization and transformation may

start with. The first tool to be integrated is Step7 that is

mainly used to program PLC components and setup a station

logically. The second tool is Comos ET that describes the

location-oriented structure of an (automation) project based

on the standard IEC 61346 [15]. The workflow to build a tool-

integration consists of the following steps at M2 layer (meta-

modeling):

1. Define a metamodel for the models manipulated by each

tool (Comos ET & Step7).

2. Define an integration scheme between the tool’s metamod-

els.

3. Generate platform specific integration code for tool specific

adapters.

The workflow that uses the tool integration functionality

consists of the following steps (M1 layer), described in Sec. 5:

1. Load the generated code into our Tool integration Environ-

ment (TiE).

2. Export the source model (e.g. the electrical engineering

model of the high-bay area warehouse) from the engineer-

ing tool.

3. Run the integration, create the correspondence model with

traceability linksand create the target model.

4. Import the target model (e.g. the automation engineering

model of the high-bay area warehouse) to the engineering

tool and manipulate the model data.

5. Synchronize models by recognizing the changes in the tar-

get model and update the source and correspondence model

accordingly.

Building a (tool-) integration requires the development of

at least three different adapters: One for each tool and a third

one for the integration data itself. This general setup is de-

picted in Fig. 7 where these adapters provide interfaces to the

integration framework. We shall review the adapters in detail

as well as the integration framework.

generate
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Fig. 7. Complete TiE architecture for tool-integration

First of all we have to model both tools (i.e. their data

structure) in a MOF compliant way. Afterwards, a TGG spec-

ification is created, which defines a bidirectional mapping of

both models. The metamodeling part is depicted on the left-

hand side in Fig. 7. Further components of TiE are the gener-
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ated adapters for accessing tools or data (center of Fig. 7) and

the integration framework used for the application of integra-

tion rules, visualization, and model editing with a graphical

user interface (right-hand side of Fig. 7).

The definition of a metamodel in general enables experts

from different domains to define their specific languages re-

flecting their needs and a mapping between these languages.

In tool-integration, the modeled languages are the appropri-

ate representations of the data structure of the tools. Tool-

integration does not define a new common language that must

be adopted by the integrated tools. In this specific case we

decided to model the tool information with MOFLON [16].

MOFLON is a Meta-CASE tool that features a MOF [17]

compliant metamodel editor. CASE stands for Computer Aid-

ed Software Engineering and means that the user is supported

with a graphical user interface and/or more convenient tech-

niques to design its software. The prefix meta signals the

ability to define conveniently metamodels with MOFLON.

The created diagrams reflect the data structure a specific tool

deals with. While defining the metamodel all participating do-

main experts describe their knowledge of their domain. Within

this process and corresponding discussions, a common base is

defined, where all experts find their knowledge reflected. As

an example, supporting experts and experienced metamodel

builders came up with an informal description of a location-

oriented model from IEC 61346. As a result we defined the

metamodel depicted in Fig. 8.

The metamodel in Fig. 8 shows how a project in

a location-oriented model is set up and which components

can be contained. A detailed instance of this model will be

discussed in Sec. 5. Within our use case scenario, we have

to build two adapters: one for the location-oriented struc-

ture models and one for Step7’s hardware configuration (HW-

Config). Both adapters are so-called standard adapters [18]

since they are supposed to manipulate data that was processed

and written by the tool itself. A standard adapter works on

import and export data of a tool. The name standard is found-

ed on experiences that have shown that the manipulation of

this kind of data is the standard way to access a tool model.

This means that a tool is used to edit the model instance af-

ter the tool adapter created or manipulated the instance itself.

