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Existence – uniqueness result for a certain equation

of motion in fractional mechanics
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Abstract. The eigenfunction equation of fractional variational operator including left and right derivative of order α is solved using the fixed

point theorem. Its exact and approximate solutions are studied in detail. The corresponding boundary conditions are derived by means of the

composition rules of fractional operators and the theorem on a unique particular solution of the considered fractional differential equation

is proved.
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1. Introduction

In the paper we solve and study properties of the solutions

of a certain fractional differential equations – one of Euler-

Lagrange equations of fractional mechanics.

Fractional differential equations both ordinary and partial

ones are applied in mathematical modeling of processes in

physics, mechanics, control theory, biochemistry, bioengineer-

ing and economics [1–7]. Therefore the theory of fractional

differential equations is an area intensively developed dur-

ing last decades. The monographs [8–11] enclose a review of

methods of solving which are an extension of procedures from

differential equations theory. Recently, also equations includ-

ing both – left and right fractional derivatives, are discussed.

The existence-uniqueness results obtained in the present pa-

per concern an eigenfunction equation of the composition of

left and right derivative. Although rather basic, this equation

is interesting from the point of view of further applications to

general sequential linear equations of fractional order.

Let us point out that according to integration by parts

formulas in fractional calculus [10, 12], we obtain equations

mixing left and right operators whenever we apply the mini-

mum action principle to fractional model. This approach was

started in 1996 by Riewe [13, 14], developed by Agrawal and

Klimek and investigated ever since [15–23]. The results by

Tarasov [24, 25], Jumarie [26] and Klimek [27] show that the

phenomenon of mixing derivatives can be prevented either by

change of the differential geometry related to the space or by

change of the underlying algebra of functions.

Apart from their possible applications, equations with left

and right derivatives are an interesting and new field in frac-

tional differential equations theory. Preliminary results can be

found in papers [28–34]. Here we study an application of the

fixed point theorem to the eigenfunction equation of fractional

variational operator.

The paper is organized as follows. In Sec. 2 we recall defi-

nitions and some of the properties of fractional operators. This

section is closed with a derivation of Euler-Lagrange equation

for simple model of fractional mechanics. Main results of the

paper are enclosed in Sec. 3, where we first obtain a gener-

al solution of eigenfunction equation of operator cDα
b−D

α
a+

using the fixed point theorem. Then in Subsec. 3.3 we study

boundary conditions determining the unique particular solu-

tion for arbitrary fractional order α ∈ (n − 1, n). Subsec-

tion 3.4 contains a study of analytic approximate solutions.

We also discuss the dependence of the error of approxima-

tion on modulus of the eigenvalue and order α. The paper

is closed with a discussion concerning application of the ob-

tained eigenfunctions in the procedure of solving sequential

linear fractional differential equations dependent on operator
cDα

b−D
α
a+.

2. Fractional operators

We recall some basic definitions of fractional operators and

their properties relevant to our further study [10].

Fractional Riemann-Liouville integrals of order α in finite

interval [a, b] are defined as follows for α > 0:

Iα
a+f(t) :=

1

Γ(α)

t
∫

a

f(s)ds

(t− s)1−α
t > a, (1)

Iα
b−f(t) :=

1

Γ(α)

b
∫

t

f(s)ds

(s− t)1−α
t < b, (2)

where Γ is the Euler gamma function.

The fractional derivatives are defined using the notion of

fractional integrals. We include the definition of left Riemann-

Liouville and right Caputo derivatives.

Definition 2.1. (1) The left Riemann-Liouville derivative of

order α with α ∈ (n−1, n) looks as follows
(

we have denoted

the classical derivative as D :=
d

dt

)

:
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Dα
a+f(t) := DnIn−α

a+ f(t) t > a. (3)

(2) The right Caputo derivative of order α > 0 is defined as

follows:

cDα
b−f(t) :=

= Dα
b−

[

f(t) −

n−1
∑

k=0

Dkf(b)

k!
· (b− t)k

]

,
(4)

where n− 1 = [α].

The fractional derivatives and integrals obey the compo-

sition rules. They are analogues of the fundamental theorem

of classical integral calculus. We shall apply them to trans-

form fractional differential equations into integral ones and to

derive the corresponding boundary conditions.

