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Abstract. This paper focuses on combining audio-visual signals for Polish speech recognition in conditions of the highly disturbed audio

speech signal. Recognition of audio-visual speech was based on combined hidden Markov models (CHMM). The described methods were

developed for a single isolated command, nevertheless their effectiveness indicated that they would also work similarly in continuous audio-

visual speech recognition. The problem of a visual speech analysis is very difficult and computationally demanding, mostly because of an

extreme amount of data that needs to be processed. Therefore, the method of audio-video speech recognition is used only while the audio-

speech signal is exposed to a considerable level of distortion. There are proposed the authors’ own methods of the lip edges detection and

a visual characteristic extraction in this paper. Moreover, the method of fusing speech characteristics for an audio-video signal was proposed

and tested. A significant increase of recognition effectiveness and processing speed were noted during tests – for properly selected CHMM

parameters and an adequate codebook size, besides the use of the appropriate fusion of audio-visual characteristics. The experimental results

were very promising and close to those achieved by leading scientists in the field of audio-visual speech recognition.

Key words: coupled hidden Markov models, audio-visual speech recognition, lip reading.

1. Introduction

There are used two separate streams of information in audio-

visual speech recognition, each for every signal, in contrast to

only one in audio speech. The combination of these streams

should provide a better performance in comparison with mod-

ern solutions using each source separately. Although the use

of visual features for a robust speech recognition system ap-

pears to be natural, there are several questions that need to

be answered, such as: what a robust set of visual features is,

what the best mean of audio and visual feature integration is,

what represents the best model for audio-visual data.

In works [1–2] the authors presented an analysis of the

efficient lip reading method for various languages. First, they

applied an active appearance model, and simultaneously ex-

tracted the external and internal lip contours. Furthermore,

teeth and an internal lip region were detected. Various fea-

tures from five regions were fed to the recognition process.

There were selected – as recognition targets - four languages

with 20 words recorded for each of them. The proposed analy-

sis of a feature trajectory based on three shapes (features, area

with aspect ratio of internal lip region and area of intraoral

region) provided the highest recognition rates of 93.6% in

comparison with traditional methods and other regions [3]. In

other works [4, 5] the authors presented the Bayesian mod-

el of optimal cue integration for the lip reading, where words

were regarded as points in a multidimensional space and word

recognition was a probabilistic inference process. While the

dimensionality of the feature space was low the Bayesian mod-

el predicted an inverse effectiveness. On the other hand, while

the dimensionality was high, the enhancement was maximal

at intermediate auditory noise levels. Moreover, when the au-

ditory and visual stimuli differed slightly in high noise, the

model made a counterintuitive prediction: as sound quality

increases, the proportion of reported words corresponding to

the visual stimulus should first increase and then decrease.

In fact they confirmed this prediction in a behavioral ex-

periment and concluded that auditory-visual speech percep-

tion obeyed the same notion of optimality previously observed

only for simple multisensory stimuli [3]. The authors [6,7]

proposed a real-time lip-reading method in smart phone envi-

ronment, where resources were limited to existing PC environ-

ment. Therefore it was hard to achieve real-time lip-reading.

In order to solve this problem they proposed the lip area detec-

tion method and feature extraction method suitable for smart-

phone environment. To find the accurate lip area the face area

was detected by means of face colour information and eyes

were located to detect the lip area with the geometrical rela-

tion. Then there were applied histogram matching, lip folding

and RASTA filter - to extract the outstanding features of the

lip area in terms of light changes according to the surround-

ing. Then extracted features were used during the recognition

process. They showed that the changes were recognized al-

most in real-time, and 30 out of 50 words were recognized.

That indicated about 60% recognition rates [3].

In works [8–9], the authors presented an integrated AVSR

system, where noise tolerance was improved through enhanc-

ing the performance of three main components of the system.

First, subsystem visual performance was improved by means

of stochastic optimization methods for the hidden Markov

models. Second, a new method of speech dynamic analysis

was proposed, which improved acoustic efficiency. Third, an
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efficient integration of both signal streams was used to deter-

mine final robust recognition results by utilizing neural net-

works.

This paper presents a study of an optimal selection of

CHMM parameters settings with combination of codebook

size and the use of this method for audio-visual Polish speech

recognition. The described method was proposed to eliminate

the negative influence of external factors on audio speech sig-

nal. The recognition was based only on isolated words, but the

effectiveness of this method could be transferred to continuous

speech recognition systems. The difficult speech video image

analysis was used only in situations where the audio speech

signals were exposed to disturbances. In systems operating

in a quiet environment, one should not use the audio visual

speech recognition, because it slows the whole system work.

The mechanism of cepstral speech analysis was applied for

extraction of person’s speech audio features. The mechanism

used a bank of amplitude-frequency filters with characteristics

similar to human hearing. Besides that, twenty-dimensional

MFCC (Mel Frequency Cepstral Coefficients) were used as

the standard audio features for acoustic speech recognition.

In addition own methods were created to determine the be-

ginning and the end of isolated words in audio speech signal.