For example, our use case generates an XML document con-

taining all the necessary project data that is further read and

manipulated by Step7’s XML import/export functionality for

HW-Config data. This kind of adapters is mainly used when

a tool API is not usable for various reasons. Therefore, we are

not able to directly use the tool through its API to create in-

stance of data objects and to manipulate them, but we have to

bypass this drawback by accessing data that can be read from

the tool. The implementations of our adapters provide a gener-

ic Java Metadata Interface (JMI [19]) to the outside world

that is standardized with the help of Sun Inc. This interface

enables us to retrieve and manipulate data within any model

by using standardized methods. The other kind of adapters is

called online adapters. These adapters provide the functional-

ity to access a tool for creating and manipulating objects via

a common interface. The actual adaption towards the tool’s

API has to be implemented manually. This type of adapters

is used when a tool provides an API that allows for direct da-

ta manipulation through the tool itself. The adapter does not

necessarily handle data persistence and manipulation. There-

fore, all generic methods have to be adapted to use the API. In

this case, generic stands for methods which provide the same

interface and behavior independent of the model instance they

are working on. Since this implementation is tool dependant,

parts of the source code have to be implemented manually.

Fig. 8. Location-oriented model metamodel in correspondence to IEC 61346 (Ref. 15)
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The second tool to integrate is Step7. In this integration

scenario, we decided to model the subpart HW-Config of

Step7 that deals with the hardware setup of an automation

project. Siemens provides for its Step7 distribution an XML

schema definition (XSD) for the export function of HW-

Config data. This schema is called SimaticML. Since XSDs

describe a language on the same layer as a MOF compli-

ant metamodel does, we were able to transfer the concepts

from the SimaticML XSD, depicted in Fig. 9, directly into

MOFLON. By providing MOFLON with an XSD import

function we are able to import an XSD file into MOFLON

and to translate this into the appropriate MOF metamodel

representation. Furthermore, the derived adapter from this

scheme will be able to read and write natively all XML files

defined by the XSD.

Figure 9 depicts the MOF compliant metamodel cor-

responding to the XSD schema of SimaticML documents.

A ProjectT object contains a ProjectObjectListT object that

represents a list that further contains all DeviceT objects.

A complete instance of this model will be presented in Sec. 5.

The next step is to describe the actual integration based on

both metamodels introduced so far. This process involves

the experts representing the participating domains. The in-

tegration in this case is done again with MOFLON that also

provides the functionality to specify model integrations with

TGGs. This is a common technique for modeling integration

as explained in [20] and [21]. A TGG visually expresses the

relationship between model elements of two domains with

a so-called link type. Figure 10 (top) depicts the relationship

between a Project object and a ProjectT object via a Pro-

jectLink object.

Fig. 9. Excerpt from SimaticML metamodel

Fig. 10. ProjectLink definition and appropriate TGG rule
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On the bottom of Fig. 10, a TGG rule is shown that re-

lates all elements on the left to elements on the right. Further

information like element names are set synchronous and an

additional link is created for traceability. A TGG rule ex-

presses in a declarative way, which elements will be set in

correspondence and what prerequisites are needed to estab-

lish such a correspondence. For example, a ProjectT object

in Step7’s HW-Config must exist before a DeviceItemT ob-

ject, e.g. a CPU, may be added. Additional information like

parameter values for new objects is also set in a specific rule.

A TGG consists of rule expressions used for deriving mul-

tiple so-called translators that explicitly provide integration

features such as forward translation or consistency checking

(for more information on translators refer to [13]). A TGG

project refers to both to-be-integrated metamodels and addi-

tionally contains integration specific elements, e.g. a link type

reflecting the generic relationship between two elements. Each

link type is also provided with different integration methods

(e.g. forward translation, consistency checking etc.). Domain

experts supported by software engineers identify related ele-

ments in each tool model and express the relation with TGG

links.

After both tool metamodels and the integration have been

specified, the concrete adapter implementation can be derived

(semi-) automatically and has to be manually enriched with

additional implementation details. The functionality of this

implementation will be explained in detail in Sec. 5 since it

represents a part of the model integration functionality used

on layer M1. Altogether, several components are required to

build a tool-integration for a pair of metamodeled languages.

The approach we use is built on top of different tools and tech-

niques that shape the complete Tool-integration Environment

(TiE). Figure 7 depicts this environment used as a prototype

implementation within this research cooperation.