Property 2.2. (1) Let α > 0 and function f ∈ Lp(a, b) with

p ∈ [1,∞]. Then the following equality

Dα
a+I

α
a+f(t) = f(t) (5)

holds almost everywhere on [a, b]. When f ∈ C[a, b], the

equation is valid at any point t ∈ [a, b].

For f ∈ Cγ [a, b], it is fulfilled for t ∈ (a, b].

(2) Let α > 0 and f ∈ L∞(a, b) or f ∈ C[a, b]. Then:

cDα
b−I

α
b−f(t) = f(t). (6)

In further considerations, we also apply the composition

rule of type (6) for function (t− a)α−n which belongs to the

Cn−α[a, b] space. Let us check that it is fulfilled in interval

(a, b]. Using definition (4) we obtain the formula:

cDα
b−I

α
b−(t− a)α−n = Dα

b−I
α
b−(t− a)α−n−

−

n−1
∑

k=0

DkIα
b−(t− a)α−n |t=b

k!
· (b− t)k.

(7)

We calculate the elements of the sum. For t ∈ (a, b] and

k = 0, . . . , n− 1 we have

DkIα
b−(t− a)α−n = Iα−k

b− (t− a)α−n =

= Γ({α})(b− t)α−k(b− a)α−n×

×1Ψ2

[

(1, 1)

({α},−1) (α− k + 1, 1)
| −

b− t

b− a

]

.

The function on the right-hand side of the above formula is

one of the Fox-Wright functions (compare the definition and

properties in the monograph [10]). Clearly, at the end t = b,
such functions vanish for k = 0, . . . , n− 1 i.e.

DkIα
b−(t− a)α−n |t=b= 0.

Thus, by virtue of Property 2.2 and the above derived equal-

ities the following composition formula

cDα
b−I

α
b−(t− a)α−n = (t− a)α−n (8)

is valid in time interval (a, b].

2.1. Euler-Lagrange equation for a simple fractional mo-

del. Let us recall a simple model in fractional mechanics,

namely we shall derive the Euler-Lagrange equation for ac-

tion S given as follows

S =

b
∫

a

1

2
(Dα

a+f ·Dα
a+f − λf · f) dt. (9)

According to results [13, 14, 17, 30], the corresponding Euler-

Lagrange equation looks as follows

∂L

∂f
+ cDα

b−

∂L

∂(Dα
a+f)

= 0 (10)

provided the boundary terms vanish:

n
∑

k=1

(−1)kDk−1Dα
a+

∂L

∂(Dα
a+f)

·Dn−kIn−α
a+ η(t) |bt=a= 0.

(11)

The above boundary conditions yield the following restric-

tions on variation η:

Dn−kIn−α
a+ η(t) |t=a= 0 k = 1, . . . , n, (12)

Dn−kIn−α
a+ η(t) |t=b= 0 k = 1, . . . , n− 1 (13)

and for function f we get respectively:

Dn−1Dα
a+

∂L

∂(Dα
a+f)

|t=b= 0 (14)

Dk−1Dα
a+

∂L

∂(Dα
a+f)

|t=b<∞ k = 1, . . . , n− 1 (15)

Dk−1Dα
a+

∂L

∂(Dα
a+f)

|t=a<∞ k = 1, . . . , n. (16)

In case α −→ 1+ we recover classical derivatives:

D1
a+g(t) = Dg(t) cD1

b−g(t) = −Dg(t) −Dg(b)

and Euler-Lagrange equation in a standard form:

∂L

∂f
−D

∂L

∂(Df)
= 0

when boundary condition D
∂L

∂(Df)
|t=b= 0 is fulfilled.