Moreover, Lloyd algorithm for vector quantization was ap-

plied. Finally, automatic methods of face, eyes and region of

mouth detection were used for visual feature extracting. The

visual features were: the corners, outside edges of the lips,

and the visible tongue.

2. Preprocessing of input audio signal

It is necessary – in systems of isolated words recognition

– during recordings, to make a short-lived but clear pauses

in form of silence among individual words. In case of this

kind of recognition, after a preliminary filtration of a signal

the next stage is to create a clean and proper audio signal,

through removal silence at the beginning and at the end of a

signal.

An identification, which frames are to be rejected, is not

simple to determine whether energy matches the frame condi-

tion. There can appear instantaneous power spikes before the

beginning of a useful signal. In most cases they are related

to interference caused by the environment in which the signal

recording takes place. Therefore, a more complex search is

needed to determine the beginning and the end of the audio

signal. For this reason the system uses two more parameters

of the LRP (the initial number of frames) and LRK (the fi-

nal number of frames). The first one specifies the number of

frames consecutively, which energy satisfies the condition. If

that number of frames is found, then the first of these frames

is marked as the beginning of the audio signal. The second

parameter specifies the number of frames consecutively, the

power does not satisfy the condition. If that number of frames

is found, then the first of these frames is determined as the end

of the audio signal. If the required number of frames is not

found before reaching the last frame, then the end of the sig-

nal is assigned to the frame, the first condition is not fulfilled.

Assuming that the parameters of LRP and LRK will be set to

the value 3, may be illustrated by examples from the energy

distribution frames fulfilling this condition (see Fig. 1).

Fig. 1. The sequence or the way of searching LRP and LRK

Because the speech signal is not stationary, what results

from dynamic properties of human speech, next stage depends

on the use of division of entrance signal onto stationary frame

boxes [10]. The signal is stationary in short temporary parti-

tions (10 ± 30 ms) [11]. Every such a stationary frame box

was replaced by the symbol of observation in the process of

creation the observation vectors. In the created system it was

accepted the length of every frame box equal 30 ms. To keep

the signal stationary a method of delaying next frame boxes

was applied. As a result every next frame box is sewing on

previous with delay.

3. Encoding the signal using Cepstral analysis

and Lloyd algorithm

Speech processing applications require specific representation

of the speech information. The speech signal may be analysed

in two main ways: as a signal generated from the speech signal

based on voice characteristics [12], and registered as a recog-

nized signal. A wide range of possibilities exists for para-

metrically representation of the speech signal. Among these

the most important parametric representation of the speech is

a short time spectral envelope [10, 13]. Linear Predictive Cod-

ing (LPC) and Mel Frequency Cepstral Coefficients (MFCC)

spectral analysis models have been used widely for speech

recognition applications. Usually together with MFCC coef-

ficients, first and second order derivatives are also used to

take into account the dynamic evolution of the speech signal,

which carries relevant information for the speech recognition.

For the extraction of audio features, we use Mel Frequen-

cy Cepstral Coefficients (MFCC) to the analysis of the audio

speech. In the process of speech signals perception the human

ear makes non-linear (in frequency domain) spectrum analy-

sis of this signal. Cepstral analysis using filter bank consists

of passing the signal through a spectral band pass filter bank

before switching into the field frequency. In order to adapt

the characteristics of filters, frequency scale is converted into

mel-scale using the following formula:

fmel = 2595 log10(1 + fHz/700), (1)

where fmel – mel scale, fHz – frequency in the normal linear

frequency scale.

Characteristics of filters copy the human auditory system.

The filters had triangular bandpass frequency responses. The

bands of filters were spaced linearly for bandwidth below

1000 Hz and increased logarithmically after the 1000 Hz. In

the mel-frequency scaling, all the filter bands had the same

308 Bull. Pol. Ac.: Tech. 60(2) 2012



Characteristics of the use of coupled hidden Markov models...

width, which were equal to the intended characteristics of the

filters, when they were in normal frequency scaling.

Spectrum of signal of every frame boxes obtained by Fast

Fourier Transform (FFT) comes under process of filtration by

bank of filters. The next step is to calculate the members of

each filter by multiplying the filter’s amplitude with the av-

erage power spectrum of the corresponding frequency of the

voice input. The summation of all members of filters is:

Sk =

(N/2)−1∑

n=0

(Pn · Ak,n), (2)

where Sk – power spectrum coefficients,N – the total number

of samples in the framework, Pn – average power spectrum

of the input sound, Ak,n – amplitude.

The filter bank parameters are intricately linked, causing

deterioration in recognition performance, even if one assumes

the independence of the parameters in the vector of observa-

tions. The improvement of the quality of recognition may be

achieved through the use of cepstral transform of filter bank

parameters, involving the appointment of cepstral coefficients

in mel scale MFCC as discrete cosine transformations of the

logarithms of filter bank parameters according to the relation-

ship:

MFCCn =

K∑

k=1

(logSk) cos

[
n(k − 0.5)

π

K + 1

]
,

for n = 1...N,

(3)

where Sk – power spectrum coefficients, K – a required num-

ber of cepstrum coefficients, N – a number of filters in a filter

bank.