As already mentioned, our work is MOFLON-centered. In

order to reduce manual efforts, we use some generic interface

technology that allows us to access all tool data with the same

methods. In Fig. 7 different adapters are connected to the in-

tegration framework. Instead of implementing different data

access methods in the integration framework for each kind

of adapter, every adapter data can be accessed with the same

basic methods. Further advantages of using such generic in-

terfaces is the possibility to provide different services for all

kind of models that support such a generic model interface –

depicted in Fig. 11.

We implemented a generic persistence service that allows

us to read and write model instances into an XML Metada-

ta Interchange (XMI) [22] file. Additionally, we implemented

a generic difference detection service (Diff) that finds changed

data in a model automatically and is able to provide this infor-

mation to the three-way merge service that may build upon

the differences a new model version. Further services like

database retrieval are in a design phase.

The introduced tool-integration environment (TiE) is

a prototype implementation that allows us to model tools’

data structures and execute integration rules. Although, the

integration environment is a prototype, we believe that the

architecture of our TiE can be reflected in a commercial tool

for productive use. Furthermore, we see TiE as a playground

for developing new ideas and concepts and testing them with

a concrete implementation. Thus, TiE enables us to imple-

ment scenario prototypes, as described in this contribution,

and evaluate new ideas and concepts. Future commercial mod-

el integration solutions may benefit from this expertise and

select different aspects from TiE.

� ����� ���� �	� �
 ��� ���

m
o

d
e

l 1

m
o

d
e

l 2

m
o

d
e

l 3

m
o

d
e

l n

Diff / Merge

Serialization

Visualization

Testing

Authoring

…

Fig. 11. Model interface services

5. Proof-of-concept prototype

In Sec. 4 we had a look at our prototype scenario from the

perspective of layer M2. For this section we will have a close

look at the functionality of our generated tool adapters and

the way the integration is applied according to Subsec. 2.1.

This more concrete layer can be referred to as M1, according

to the classification scheme described in Sec. 3.

We created all necessary components to apply our tool-

integration so far. The use case we apply next is defined as

follows and depicted in Fig. 12: First of all, we start with

a single location-oriented model instance that contains a sin-

gle project with some sub-objects (Fig. 12 (1)). The next step

is to this data into a HW-Config data instance and associate re-

lated elements with traceability links (2). After importing our

HW-Config data in Step7 we add and manipulate information

and use the changed data (3) as input for a difference recog-

nition mechanism (diff ) (4). The result of the diff process is

a collection of changes applied to the HW-Config data. Final-

ly, changes are taken into account when data backwards (5).

The result is a modified location-oriented model instance (6).

We start with the frontend application of our integration

framework, shown in Fig. 13. This application is called Inte-

grator and allows loading JMI compliant adapters. “Loading”

means that we register a metamodel, represented by the JMI

adapter, and that we are able to create and edit any instance

of this metamodel. For integration purposes, we need to load

both tool adapters and the integration adapter.
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Fig. 12. Workflow sketch for the running example

Fig. 13. Integrator with traceability links after applying a forward

The integration scenario starts with the creation of

a location-oriented model instance (c.f. Fig. 12 (1)) in the

tool Comos (screen dump in Fig. 12 top-left). This instance

contains one Project object with two Location objects. The

first Location object contains a ControllingDevice object with

a Rack object and a CPU in the sense of a Module object. The

second Location object is empty. Figure 14 depicts the object

diagram of our running example after applying all translation

steps from Fig. 12.

On the left-hand side of Fig. 14 the location-oriented mod-

el instance is depicted. A Project object contains two Loca-

tion objects, from which one Location object contains ad-

ditional components. On the right-hand side the HW-Config

model instance is depicted that is composed of a ProjectT

object and its ProjectObjectListT object with an additional

DeviceT object and so on. Between both model instances the

correspondence graph is depicted that connects related ele-

ments of both models. These links are the traceability links

for change recognition and consistency checking. By invok-

ing the forward translation all rules are executed that find

a match in the location-oriented model instance and create the

corresponding elements in the HW-Config data. Additionally,

correspondence links between these elements are created that

preserve traceability. Figure 13 depicts in the lower part the

matrix representation of a similar object diagram compared

to Fig. 14. While executing the forward translation an inter-

nal algorithm picks element by element from the input model

that has to be translated. With each element type a number

of appropriate rules is connected from which a certain rule is

taken and executed. This process is repeated for all elements

in an appropriate order until they are completely translated or

an error occurs. For a detailed description of the rule applica-

tion algorithm and correlated concerns the reader is referred

to [23].