Equation (10) can be rewritten for our model in the form of

(cDα
b−D

α
a+ − λ)f(t) = 0 t ∈ [a, b]. (17)

We also observe that the above equation for order α −→
1+ becomes the harmonic oscillator equation

−(D2 + λ)f(t) = 0,

provided boundary condition D2f(b) = 0 is obeyed, which

means the final acceleration is equal to 0. Our aim is to solve

the derived Euler-Lagrange equation for arbitrary real order

α ∈ (n− 1, n) and study the properties of its solutions. Such

an equation is in fact an eigenfunction equation for operator
cDα

b−D
α
a+ and eigenvalue λ. Thus, we shall denote its solu-

tion as Fλ and refer to them as eigenfunctions. We shall also

call Eq. (17) an eigenfunction equation.
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3. Eigenfunction equation

of operator c
D

α

b−
D

α

a+

We shall study an eigenfunction equation in finite time inter-

val

(cDα
b−D

α
a+ − λ)Fλ(t) = 0 t ∈ [a, b], (18)

where λ ∈ C is an arbitrary complex eigenvalue of operator
cDα

b−D
α
a+ for real order α ∈ (n − 1, n). Let us recall that

the above equation is Euler-Lagrange equation for action (9)

when the condition

Dn−1Dα
a+Fλ(t) |t=b= 0 (19)

is fulfilled. We transform the above fractional differential

equation into its integral form. The first step is the appli-

cation of the composition rules given in Property 2.2 and

formula (8):

cDα
b−D

α
a+(1 − λIα

a+I
α
b−)Fλ(t) = 0. (20)

We omit the fractional differential operator using the notion

of a stationary function for composition cDα
b−D

α
a+. The sta-

tionary function fst
α fulfills the equation in the form of

cDα
b−D

α
a+f

st
α (t) = 0 (21)

and is expressed as the following linear combination of power

functions:

fst
α (t) =

n−1
∑

k=−n

Ak(t− a)α+k (22)

with Ak being arbitrary constant coefficients.

For order α −→ n− ∈ N , the stationary function becomes

an arbitrary polynomial function of degree 2n− 1, which is

the stationary function of derivative D2n:

fst
n (t) =

n−1
∑

k=−n

Ak(t− a)n+k. (23)

When order α −→ (n − 1)+ ∈ N , stationary function fst
n−1

is an arbitrary polynomial function of degree 2n − 3 - the

stationary function of derivative D2n−2:

fst
n−1(t) =

n−2
∑

k=−n+1

Ak(t− a)n−1+k. (24)

Let us note that when order α is a non-integer number, the

above stationary function can be split into two parts: a con-

tinuous and a singular one

fst
α (t) = f̄st

α (t) +A−n(t− a)α−n, (25)

where the continuous part is of the following form:

f̄st
α (t) =

n−1
∑

k=−n+1

Ak(t− a)α+k. (26)

Using the notion of a stationary function we can now re-

formulate fractional differential Eq. (18) and write it as the

following equivalent in the Cn−α space, integral fractional

equation:

(1 − λIα
a+I

α
b−)Fλ(t) = fst

α (t) t ∈ [a, b]. (27)

In what follows, we shall consider two cases separately: of

continuous and of singular stationary functions. We shall de-

rive the general solutions of Eq. (27) and therefore also of

Eq. (18), transforming them into fixed point conditions on the

C[a, b] and Cn−α[a, b] spaces respectively. The application of

the Banach theorem on a fixed point means the construction

of contractive mapping. The proposed approach - the separate

treatment of solving procedures, is connected to different con-

ditions assuring the contraction properties of corresponding

operators in spaces of functions continuous or singular and

belonging to the Cn−α[a, b] space.

3.1. Continuous solutions of eigenfunction equation. In the

present section, we shall discuss the application of the Banach

theorem to solve Eq. (27) in the case when the stationary func-

tion is continuous in time interval [a, b]. Then this fractional

integral equation becomes

(1 − λIα
a+I

α
b−)Fλ(t) = f̄st

α (t). (28)

In the space of continuous solutions, the above equation is

equivalent to initial fractional differential Eq. (18) due to

Property 2.2. Let us define the following integral operator

acting on the space of functions continuous in time interval

[a, b] as mapping T :

Tg(t) := λIα
a+I

α
b−g(t) + f̄st

α (t). (29)

Equation (27) and therefore also initial Eq. (18), can be rewrit-

ten as a fixed point condition for mapping T : C[a, b] −→
C[a, b]

Fλ(t) = TFλ(t). (30)

Hence, each continuous solution of the considered equation is

given as a fixed point of mapping T generated by continuous

stationary function f̄st
α . The set of solutions is described in

the following proposition.