An additional advantage of MFCC coefficients is decou-

pled speech signal from the influence of the transmission

channel. Assuming that the transmission channel is a linear

dynamic system, signal at its output is the convolution of the

speech signal (input) and the impulse response of the sys-

tem. Thus, the specter of a distorted speech signal (output)

is the product of the speech signal spectrum and frequency

characteristics of the transmission channel. The impact of the

transmission channel is reduced by subtracting the average

value of MFCC coefficients from all observation vectors in

the field of cepstrum. In fact, the average value is estimated

using a limited amount of data, and subtract the mean opera-

tion does not eliminate the influence of the transmission chan-

nel for the signal. Nevertheless, this simple technique is very

effective in practice, to compensate for long-term effects on

the spectrum, caused by different microphones and transmis-

sion channels used during the registration process of speech

signals. To perform the cepstral normalization of the average

value, it is an average value of each cepstrum coefficient for

all speech learning.

The frequency band, which analyses the signal may cover

the entire frequency range, or may be limited (for example, to

reject the frequency ranges). In the latter case one should ask

the lower and upper frequency bands analysed, the present

number of channels in the filter bank to be spread evenly

along the mel-scale range in this way, that the lower frequen-

cy bands will coincide with the lower cutoff of the first filter,

and the upper frequency band is the upper cutoff of the last

filter.

The use of loss compression, the data generated by the

source must be represented by one of the small number of

code words. The number of different data is generally much

larger than the number used to represent those code words.

Vector quantization is performed in the process of codebook

based on a set of input records, covering the whole space for

a given problem and the user. Vector quantization is to assign

a suitable symbol of each frame of speech signal. In speech

recognition systems based on HMM, each frame represented

by a vector of observation is coded as a symbol of observation.

There was applied Lloyd algorithm to vector quantization.

4. The audio-visual CHMM

A CHMM may be seen as a collection of hidden Markov

models (HMM), one for each data stream, where the hidden

backbone nodes at time t for each HMM are conditioned by

the backbone nodes at time t − 1 for all the related HMMs.

The squares represent the hidden discrete nodes (backbone

and mixture nodes) while the circles describe the continu-

ous observable nodes. Unlike the independent HMM used for

the audio-visual data, the CHMM can capture the interactions

between the audio and video streams through the transition

probabilities between the backbone nodes. In the system pre-

sented in this paper, the audio-visual CHMM allows for asyn-

chrony in the audio and visual states but forces them to be

synchronized at the model boundaries. In addition, with the

coupled HMM, the likelihood of audio and video observation

is computed independently, significantly reducing the para-

meter space and complexity of the model compared to the

models that require the connection of the audio and visual

observations [14].

The parameters of a CHMM are defined below:

πc
0 (i) = P (qc

t = i) , (4)

bct (i) = P (Oc
t |q

c
t = i, ) (5)

ac
i|j,k = P

(
qc
t = i|q0t−1 = j, q1t−1 = k

)
, (6)

where qc
t is the state of the couple node in the c-th stream at

time t.
In a continuous mixture with Gaussian components, the

probabilities of the observed nodes are given by:

bct (i) =

Mc
i∑

m=1

wc
i,mN

(
Oc

t , µ
c
i,m, U

c
i,m

)
, (7)

where µc
i,m and U c

i,m are the mean and covariance matrix of

the i-th state of a coupled node, and m-th component of the

associated mixture node in the c-th channel. M c
i is the num-

ber of mixtures corresponding to the i-th state of a coupled

node in the c-th stream and the weight wc
i,m represents the

conditional probability:

P (sc
t = m|qc

t = i) , (8)
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where sc
t is the component of the mixture node in the c-th

stream at time t. Unlike isolated word audio-visual speech

recognition where one CHMM is used to model each audio-

visual word, in audio-visual continuous speech recognition,

each CHMM models one of the possible phoneme – visual

pairs as defined in [15].

The training of the CHMM parameters for the system is

performed in two stages and is an extension of the training

used in audio-only speech recognition. In the first stage, the

CHMM parameters are estimated for isolated phoneme-visual

pairs. In this stage, the training sequences are labeled using

an audio-only speech recognition system, and the phoneme-

visual correspondence tables. The parameters of the isolated

phoneme-visual CHMMs are estimated first using the Viterbi-

based initialization followed by the estimation-maximization

(EM) algorithm. To deal with the requirements of speech

recognition systems, two additional CHMMs are trained to

model the silence between consecutive words and sentences.

In the second stage, the parameters of the CHMMs, estimated

individually in the first stage, are refined through the embed-

ded training of all CHMM from audio-visual speech. In this

stage, the labels of the training sequences consist only of the

sequence of phoneme-visual with all boundary information

being ignored. Each of the models obtained in the first stage

are extended with one entry and one exit non-emitting states-

in a way similar to the embedded training for HMMs. The use

of the non-emitting states also enforces the phoneme-visual

synchrony at the model boundaries [14].