Fig. 14. Object diagram of an integrated location-oriented model

instance and an HW-Config model instance

The next step in our integration scenario is to import the

just created HW-Config data as a XML representation into

Step7 (c.f. Fig. 12 (2), screen dump lower left). To this end,

Step7 provides an import function that allows previewing the

result by highlighting changed or just created content. The

user is allowed to choose which information has to be im-

ported. The data is converted into an internal representation

during import. This leads to information loss when additional

information, not relevant for Step7’s HW-Config, is held by

certain objects. In Step7, changes are applied according to our

use case: An additional Input/Output module is created and

the name of the CPU is changed.

The changed data is saved to an XML file (c.f. Fig. 12 (3))

by using the export functionality of Step7. Now, two versions

of HW-Config data are in place: The initially integrated ver-

sion and the changed document from Step7. The diff, as part of

our generic services depicted in Fig. 12, is used for detecting

changes (c.f. Fig. 12 (4)) between the initial HW-Config data

and the new version and saves them to a list of all changed

elements. The way these changes are computed is not impor-

tant here and the algorithms used in TiE apply incremental

update methods driven by this changelist. This allows us to

think of other ways to recognize changes, such like throwing

events or manual interaction. In consequence, the backward

translation must only consider modified elements in order to

achieve consistency between both models (c.f. Fig. 12 (5)).

Anyway, computing such a change list may be difficult, when

Bull. Pol. Ac.: Tech. 58(3) 2010 417



M. Lauder, M. Schlereth, S. Rose, and A. Schürr

tools do not support unique permanent identifiers for objects.

Step7’s export mechanism does not provide an ID for any of

its objects. From this a standard difference recognition method

may treat all objects as new objects. In our specific use case,

we merge the new information by hand into the old XML file

and therefore provide our diff with correct information only.

The input for our backward translation is the initial

location-oriented model instance and the modified HW-Config

XML file (Fig. 12 (5)). The result of the backward translation

is the creation of a newModule object in the location-oriented

model instance and changing the name of the CPU accord-

ingly. The data representation is incrementally updated with

the new information. The creation of the Module object is

initiated since there is no counterpart in the already relat-

ed model. On the other hand the propagation of the changed

CPU name does not result in a new object though there is al-

so no counterpart with the same name but a previously estab-

lished traceability link that enables the algorithm to recognize

changes in an existing object. Additionally, a new traceability

link between the new Module and the DeviceItemT object

is established. Both model instances are now consistent; that

means they are containing the equivalent information and can

be further used and evolved in their own tools (c.f. Fig. 12 (6)).

6. Related work

Integrated development environments were a research topic

for the past decades. Different approaches have been creat-

ed [24–27]. According to our CMDAE classification scheme

(c.f. Sec. 3) and the defined tool-integration requirements (c.f.

Subsec. 2.1) we are now able to classify such approaches and

tools. Within this section we restrict our focus to approaches

and tools that were important during our research cooperation

in terms of experiences, concepts, and technology. Therefore,

we do not claim to provide a complete overview of all ap-

proaches and tools available. Table 1 arranges the approaches

and tools according to the dimension they deal with.

Existing standards by the OMG relevant for MDA do not

give a complete overview from the megamodeling, described

in [28] perspective. Only the MOF Facility and Object Life-

cycle (MOFFOL) specification defines an overall metamod-

el for the environment of any metamodel and instances. But

MOFFOL contains no classification scheme and is restricted

to models based on MOF. QVT, OMG’s standard of a mod-

el transformation language, deals implicitly with dimension

C and A. The MOF Versioning and Development Lifecycle

is an addition to MOFFOL to deal with different evolution

steps of models. Several other publications deal with a single

dimension of the hypercube. In [29] versioning in a model

environment is presented as a service similar to the concur-

rent version system (CVS) [30]. As a result, our hypercube

is a classification scheme for models in the broadest sense.