Proposition 3.1. Let α > 0 and let f̄st
α be the arbitrary contin-

uous stationary function of form (26) or (23,24) respectively.

If inequality

| λ | · || Iα
a+I

α
b−1 ||< 1 (31)

is fulfilled, then unique continuous solution Fλ of equation

(cDα
b−D

α
a+ − λ)Fλ(t) = 0 t ∈ [a, b]

generated by stationary function f̄st
α exists and is given as the

following series:

Fλ(t) =

∞
∑

m=0

[λIα
a+I

α
b−]mf̄st

α (t) t ∈ [a, b]. (32)

Proof. Let us recall the notion of supremum norm on the

space of continuous functions C[a, b]:
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|| f ||:= max
t∈[a,b]

| f(t) | . (33)

Using this norm, we define the metric as follows

d(f, g) :=|| f − g || (34)

for any pair of continuous functions f, g ∈ C[a, b] and this

function space with metric d, is a metric and complete space.

Let us note that mapping T given by (29) transforms the

continuous function into a continuous function for arbitrary

order α > 0. We check when T is contractive in the space

of continuous functions. Using the properties of integrals, we

obtain the following inequalities for a pair of arbitrary func-

tions h, g ∈ C[a, b]

|| T (h) − T (g) ||=|| λIα
a+I

α
b−(h− g) ||≤ (35)

≤| λ | · || Iα
a+I

α
b−1 || · || h− g ||

and we observe that T is a contractive mapping when the

following inequality holds

| λ | · || Iα
a+I

α
b−1 ||< 1. (36)

Hence, from the Banach theorem on a fixed point, it follows

that a unique solution in space C[a, b], generated by station-

ary function f̄st
α exists. It fulfills equations (18, 27, 28) and

is given as a limit of the iterations of mapping T :

Fλ(t) = lim
m−→∞

Tmψ(t), (37)

where t ∈ [a, b] and function ψ is an arbitrary function con-

tinuous in interval [a, b]. Formula (32) describing the solution

as a series is a corollary of the above form of solution when

ψ ≡ 0 and this ends the proof.

Let us now study condition (31). It clearly restricts the

values of order α, λ and of the length of the time interval. If

we assume b− a = 1, then we arrive at the following form of

condition (31):

| λ | ·φ(α) < 1,

where φ depends on order α and is given as the following

series:

φ(α) =

∞
∑

k=0

(−1)k

Γ(α+ 1 − k)Γ(α+ 1 + k)
.

We shall visualize the admissible values of | λ | for the respec-

tive ranges of order α. The surfaces solving inequality (31)

for b− a = 1 are depicted in Figs. 1–3.

Analyzing the plots enclosed in these figures, we conclude

that for a fixed length of time interval, the range of admissible

eigenvalues increases when order α does.

Fig. 1. Surface | λ | ·φ(α) < 1 for α ∈= (0, 1)

Fig. 2. Surface | λ | ·φ(α) < 1 for α ∈= (1, 2)

Fig. 3. Surface | λ | ·φ(α) < 1 for α ∈= (2, 3)
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3.2. Singular solutions of eigenfunction equation. In this

section, we shall study solutions generated by a singular part

of a stationary function. For given α ∈ (n − 1, n), it be-

longs to the Cn−α[a, b] space which shall be described with

its respective norm in the proof of the following lemma.

Lemma 3.2. Let α ∈ (n− 1, n) and γ ∈ (0, 1) then the frac-

tional integration operator Iα
a+I

α
b− is bounded in the Cγ [a, b]

space:

|| Iα
a+I

α
b−f ||Cγ

≤ K1 || f ||Cγ
, (38)

where constant

K1 = (b − a)2αΓ(1 − γ)/Γ(α+ 1)Γ(1 − γ + α).