The embedded training follows the steps of the EM algo-

rithm for continuous audio-visual speech, and is described by

the following:

E step. The forward probability:

αt (i, j) = P
(
O1, ..., Ot, q

0
t = i, q1t = j

)
(9)

and the backward probability:

βt (i, j) = P
(
Ot + 1, ..., OT |q

0
t = i, q1t = j

)
(10)

are computed. Starting with the initial conditions:

α1 (i, j) = π0
1 (i)π1

1 (j) b01 (i) b11 (j) (11)

the forward probabilities are computed recursively from:

αi (i, j) = b0t−1 (i) b1t−1 (j)
∑

l,k

ai,j|l,kαt−1 (l, k) (12)

for t = 2, 3, ..., T . Similarly, from the initial conditions:

βT (i, j) = 1 (13)

the backward probabilities are computed recursively from:

βt (i, j) =
∑

l,k

b0t+1 (l) b1t+1 (k) al,k|i,jβt−1 (l, k) (14)

for t = T − 1, T − 2, ..., 1 where i, j are the states of the

audio and video chain respectively and ai,j|k,l = is the tran-

sition probabilities between the set of audio-visual states i, j
and k, l. The probability of the r-th observation sequence:

Or = [Or
1 , ..., O

r
T r] (15)

is computed as:

Pr = αT r (N,M) = β1 (1, 1) , (16)

where N,M are the number of states in the audio and video

chain respectively and Tr is the length of the observation se-

quence Or.

M step. The forward and backward probabilities obtained in

the E step are used to re-estimate the state parameters as

follows:

µ̃c
i,m =

ΣrΣtγ
r,c
t (i,m)Or

t

ΣrΣtγ
r,c
t (i,m)

, (17)

Ũ c
i,m =

ΣrΣtγ
r,c
t (i,m)

(
Or

t − µc
i,m

) (
Or

t − µc
i,m

)′

ΣrΣtγ
r,c
t (i,m)

, (18)

w̃c
i,m =

ΣrΣtγ
r,c
t (i,m)

ΣrΣtΣmγ
r,c
t (i,m)

, (19)

where

γr,c
t (i,m)

=
Σj

1

Pr
αr

t (i, j) βr
t (i, j)wc

i,mN
(
Or

t , µ
c
i,m, U

c
i,m

)

Σi,j
1

Pr
αt (i, j)βt (i, j) Σmwc

i,mN
(
Or

t , µ
c
i,m, U

c
i,m

) .

(20)

The state transition probabilities may be estimated using:

ã0,1
i|k,l =

Σr
1

Pr
Σtα

r
t (k, l) ai|k,lb

0,1
t (i)Σjβ

r
t+1 (i, j) b1,0

t (j)

Σr
1

Pr
Σtαr

t (k, l) βr
t (k, l)

.

(21)

Assuming that:

a0,1
i|l,k = P

(
q0,1
t = i|q0,1

t = k
)
P

(
q0,1
t = i|q1,0

t = l
)
, (22)

the re-estimation of the transition probabilities may be sim-

plified. For example:

P
(
q0t = i|q1t = k

)
(23)

may be estimated as:

P
(
q0t = i|q1t = k

)
=

Σr
1

Pr
ΣtΣjΣlα

r
t (k, l) ai,j|k,lb

0
t (i) b1t (k)βr

t+1 (i, j)

Σr
1

Pr
ΣtΣjΣlαr

t (k, l) βr
t (k, l)

.
(24)

The transitions from a non-emitting entry state i to any

pair of audio-visual states (k, l) is given by:

ai|k,l =
1

R

∑

r

1

Pr
αr

1 (k, l)βr
1 (k, l) (25)

and the transitions from a state pair (k, l) to the exit non-

emitting exit state o are given by:

ak,l|o =
Σr

1

Pr
αr

T (k, l)βr
T (k, l)

Σr
1

Pr
Σtαr

t (k, l)βr
t (k, l)

CHMM method is described based on the work of [14].

The maximum likelihood (ML) training of the dynamic

Bayesian networks in general and of the coupled HMMs in
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particular, is a well understood technique. However, the iter-

ative maximum likelihood estimation of the parameters only

converges to a local optimum, making the choice of the ini-

tial parameters of the model a critical issue. In [16] there

is presented an efficient method for the initialization of the

ML training that uses a Viterbi algorithm derived for the cou-

pled HMM. The Viterbi algorithm determines the optimal se-

quence of states for the coupled nodes of the audio and video

streams that maximizes the observation likelihood. The fol-

lowing steps describe the Viterbi algorithm for the two stream

coupled HMM used in our audio-visual system. An extension

to a multi-stream coupled HMM is straightforward [16]:

– Initialization:

δ0 (i, j) = πa
0 (i)πv

0 (j) bat (i) bvt (j) , (26)

ψ0 (i, j) = 0. (27)

– Recursion:

δt (i, j) = max
k,l

{
δt−1 (k, l) ai|k,laj|k,l

}
bat (k) bvt (l) , (28)

ψt (i, j) = arg max
k,l

{
δt−1 (k, l) ai|k,laj|k,l

}
. (29)

– Termination

P = max
i,j

{δT (i, j)} , (30)

{
qa
T , q

b
T

}
= arg max

i,j
{δT (i, j)} . (31)

– Backtracking

{qa
t , q

v
t } = ψt+1

(
qa
t+1, q

v
t+1

)
. (32)

The segmental K means the algorithm for the coupled

HMMs is described in the following steps:

Step 1. For each training observation sequence r, the data in

each stream is uniformly segmented according to the number

of states of the coupled nodes and an initial state sequence

for the coupled nodes:

Q = qa,v
r,0 , ..., q

a,v
r,t , ..., q

a,v
r,T−1 (33)

is obtained. For each state i of the coupled nodes in stream c
the mixture segmentation of the data assigned to it is obtained

using the K-means algorithm with M c
i clusters. Consequently

the sequence of mixture components:

S = sa,v
0,r , ..., s

a,v
r,t , ..., s

a,v
r,T−1 (34)

for the mixtures nodes is obtained.

Step 2. The new parameters of the model are estimated from

the segmented data.

µa,v
i,m =

Σr,tγ
a,v
r,t (i,m)Oa,v

t

Σr,tγ
a,v
r,t (i,m)

, (35)

σ2 a,v
i,m =

Σr,tγ
a,v
r,t (i,m)

(
Oa,v

t − µa,v
i,m

) (
Oa,v

t − µa,v
i,m

)T

Σr,tγ
a,v
r,t (i,m)

,

(36)

wa,v
i,m =

Σr,tγ
a,v
r,t (i,m)

Σr,tΣmγ
a,v
r,t (i,m)

, (37)

aa,v
i|k,l =

Σr,tε
a,v
r,t (i, k, l)

Σr,tΣkΣlε
a,v
r,t (i, k, l)

, (38)

where

γa,v
r,t (i,m) =

{
1, if qa,v

r,t = i, sa,v
r,t = m

0, otherwise
(39)

εa,v
r,t (i, k, l) =






1, if qa,v
r,t = i

qa
r,t−1 = k, qv

r,t−1 = l

0, otherwise

(40)

Step 3. At consecutive iteration the optimal state sequence

Qof the coupled nodes is obtained using the Viterbi algorithm

(Eqs. (26)–(32)). The sequence of mixture component S is ob-

tained by selecting at each moment t the mixture sa,v
r,t such

that:

sa,v
r,t = max

m=1,...,Ma,v

i

P
(
Oa,v

t |qa,v
r,t = i,m

)
. (41)

Step 4. The iterations in steps 2–4 are repeated until the

difference between the observation probabilities of the train-

ing sequences at consecutive iterations falls below the con-

vergence threshold.

The word recognition is carried out via the computation

of the Viterbi algorithm (Eqs. (26)–(32)) for the parameters

of all the word models in the database. The parameters of

the CHMM corresponding to each word in the database are

obtained in the training stage using clear audio signals (SNR

= 20 db). In the recognition stage the influence of the audio

and visual streams is weighted based on the relative reliabil-

ity of the audio and visual features, for different levels of the

acoustic noise. Formally the observation probability at time t

for the observation vector Oa,v
t becomes:

b̃a,v
t (i) = bt (Oa,v

t |qa,v
t = i)

αa,v , (42)

where αa + αv = 1 and αa, αv ≥ 0 are the exponents of the

audio and video streams. The values of αa, αv corresponding

to a specific acoustic SNR level are obtained experimentally

to maximize the average recognition rate.

Learning the system based on the Viterbi algorithm is de-

scribed based on the work of [16].

5. The method of extraction of video features

The paper proposes a method of speech recognition, based

on the characteristics of the audio and visual signal. As the

video information of speech, we accepted an observation vec-

tor, created in the process of feature extraction video.

The first step in process of creating video observation

speech vectors is the location of the user’s face in a video. In

this work, there is used a detection method, based on Haar-

like features – for face localization. In a Haar-like feature

approach, feature values are obtained by summing up the val-

ues of pixels in each region of a face image and weighting

and then summing up the regional sums, instead of directly

using the values of the pixels of the face image. Haar-like

feature is a linear combination of the intensity sum of pixels

(several rectangular regions), which use two different rectan-

gular regions. After determining the coordinates of vertices
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rectangular mask, there is created a new video sequence of

statements containing the limited area of the image to the

user’s face – from the original sequence of frames.

In order to point an area of image containing the user’s

mouth can be used to determine the coordinates of eyes. For

this reason Gradient Method and Integral Projection (GMIP)

[17] is applied to find horizontal and vertical lines of eyes.

Dependencies used to determine the boundaries of the mouth

and the results of determination of the mouth area based on

the position of eyes, are shown in Fig. 2.