In [31] translations are classified independent of the mod-

els they are applied to. Our approach for the classification

of models will help users in selecting tailored translations

based on the user’s choice of involved models. The so-called

megamodeling is close to our concepts of an infrastructure

supporting the CMDAE hypercube. Our approach also sup-

ports some organizational criteria that might be useful for

different services like visualization or browsing [32]. The en-

vironment supporting the CMDAE hypercube provides tai-

lored services. For example, the way of translating changes

of a model might depend on its classification. Tools like Re-

qtify [33] are able to deal with different domains since they

support domain specific tailoring in means of tool specific

adaptions. Altova Mapforce [34] and XLinkit [27] both sup-

port metamodeling implicitly. This means meta-information,

provided via XSD files, can be used for the describing con-

sistency rules or the data mapping. Thus, on instances of

such XSD files, i.e. corresponding XML files, data conver-

sion (Mapforce) or rule-based consistency checks (XLinkit)

can be applied.

Toolnet [24] had a focus on read-only access on relat-

ed tools. Additionally, all required software components were

written manually. Our approach, as a successor of Toolnet,

provides read/write access to related tools as well as ac-

cessing information directly from storages like databases or

files. Metamodeling enables semi-automatic creation of re-

quired software components. Especially the integration of en-

gineering disciplines within machine and plant engineering

has been investigated in several projects. Planning of manu-

facturing cells is often based on a common database as de-

scribed in [35]. The integration of the data models of different

engineering tools in such a database is assumed as a manu-

al development process and not based on CASE methods as

in CMDAE. Approaches for synchronizing models based on

TGGs are summarized in [23]. One approach concerning syn-

chronization of engineering models of manufacturing control

systems is introduced by [36]. Reconciliation between plant

engineering and plant simulation based on TGG is implement-

ed by [37]. Both TGG applications are in different application

domains and do not use common standards like [7] and [19].

Table 1

Classification of approaches and tools according to the CMDAE hypercube (c.f. Sec. 3)

Hypercube Dimension
Approach or Tool

Reqtify Mapforce Biztalk FÖDERAL XLinkit TiE QVT MOFFOL MOFVDL

Dimension C X X X X X X

Dimension M (X) X X (X) X X

Dimension D X

Dimension A X X X

Dimension E X X X
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Table 2

Classification of approaches and tools according to integration requirements (c.f. Subsec. 2.1)

Integration Requirement
Approach or Tool

Reqtify Mapforce Biztalk FÖDERAL XLinkit TiE

Translation X X X

Automatic Translation X X X X

Incremental Translation X (X)

Automatic Incremental Translation X (X)

Consistency Checking X X X X X

Late repair (Engineer decides) (X) (X) (X)

Backtracking (Play through different variants)

(Explicit) Traceability Links X X X

Customization of Traceability Links (own datatypes) X

Table 2 classifies tools and approaches according to the

integration requirements (from Subsec. 2.1) they fulfill.

Several industrial tools aim for supporting the integra-

tion of different information sources in engineering processes.

MapForce is part of a tool set from Altova. It provides visual

specification of unidirectional data mappings based on two

XSDs. The mapping is stored as an XML file itself. Map-

Force supports code generation based on the mapping for

various technologies and languages like C, Java or XSLT.

In comparison, our approach provides visual specification of

bidirectional mappings. As already mentioned, we are able

to (semi-) automatically translate between a MOF metamod-

el and an XSD representation. This enables us to use meta-

models created within our approach also in MapForce. The

relation between TGGs and MapForce mapping is part of our

further investigations. MapForce and our approach are both

not domain specific. Reqtify is a tool from Geensys, which

provides integration of many different tools. Reqtify has its

main focus on requirement engineering and traceability. Re-

qtify, therefore, supports so-called interfaces to support sev-

eral other tools as information sources. Another example for

a tool integrating several other tools by a wide range of con-

nectors is Microsoft Biztalk [38]. As Reqtify does, Biztalk

provides those connectors as part of the product. In con-

trast to Biztalk and Reqtify our approach contains a workflow

for creating tool interfaces in a semi-automatic and generic

way.