Proof. Let us assume that function f ∈ Cγ [a, b] and recall

the corresponding norm:

|| f ||Cγ
:= max

t∈[a,b]
| (t− a)γf(t) | . (39)

For the right-sided integral Iα
b−f , we obtain the inequality

fulfilled for t ∈ (a, b]:

| Iα
b−f(t) |≤

1

Γ(α)

b
∫

t

(s− t)α−1 | f(s) | ds ≤

≤
1

Γ(α)
|| f ||Cγ

b
∫

t

(s− t)α−1(s− a)−γds ≤

≤
(t− a)−γ

Γ(α)
|| f ||Cγ

b
∫

t

(s− t)α−1ds ≤

≤
(t− a)−γ

Γ(α+ 1)
|| f ||Cγ

(b − a)α.

The above inequality implies that function Iα
b−f belongs to

the Cγ [a, b] space and its Cγ – norm obeys the formula:

|| Iα
b−f ||Cγ

≤
(b − a)α

Γ(α+ 1)
· || f ||Cγ

.

Now we shall estimate the Cγ – norm for function Iα
a+I

α
b−f .

Using the definition of this norm we calculate:

|| Iα
a+I

α
b−f ||Cγ

≤

≤ max
t∈[a,b]

| (t− a)γIα
a+(t− a)−γ || Iα

b−f ||Cγ
|≤

≤|| f ||Cγ
· max
t∈[a,b]

|
(t− a)α(b − a)αΓ(1 − γ)

Γ(α+ 1)Γ(1 − γ + α)
|≤

≤
(b− a)2αΓ(1 − γ)

Γ(α+ 1)Γ(1 − γ + α)
· || f ||Cγ

.

From the above calculations, it follows that the considered

double fractional integral operator is indeed bounded in the

Cγ [a, b] space:

|| Iα
a+I

α
b−f ||Cγ

≤ K1 || f ||Cγ
,

where K1 = (b − a)2αΓ(1 − γ)/Γ(α + 1)Γ(1 − γ + α) and

this ends the proof.

Let us now denote as mapping T s the following integral

operator acting on space Cn−α[a, b]:

T sg(t) := λIα
a+I

α
b−g(t) +A−n(t− a)α−n. (40)

For γ = n− α, constant K1 from Lemma 3.2 is given as

K1 =
(b− a)2αΓ({α})

Γ(α+ 1)Γ(α+ {α})
, (41)

with {α} denoting the fractional part of order α.

We assume that function g ∈ Cn−α[a, b] and we check the

Cn−α norm of its image T sg using Lemma 3.2. The following

inequalities hold:

|| T sg ||Cn−α
≤| λ | · || Iα

a+I
α
b−g ||Cn−α

+

+ | A−n | · || (t− a)α−n ||Cn−α
≤

≤| λ | ·K1 || g ||Cn−α
+ | A−n |<∞,

(42)

where constant K1 is determined by formula (41).

Mapping T s is correctly defined as it maps functions from

the Cn−α[a, b] space into image functions also belonging to

the Cn−α[a, b] space.

For non-integer order α, Eq. (27) and therefore also ini-

tial Eq. (18) can be rewritten as a fixed point condition for

mapping T s : Cn−α[a, b] −→ Cn−α[a, b]

Fλ(t) = T sFλ(t). (43)

We conclude that each singular solution of Eq. (18) from the

Cn−α[a, b] space is given as a fixed point of mapping T s. This

subset of solutions is described in the following proposition.

Proposition 3.3. Let α ∈ (n − 1, n) and let fst
α (t) =

A−n(t− a)α−n be a singular stationary function of operator
cDα

b−D
α
a+ with A−n being an arbitrary constant. If inequality

| λ |<
Γ(α+ 1)Γ(α+ {α})

(b− a)2αΓ({α})
(44)

is fulfilled, then unique singular solution Fλ ∈ Cn−α[a, b] of

Eq. (18), generated by the above stationary function fst
α exists

and is given by the following series:

Fλ(t) = A−n

∞
∑

m=0

(λIα
a+I

α
b−)m(t− a)α−n. (45)

Proof. We have checked that mapping T s acts as follows

T s : Cn−α[a, b] −→ Cn−α[a, b].

Let us note that the Cn−α-norm induces on space Cn−α[a, b]
the following metric

ds(g, h) :=|| g − h ||Cn−α

for any pair of functions g, h ∈ Cn−α[a, b].