Fig. 2. Dependencies used to determine the boundaries of the mouth

and the results of determination of the mouth area based on the

position of eyes

The next step in the creation of video observation vectors

of speech is to locate the edge of user’s mouth. The paper

proposes a method based on a specific colour and shape of

lips [18]. In this method, the localization process of lip cor-

ners is realized on a colour image. Because lip colour is so

specific, it is possible to manipulate the various components

of the RGB in order to determine isolated border between

the lips and the rest of the face, by thresholding. In this way,

one sets the values of the pixels corresponding to the specific

colour of the lips. The method of operation on RGB describes

the following relationship:

lips region =






B

G
− 1 < T 1

R

G
−
B

G
< T 2

R

G
− 1 < T 3

, (43)

where T 1, T 2 and T 3 are empirically chosen thresholding.

The audio speech may distinguish all phonemes. During

speaking in the video it happens that – for various phonemes

– lips have a very similar look and layout. Some phonemes

can be distinguished in a video speech by observation whether

the tongue can be seen explicitly between the teeth. For exam-

ple, the mouth when speaking in Polish phonemes “a” and “l”

are arranged very similarly, but for the phoneme “l” tongue

may be seen near the teeth. Similarly, no apparent tongue

pronounces phonemes “i” and “j”, and with the tongue for

phonemes “t” and “d”. On this basis, the system introduces

the appropriate weights for the phonemes of the observed

tongue in order to improve the differentiation of individual

phonemes of video. The system looks for an area of colour

similar to the tongue or mouth, which appears near the upper

teeth. After finding such an area, the system checks the bright-

ness level grayscale, and if the level is larger than a specified

threshold, it means the area as a visible tongue.

The system is based on CHMM. For the CHMM model,

the input signal has to be introduced as a vector of obser-

vations. For each frame, based on the coordinates of charac-

teristic points, there is assigned a symbol that best describes

the characteristics of that frame. The proposed method for

encoding frames uses a simplified method that uses the loca-

tion of each characteristic point of the straight line defined by

the corners of the mouth. One calculates the sum of relative

distances mfrom all points of a straight line, defined by the

corners of the mouth, for each frame. There are adopted 16

characteristic points, so each of the calculated relationships

is divided by 16. The value of obtained sum, multiplied by

100, is in the range from 11 to 60, obviously when properly

located in the characteristic points on the outer edges of the

lips:

y =

N∑
i=1

mi

d

N
· 100, (44)

where: N – is the number of points.

Video speech encoding method shown in Fig. 3.

Fig. 3. Video speech encoding method

It is assumed that the resulting symbols should be in the

range from 1 to 50, so the minimum value of the code for

each user must be specified and on this basis code values to

the objective range must be reduced. After an analysis of the

video speech encoding, it was noted that the code for most

users at the mouth closed revolved around the number 11.

Number of distinct phonemes with a visible tongue is small,

so one may use the range from 1 to 10 for encoding such

phonemes and the remaining range from 11 to 50 may be

used to encode the phonemes without a visible tongue.

6. Assumptions of the system

of audio-visual speech recognition

In the work, our method of audio-visual speech recognition,

called AV Mowa PL, was proposed to limit the negative influ-

ence of external factors on audio speech. The method based

on hidden Markov models, was worked up for recognition of

Polish audio-visual speech. Novel peculiarity of the method

was the use of a data vector, where the audio and visual signals
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of Polish speech were joined. The method may be proposed

also to identify the speaker.

The audio-visual speech recognition is based on the ex-

traction of recording features of audio and features of video.

There are analysed, in such a system, separately video and

audio channels. That makes a proper fusion of designated

features by using CHMM.

Both the signal sources were analysed separately for the

creation of the observation vector, containing the necessary

characteristics of the source audio and video. Peculiarity of

this method depends on used observations vectors of the au-

dio and video in speech as teaching data for the same CHMM.

Because in the system presented in this paper, the audio visual

CHMM allows for asynchrony in the audio and visual states

(skip the step of synchronization) but forces them to be syn-

chronized at the model boundaries (adopted such a selection

of frequency recording audio and video signals) allows to ob-

tain the same length of observation vectors. Such requirements

are met by application of the audio signal sampling frequen-

cy 8000 samples per second with a delay of 80 frames of

samples, and the use of frequencies for the picture 50 frames

per second. Diagram of the operation method using CHMM

is shown in Fig. 4.

Fig. 4. Diagram of the operation method using CHMM

The learning process uses an approach based on stochas-

tic models, CHMM used for modeling time series. Learning

CHMM model is the best fit value of its parameters. Pre-

ceding the learning process, it is necessary to determine the

topology of the model. The proper selection of the number of

states influences the accuracy and the speed of learning. The

learning process is to estimate the parameters of the model,

for a given learning sequence of observations. The given ob-

servation sequence consists of several repetitions of the same

speech and audio encoded in the form of observation symbols.