Mechatronic engineering according to FÖDERAL al-

so [39] does not require the integration of all data in a com-

mon database but implements a separate database that links

information between the related engineering tools. In contrast

to TiE the adapters and translations from existing engineer-

ing tools to the common database of FÖDERAL have to be

created manually. Another direction is not the integration of

the data models but the integration of the related engineer-

ing disciplines in a common tool as proposed by [40]. This

approach is feasible for the integration of some engineering

disciplines but not in general for an existing tool environment.

Additionally, XLinkit can be extended with a methodology to

repair model instances. Starting from the point that inconsis-

tencies do no harm in general, the engineer is responsible for

choosing the right actions.

7. Summary and open challenges

In this contribution, we showed that the tool-integration ap-

proach with MOF compliant metamodeling and TGG as an in-

tegration technique is an appropriate means for the integration

of automation engineering tools. We developed a prototype

that reflects the typical steps for tool-integration. In parallel,

a classification scheme was developed that can be used to an-

alyze complex integration scenarios. The integration between

concurrent disciplines was investigated in the exemplary field

of integrating ECAD and PLC. We defined MOF compli-

ant metamodels for both domains and additionally integrated

them with a TGG. The use of MOFLON as an editor and

code generator and TGG as an integration technique proved

to be a highly potential combination for integration tasks.

Nevertheless, problems were also encountered when inte-

grating tools in the complex domain of automation engineer-

ing. Currently, it takes a lot of fundamental knowledge about

metamodeling for a non-software engineer to model complex

data structures. The metamodeling process is hard to cope

with for people not familiar with software engineering prin-

ciples. Domain engineering experts are needed that provide

support to describe the tool models. Discussions showed that

one can think of metamodeling as a service-business concept,

where domain-specific engineers and metamodel experts sit

together and establish a common metamodel for certain tools

or data. Furthermore, the use of library and template con-

cepts may support engineers to re-use modules and concepts

on different levels. Building the metamodel is only the start-

ing point for a tool-integration. Since integration requirements

may change during project phases it is necessary to enable

automation engineers to modify the integration on their own.

This process is hardly intuitive, but ideas how to ease inte-

gration modeling already exist. The future goal is to facilitate

the build process of (tool-) integration for all participated en-

gineers on different levels. Recently, we explored ideas and

concepts for dimensions C and M (c.f. Fig. 4). The next di-

mension to be investigated is abstraction (A). Here different

concepts already exist that deal with information hiding and

detailed information. ViewTGGs (VTGGS) are a theoretical

concept to cope with abstraction based on our well-known

TGG approach [41] that may enable us to abstract between
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different metamodeling layers (c.f. Subsec. 3.1). Abstraction

on the same layer in the sense of platform specific information

vs. platform independent information can be achieved with

stratification [42]. Furthermore, other dimensions like evolu-

tion (E) have to be our focus when it comes to integration

of models into product lifecycle management tools (PLMs).

Concrete next steps for improving our approach will be:

• Build a plugin for a commercial tool, e.g. Enterprise Ar-

chitect, that allows you to create MOF and TGG compliant

diagrams and export them to a MOFLON API that takes

care of code generation.

• Decouple code generation from platform specific aspects.

• Improve usability of the integration execution algorithms.

We are also planning to improve MOFLON and TGG the-

ory with additional concepts according to these user require-

ments. Abstraction and modularization of modeling compo-

nents will be a large area of further research. New concepts

have to be established that enable users to hide and abstract

from details. The modularization of components will enable

engineers to model typical problems in a one-time-effort and

re-use them. We are researching techniques that also para-

meterize re-usable components in order to provide additional

domain-specific information.

Together with Siemens AG, we want to drive the CMDAE

approach to a common base of meta-modeling complex sys-

tems in automation engineering and therefore benefit from

efficiency and quality enhancement known from model-based

software engineering.
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