Space Cn−α[a, b] with metric ds defined above is a met-

ric and complete space, thus fulfills the assumptions of the

Banach theorem on a fixed point. The next step is the investi-

gation of properties of mapping T s. We obtain the following

inequality:

Bull. Pol. Ac.: Tech. 58(4) 2010 577
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|| T sg − T sh ||Cn−α
=|| T s(g − h) ||Cn−α

=

=| λ | · || Iα
a+I

α
b−(g − h) ||Cn−α

≤

≤| λ | ·K1 || g − h ||Cn−α
.

The above inequality yields for metric ds the relation:

ds(T
sg, T sh) ≤| λ | ·K1ds(g, h).

We notice that mapping T s is contractive on the Cn−α[a, b]
space when the constants obey the condition:

| λ | ·K1 < 1.

In this way, we obtain the inequality for eigenvalue λ, frac-

tional order α and for the length of time interval [a, b]:

| λ |<
Γ(α+ 1)Γ(α+ {α})

(b − a)2αΓ({α})
.

When this assumption is fulfilled, mapping T s is contractive

on the Cn−α[a, b] space and using the Banach theorem, we

conclude that a unique point obeying condition (43) exists.

This fixed point is given as a limit of the iterations of map-

ping T s:

Fλ(t) = lim
m−→∞

(T s)mψ(t)

for any function ψ ∈ Cn−α[a, b]. Solution Fλ also is a unique

solution of Eqs. (18), (27) in space Cn−α[a, b]. Formula (45)

describing the solution as a series is a limit of the iterations

of mapping T s when ψ ≡ 0 and this ends the proof.

3.3. Boundary conditions and particular solutions. The

solutions described in the previous section include arbitrary

constants. We shall now study the boundary conditions which

determine these constants. Let us denote the components of

solution Fλ generated by the (t− a)α+k components of sta-

tionary functions as Fk
λ . These particular solutions fulfill the

following fractional integral equations for k = −n, . . . , n−1:

Fk
λ(t) = λIα

a+I
α
b−F

k
λ + (t− a)α+k. (46)

According to Propositions 3.1 and 3.3 they can be expressed

as the sums of the following series:

Fk
λ(t) =

∞
∑

m=0

(λIα
a+I

α
b−)m(t− a)α+k (47)

for k = −n, . . . , n−1. These series are convergent in interval

[a, b] when k = −n+ 1, . . . , n− 1 and in (a, b] for k = −n.

Their sums belong respectively to the C[a, b] and Cn−α[a, b]
spaces.

Let us now analyze the boundary values of eigenfunctions

Fk
λ . We calculate derivatives Dα−l

a+ of component Fk
λ . Using

the composition rule from Property 2.2 [10], we obtain the

following equality valid for t ∈ [a, b]:

Dα−l
a+ Fk

λ(t) =

= λI l
a+I

α
b−F

k
λ(t) +

Γ(α+ k + 1)

Γ(k + l + 1)
(t− a)k+l,

(48)

where l = 1, . . . , n. The above set of equalities yields the set

of initial conditions for component solution Fk
λ fulfilled at

t = a:

Dα−l
a+ Fk

λ(t) |t=a= Γ(α+ k + 1)δ−l,k (49)

for k = −n,−n+ 1, . . . , n− 1 and l = 1, . . . , n.

Derivative Dα
a+ of the component solution looks as fol-

lows:

Dα
a+F

k
λ(t) = λIα

b−F
k
λ(t) +

Γ(α+ k + 1)

Γ(k + 1)
(t− a)k. (50)

When we include derivatives Dl (of integer order l =
0, . . . , n− 1) we arrive at the formula:

DlDα
a+F

k
λ(t) =

= λ(−1)lIα−l
b− Fk

λ(t) +
Γ(α+ k + 1)

Γ(k − l + 1)
(t− a)k−l

(51)

valid in interval [a, b].
This property of the component solution yields the fol-

lowing terminal conditions - fulfilled at end t = b:

DlDα
a+F

k
λ(t) |t=b=

Γ(α+ k + 1)

Γ(k − l + 1)
(b− a)k−l. (52)

Now we shall derive particular solution Fλ of Eq. (18) obey-

ing the set of boundary conditions. We conclude that the fol-

lowing set of conditions is consistent with our eigenfunction

problem:

Dα+l
a+ Fλ(t) |t=a= Al l = −n, . . . ,−1, (53)

DlDα
a+Fλ(t) |t=b= Al l = 0, . . . , n− 1. (54)

In order to construct a solution fulfilling the above boundary

conditions, we shall define the set of coefficients A′

l by the

recurrence relations:

A′

l = Al (55)

for l = −n, . . . ,−1,

A′

n−j = An−j −

j−1
∑

i=1

(b− a)i

Γ(i+ 1)
A′

n−j+i (56)

for j = 2, . . . , n− 1 and A′

n−1 = An−1.

The following theorem represents the solution of Eq. (18)

as the linear combination of basic solutions (46), (47). We

construct them in such a way as to obtain particular solutions

fulfilling the above set of boundary conditions.

Theorem 3.4. Let α ∈ (n− 1, n). Then equation

(cDα
b−D

α
a+ − λ)Fλ(t) = 0 (57)

has in finite time interval [a, b], a unique Cn−α[a, b] solution

fulfilling the following boundary conditions:

Dα+l
a+ Fλ(t) |t=a= Al l = −n, . . . ,−1, (58)

DlDα
a+Fλ(t) |t=b= Al l = 0, . . . , n− 1, (59)

provided inequality (31) is fulfilled. In the case when constant

A−n 6= 0, we replace condition (31) with the assumption

| λ |<
Γ(α+ 1)Γ(α+ {α})

(b − a)2αΓ({α})
. (60)
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The above solution is the following linear combination of ba-

sic solutions Fk
λ given in formulas (46), (47):

Fλ(t) =
n−1
∑

k=−n

A′

k

Γ(α+ k + 1)
Fk

λ(t), (61)

where coefficients A′

k are defined by recurrence relations

(55)–(56).

Proof. From the results given in Propositions 3.1 and 3.3 it

follows that the function given by formula (61) is a unique so-

lution of fractional Eq. (18) in the Cn−α[a, b] space generated

by the stationary function:

fst
α (t) =

n−1
∑

k=−n

A′

k

Γ(α+ k + 1)
(t− a)α+k.

Let us check that this linear combination of the basic solu-

tions obeys the boundary conditions given in formulas (58),

(59). We begin with l = −n, . . . ,−1 and have the boundary

conditions fulfilled at t = a:

Dα+l
a+ Fλ(t) |t=a=

=

n−1
∑

k=−n

A′

k

Γ(α+ k + 1)
· Γ(α+ k + 1)δl,k = A′

l = Al.

Now we analyze the second subset of the boundary condi-

tions:

DlDα
a+Fλ(t) |t=b=

=

n−1
∑

k=−n

A′

k

Γ(α + k + 1)
·
Γ(α+ k + 1)

Γ(k − l+ 1)
· (b− a)k−l =

=

n−1
∑

k=l

A′

k(b− a)k−l

Γ(k − l + 1)
= A′

l +

n−1
∑

k=l+1

A′

k(b− a)k−l

Γ(k − l + 1)
=

= Al −

n−l−1
∑

i=1

A′

l+i(b − a)i

Γ(i+ 1)
+

n−1
∑

k=l+1

A′

k(b− a)k−l

Γ(k − l + 1)
= Al.

We conclude that the above solution fulfills the assumed

boundary conditions and that ends the proof.

Remark. Let us recall that when we consider eigenfunction

Eq. (57) as an equation of motion for action (9) we have an

additional restriction:

Dn−1Dα
a+Fλ(t) |t=b= An−1 = A′

n−1 = 0.

3.4. Approximate continuous solutions. We shall now study

the approximate continuous solutions of problem (18). The

solutions described in Proposition 3.1 and Theorem 3.4 are

constructed using the Banach theorem on a fixed point which

gives us a good control of the error of approximation. The

corresponding estimates of error are enclosed in the follow-

ing proposition.