In isolated word the recognition system was used for each of

your separate model described in the appropriate grammatical

transcription. The number of models corresponds to the num-

ber of words contained in the dictionary of system. Adding

new words to the dictionary associated with the creation of a

new model, while in the learning process only the parameters

of this new model are determined, the parameters of the other

models do not change. Additionally there was assumed that

all models were the same size. For a new user of the system,

it is necessary to create a new set of models for each expres-

sion. One may learn from the new models already in place,

but then lose their value for the previous user.

In the process of recognition it is made a similar analysis

and coding, as in the case of learning the system. Recognized

word represented by a observation vector is compared with

all the models in the CHMM system. Recognition consists of

determining the likelihood of generating the input sequence

of observations by the model because each model CHMM

may be seen as a generator sequence of observations. Recog-

nition determines also the maximum likelihood model that

was trained on the data most similar to the recognized word.

The result of recognition is the equivalent of a winning tran-

scription grammatical model.

The method of audio-visual recognition of the Polish lan-

guage is implemented in the system to control the industrial

camera, with voice and lip movements – to test it and select

the optimum parameters. Due to the limited number of com-

mands to control the camera, the system allows to teach any

number of words, regardless of the reference control. This

approach allows to test a large number of commands, while

retaining the ability to control camera movement using the

selected voice commands. View of such a system is shown in

Fig. 5.

Fig. 5. View the system to control the camera movement through

audio-visual speech

7. Experimental results

Some experimental research began with the selection of

the optimal code-book size and number of hidden states of

CHMM. It was assumed that an appropriate choice of these

parameters would allow for the proper conduct of the main

experiment. The study realized on undisturbed conditions for

audio speech, containing about fifty different commands.

When choosing the size of the code books, it was

suggested by the fact that in Polish there are 37 distinct

phonemes. Besides the phonemes, all the possible transitions

of phonemes are taken into consideration, but then the code-

book size increases to over a thousand values. Therefore, the

study was done for the code-book size close to the number of

phonemes of the Polish language, and more specifically for

the size specified respectively: 32, 37, 64.128, 256

The experience of choosing the number of codes in the

code book was carried out for different numbers of states of
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CHMM models. Adopted by the number of states equal to

5, 8, 10 and 15. During the tests, using words with different

numbers of phonemes, and it was necessary to choose the

number of states that was appropriate for the given command

reference. Error rates were presented in the form of incorrect

rejection (False Rejection Rate, FRR) and false acceptance

(False Acceptance Rate, FAR) for the average of all. Erro-

neous rejection means that the statement was not recognized,

while false acceptance means that the utterance was recog-

nized correctly. The results of the first experiment are shown

in Table 1.

Table 1

Results of the selection experiment the number of codes in the book code

and numbers of states of CHMM models

Number
of states

of CHMM

Codebook

size
FAR [%] FRR [%]

Recognition
performance

[%]

5

32 4 8 88

37 4 4 92

64 6 6 88

128 8 6 86

256 8 8 84

8

32 4 0 96

37 0 0 100

64 0 2 98

128 4 4 92

256 6 8 86

10

32 4 10 86

37 2 4 94

64 4 10 86

128 6 8 86

256 6 10 84

15

32 4 10 86

37 4 6 90

64 4 12 84

128 4 14 82

256 6 12 82

Then the effectiveness of only audio and audio-visual

speech recognition was examined in conditions of distorted

audio signal of speech. To carry out the research there was

applied a set of two hundred commands, recorded at a fre-

quency of 8000 samples per second (for audio) and 50 frames

per second (for video). 40 different users were tested. In order

to show the effectiveness of the method of Polish audio-video

speech, experiments were performed for different levels of au-

dio noise (at SNR of 20, 15, 10, 5, and 0 dB) and different

number of states of CHMM. The same test was performed

for the audio only speech recognition. Adopted at 20 dB SNR

of at undisturbed conditions for sound recording. Checked,

how it affects the efficiency of detection the number of states

in a noisy. It was assumed equal number of states for audio

and video speech for audio-visual speech recognition. Uses

the number of states as in the earlier study, respectively: 5,

8, 10 and 15. Results of the second experiment are shown in

Table 2.

Table 2

Recognition results of audio-video speech for different levels

of noise and different numbers of states

Audio-visual speech recognition with use method based on CHMM

Number
of states

of CHMM

Recognition Accuracy [%]

SNR

20 dB

SNR

15 dB

SNR

10 dB

SNR

5 dB

SNR

0 dB

5 93.83 85.12 79.53 69.08 64.11

8 95.91 88.98 82.02 75.15 70.09

10 96.12 89.76 83.33 77.11 71.32

15 94.05 88.02 81.54 74.71 69.58

Audio speech recognition with use method based on HMM

Number
of states
of HMM

Recognition Accuracy [%]

SNR

20 dB

SNR

15 dB

SNR

10 dB

SNR

5 dB

SNR

0 dB

5 92.02 74.81 48.19 30.60 21.96

8 96.02 77.35 52.30 37.84 29.73

10 95.93 76.86 50.49 33.28 27.34

15 93.16 76.05 50.09 32.87 28.13

Many scientists in the world deal with the analysis of

audio-visual speech. In their studies, they examine the vari-

ous factors of processing audio-visual speech. Therefore, to

compare the obtained results with those of other researchers,

we chose only those works that were analysed in a similar way

audio-visual recognition of speech. In order to compare the

developed method with the popular methods of audio-visual

recognition of the speech, developed by leading researchers

in this field, we adopted similar conditions for noisy audio

signal. Effectiveness compared with those of: [2] – AV Com-

bined, [5] - Audiovisual, [7] – AV-LSNR, [9] – AV-CHMM,

[15] – AV-Concat, AV-HiLDA, AV-Enhanced, AV-MS-Joint, in

which the authors have adopted similar solutions to encode

both signals, and the use of CHMM for learning and testing.

Assumptions may differ in terms of quantity of the analysed

words, different amounts of CHMM states and various means

of fusion of audio and video signals. But the sense of studies

was similar, so it was concluded that the comparison would

be reliable. The results of comparing the level of recognition

errors of audio-visual speech was showed in Table 3.

Table 3

The results of comparing the level of recognition errors of audio-visual

speech for different methods

Method
Recognition Accuracy [%]

SNR

20 dB

SNR

15 dB

SNR

10 dB

SNR

5 dB

SNR

0 dB

AV-Concat 88.37 80.66 73.95 66.36 53.73

AV-HiLDA 88.44 81.92 75.91 66.77 56.49

AV-Enhanced 87.28 79.84 70.28 56.88 41.04

AV-MS-Joint 88.63 82.52 77.08 69.97 59.11

AV-LSNR 93.13 88.26 83.05 78.64 71.27

AV-CHMM 98.56 90.08 85.09 75.23 70.51

Audiovisual 94.72 88.16 84.72 74.12 68.96

AV Combined 97.20 93.40 79.50 58.40 50.80

AV Mowa PL 96.12 89.76 83.33 77.11 71.32
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8. Conclusions and future work

After the first part of the study there was found that the

number of all possible combinations of transitions between

phonemes were far too large in size of the dictionary. A study

of the effectiveness of the recognition vocabulary size equal to

respectively 256, 128, 64, 37 and 32. There appeared, for sizes

larger than 37, the phenomenon of the same phoneme code

using several completely different codes, which introduced the

possibility of erroneous recognition of words presented in the

form of the observation vector, where each observation corre-

sponded to a single code from the code book. At size 32, there

was a situation in which the various phonemes were encoded

using the same code. Observing the recognition results for

different sizes of code book, it was found that the best results

could encode the signals using the 37 codes. By adopting such

a code-book size dropped from the phenomenon of transition

between phonemes.

In the second experiment, there was observed that an ex-

cessive number of states made it difficult to identify the cor-

rect words, while a too small number of states results in a

misdiagnosis. The best results, based on the audio speech,

obtained by the number of states equal eight HMM mod-

els. Analysing the obtained results, it may be assumed that

the number of states should correspond to the number of

phonemes of the word. But there was no need or possibility

of using models with different numbers of states for different

words, so be sure to choose the number of states of HMM

models respectively for the base words in the system. The best

for a specific database commands take the number of states

equal to the average number of phonemes per one command

from the database. For the analysed database commands for

audio-visual speech, the best results were obtained for the ten

states of CHMM, while for the same audio speech, the best

results were obtained when eight states of HMM. Results of

the second experiment are shown in Fig. 6.

Fig. 6. Recognition results of audio and audio-visual speech,with

varying degrees of noisy audio signal and different numbers of states

(numbers with names indicate the number of used states of HMM

and CHMM)

The third experiment showed that the method obtained

similar or better results to other existing audio-visual speech

recognition methods, published in scientific literature. Fig-

ure 7 shows results of comparing the level of recognition

errors of audio-visual speech for different methods.

Fig. 7. The results of comparing the level of recognition errors of

audio-visual speech for different methods

Based on the tests there was shown that the method of

Polish audio-visual speech recognition worked properly and

it could work in the systems in the real world. Test results

show the accuracy of speech recognition that a large impact

on the proper identification was affected, disturbed or not, the

environment. The results showed also that this method should

be developed. There are plans to expand the method of au-

tomatic detection of the position of the tongue, for each of

the spoken video phonemes. Further work will also build a

system for Polish speech recognition, based on an analysis

of individual phonemes. Such an approach would allow for

continuous speech recognition. The method of audio-visual

recognition of Polish speech was used in the system to con-

trol the camera movement using voice commands. To increase

the efficiency of the method FPGA (Field Programmable Gate

Array) can be used. As a consequence the system is enabled

to work properly in a real time as well as the hardware level

is supported [19].

An advantage of the proposed method is the satisfactory

effectiveness created by the lip-tracking procedures, and the

simplicity and functionality by the proposed methods, which

fuse together the audio and visual signals. A decisively lower

level of mistakes was obtained in audio-visual speech recog-

nition, and speaker identification, in comparison to only au-

dio speech, particularly in facilities, where the audio signal is

strongly disrupted.
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