Proposition 3.5. Let α > 0 and let f̄st
α be an arbitrary contin-

uous stationary function of operator cDα
b−D

α
a+ of form (26)

or (23), (24) respectively. If inequality (31) is fulfilled, then

approximate solution fap of Eq. (18) given by the finite sum:

fap(t) =

m
∑

l=0

[λIα
a+I

α
b−]lf̄st

α (t) (62)

yields the following error of approximation for continuous

solution Fλ:

|| fap −Fλ ||≤
Lm

1 − L
· || f̄st

α ||, (63)

where constant L :=| λ | · || Iα
a+I

α
b−1 ||.

The proof is the straightforward corollary of the Banach

theorem on a fixed point.

Inequality (63) yields the condition for the error to be

smaller than ǫ, namely from the inequality

|| fap −Fλ ||≤
Lm

1 − L
· || f̄st

α ||≤ ǫ,

it follows

m ≥
log(ǫ) + log(1 − L) − log(|| f̄st

α ||)

log(L)
.

The above formula is simplest for the normalized stationary

function || f̄st
α ||= 1. In this case, we obtain the condition for

the number of iterations:

m ≥
log(ǫ) + log(1 − L)

log(L)
.

Let us denote the function on the right-hand side of the above

inequality as follows:

∆(ǫ, L) :=
log(ǫ) + log(1 − L)

log(L)
.

We notice that the above function yields the lower bound for

the number of iterations m and it is a decreasing function of

ǫ. Thus, we shall fix the value of ǫ = 0.01, restrict the length

of time interval b− a = 1 and analyze the influence of order

α and | λ |. In the first example illustrated by Fig. 4, we draw

the graphs of function ∆(0.01, L) for chosen values of | λ |
when α ∈ (0, 1).

We observe that function ∆(0.01, L) has a maximum in

interval (0, 1) for every analyzed value of modulus | λ |. In

addition, if | λ | increases, then so does the lower bound

for m.

Now we check the number of iterations necessary to have

an error of approximation smaller than ǫ = 0.01 for fixed

range α ∈ (1, 2). The graphs in Fig. 5 illustrate the depen-

dence of the lower bound of m on parameters | λ | and α.

Contrary to the case α ∈ (0, 1), in this example the low-

er bound of m is a decreasing function of order α for each

chosen modulus of the eigenvalue. Similarly to the previous

example we observe that it is an increasing function of | λ |.
Analyzing the results illustrated in Fig. 6 for range of order

α ∈ (2, 3), we notice that the behaviour of the lower bound

of m is analogous to that given in Fig. 5 for α ∈ (1, 2). For

each given λ, we also observe that ∆(0.01, L) is a decreasing

function in a set (1, 2) ∪ (2, 3).
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Fig. 4. Function ∆(0.01, L) for α ∈ (0, 1)

Fig. 5. Function ∆(0.01, L) for α ∈ (1, 2)

Fig. 6. Function ∆(0.01, L) for α ∈ (2, 3)

4. Concluding remarks

In the paper we studied an eigenfunction equation of a varia-

tional operator and derived its solution using the Banach fixed

point theorem. The study included analysis of properties of

exact and approximate solutions. The surfaces of admissible

eigenvalues were illustrated by examples for a given range of

fractional order α. For approximate solutions, we investigated

the behaviour of the lower bound of the number of iterations

restricting the error of approximation.

In our opinion, this simple fractional differential equation

is of interest as its solutions can be used in the construction

of solutions of general linear sequential equations containing

operator cDα
a+D

α
b−. Clearly, when we consider in finite time

interval [a, b] an equation in the form of:

L(cDα
a+D

α
b−)f(t) = 0,

where L is a polynomial function

L(λ) := λN +

N−1
∑

k=0

Akλ
k

we can factorize the above equation as follows:

L(cDα
a+D

α
b−)f(t) =

N
∏

k=1

(cDα
a+D

α
b− − λk)f(t) = 0.

In the case when {λk ∈ C k = 1, . . . , N} is a set of simple

roots of the characteristic equation L(λ) = 0 we immediately

construct the general solution as the sum

f(t) =
N

∑

k=1

Fλk

dependent on N × n constants with Fλk
given in Proposi-

tions 3.1 and 3.3, provided condition

max
k=1,...,N

| λk | · || Iα
a+I

α
b−1 ||< 1

is fulfilled. The proof and further applications of the obtained

results will be enclosed in a subsequent paper.
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